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Abstract: The paper examines the AQM mechanism based on neural networks. The active queue
management allows packets to be dropped from the router’s queue before the buffer is full. The
aim of the work is to use machine learning to create a model that copies the behavior of the AQM
PIα mechanism. We create training samples taking into account the self-similarity of network
traffic. The model uses fractional Gaussian noise as a source. The quantitative analysis is based on
simulation. During the tests, we analyzed the length of the queue, the number of rejected packets
and waiting times in the queues. The proposed mechanism shows the usefulness of the Active Queue
Management mechanism based on Neural Networks.

Keywords: neural networks; Hurst exponent; self-similarity; internet traffic; congestion control;
dropping packets; active queue management; PIα controller

1. Introduction

Cisco predicts that by 2022, the Internet traffic will increase to 77 exabytes per month
due to the rapid development of mobile technologies. The mobile data transfer will increase
sevenfold compared to 2017, with an average annual growth of 46% [1]. The rapid increase
in the number of Internet users as well as the transmission of multimedia content of
increasing quality force the continuous development of data transmission mechanisms.

Wide area networks have their origins in the 1970s and were created for the American
army. Thus, the most important aspect of the network based on a distributed architecture
was to deliver reliable transmission of data and low connection costs. Unfortunately,
the design assumptions proposed at the beginning turned out to be insufficient over
the years.

Initially, IP routers handled packets according to the FIFO (First In First Out) rule (the
first incoming packet in the queue is the first one to be served) [2]. For such scheduling,
packets are dropped when the queue length exceeds the maximum length which results
in the retransmission of a large number of packets in a short period of time. For such a
network model, it is very difficult to control transmission throughput, delay and packet
dropping [3].

To solve this problem, the Internet Engineering Task Force (IETF) proposed Active
Queue Management (AQM) mechanisms [4]. These mechanisms preemptively drop pack-
ets before queue overflow occurs. In addition, the rejection of a packet should force the
sender to reduce the transmission speed, which is provided by TCP congestion window
mechanism [5]. The AQM algorithms used with TCP can enhance the efficiency of network
transmission [4].
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One of the first active queue management algorithm—Random Early Detection
(RED) [6]—was proposed in 1993 by Sally Floyd and Van Jacobson. This mechanism
estimates the packet dropping probability, which depends on the queue length. Despite
the advantages of the RED algorithm, it also has some limitations. One of them is the
problem of adjusting parameters to varying network traffic. Furthermore, the efficiency of
the RED mechanism is closely related to the current network conditions [7]. There are many
improvements and modifications of the classic RED algorithm [8–13] but none of them fully
solves these problems. Performance of all RED family algorithms depends on coefficients
of the dropping packet probability function. These coefficients should differ depending
on the parameters of traffic such as intensity, burstiness or long-term dependence [14].
Article [15] presents the algorithm of finding the optimal parameters using the Hooke-
Jeeves optimizing method. One of the newest solutions combines AQM mechanisms with
a well-known method adopted from the theory of Automatic Control-PI controller. In this
context, the information obtained from a classic PI controller is used as a packet dropping
function [16–18]. The article [19] highlights the advantages of the PIE (Proportional Integral
Enhanced Controller) algorithm. The authors state that mechanism easily adapts to varying
transmission conditions and turned out to be a compromise between the degree of queue
utilization and transmission delays.

The literature states that non-integer order controllers may have better performance
than classic integer order ones. The first implementation of the fractional order PI controller
used in queue management was presented in [20]. Our previous articles [21] investigate the
performance of a fractional order PI controller (PIα) utilized as an Internet traffic controller.

Increase in popularity of machine learning methods may enable the creation of a
more efficient AQM mechanism. Artificial Neural Networks (ANNs) are a powerful
tool with high ability to recognize patterns, even in the case of incomplete and partially
distorted training data [22]. One of their applications is time series processing and analysis,
which is applied in many different fields. To process time-series data with Artificial
Neural Networks, different types of network layers can be used, namely Recurrent layers
(including Long-Short Term Memory (LSTM) layers and Gated Recurrent Unit (GRU)
Layers) and 1D Convolutional Neural Networks (CNNs). Here, CNNs can be used as a fast
alternative to recurrent layers [22]. Paper [23] proposes the CNN model for processing data
from time series and forecasting prices in financial markets. In a different work, [24], CNNs
were used to discover the network attacks, namely Distributed Denial of Service (DDoS)
attacks. Additionally, our previous work [25] uses ANNs to examine the self-similar
properties of the network traffic expressed by the Hurst parameter H. This approach
also uses Convolutional Neural Networks. The promising results obtained in this work
prompted us to create an efficient adaptive algorithm of Active Queue Management based
on Convolutional Neural Networks.

Mechanisms that select AQM parameters based on the decisions of neural networks
have been proposed in the literature [26,27]. Nevertheless, these methods are based on
reinforcement learning. This paradigm relies on trial-and-error to make a specific decision
in each iteration of the algorithm. The neural network receives feedback (i.e., queue length)
after each step, which is then used to evaluate the previously made decision. Based on this
feedback, the ANN changes its weights to optimize the accuracy of the decision-making
process [28]. Thus, the configuration of the neural network varies depending on the current
queue occupancy.

Our contribution. The aim of the work is to propose an algorithm for Active Queue
Management based on supervised learning paradigm. We use a previously trained Convo-
lutional Network to manage the queue. The ANN is trained based on the data obtained
in simulations. We observe the impact on the behavior of the AQM mechanism based on
the PIα controller. In experiments we change the intensity and degree of self-similarity
of network sources and observe behavior of the controller. The samples contain the se-
quence of incoming packets and the probability of packet dropping. The model trained
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this way is used as a new AQM mechanism. This paper presents its influence on the
Internet transmission.

The remainder of the paper is organized as follows: Section 2 describes the current
state of the art in this field. Section 3 presents the theoretical background. Section 4 is a
description of the structure of the Artificial Neural Network, the data and the experimental
methods used to obtain the results for this research. In Section 5 there is a description of
the results of the conducted experiments. Section 6 concludes our research.

2. Related Works

There are many works regarding new AQM algorithms. These mechanisms are
compared with existing solutions in terms of transmission parameters such as total number
of dropped packets, average queue length, or transmission delays. In the article [7] passive
and active queue management mechanisms were compared. Other works focus only on
the comparison of the AQM mechanisms [6,29]. The topics of research in network and
computer system performance evaluation also include works considering the impact of
self-similarity of network traffic on transmission efficiency [10].

Additionally, the fractional order PI controller [30] is used for the Active Queue
Management. This research is still under development, and its mechanisms have also
been subjected to an analysis of the effect of the degree of self-similarity and long-term
dependence of the traffic [31].

A separate group includes studies that have used neural networks to improve the
queue management mechanism in TCP networks. The article [32] proposed the AQM
mechanism based on reinforcement learning—Q-learning RED. The authors of [33] pro-
posed an ANB-AQM mechanism, in which a back-propagation algorithm was used to train
the neural networks to make decisions about accepting or rejecting packets. Article [34]
proposes a neural network model, which modifies the REM algorithm, called the Fuzzy
Neuron REM (FNREM) mechanism. This mechanism modifies the value of the proportional
integral of the REM algorithm, by using the value of the proportional-integral derivative
neuron as an indicator of overload.

ANNs were also used to create a new algorithm—Adaptive Neuron Proportional
Integral Differential (ANPID) [35]. This mechanism used a single neuron to tune the PID
controller coefficients. The authors of [36] presented the results based on the simulation and
the real tests in the Linux Kernel, which resulted in the presentation of another adaptive
modification of the PID controller using neural networks—the GRPID mechanism.

In article [37] authors presented an improved PID AQM/TCP system based on the
network built using the Long Short-Term Memory (LSTM) layers (a specific type of a
recurrent layer). It allows to predict queue length in the next step. They used Root
Mean Square Error (RMSE) as a loss function. LSTM layers were also used to predict the
occurrence of transmission overloads [38].

The research presented in XuIeee is an example of an attempt to use unsupervised
learning to create a more efficient AQM mechanism. For that purpose, the Hebbian
Learning rule is used and a new adaptive PHAQM algorithm is presented.

Bisoy and Pattnaik [39] used feed-forward neural network to create an AQM mecha-
nism, namely FFNN-AQM. The network consisted of two input neurons, three neurons in
a single hidden layer and the single output neuron.

Zhou et al. [40] also presented an adaptive AQM mechanism based on a single neu-
ron whose weights were selected using reinforcement learning rules. The application of
reinforcement learning was also used in [41] to build a mechanism to reduce transmis-
sion delays.

There are many works on the topic of AQMs based on neural networks. However,
in these works, in contrast to our approach, the neural networks were mainly created using
reinforcement learning. In addition, the research results did not consider the analysis of
the effect of traffic self-similarity and long-term dependence on transmission efficiency.
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3. Theoretical Background

Self-similarity is widely observed in nature, but the term itself was introduced by
Mandelbrot in 1960s and it generally means that the portion of the whole object can be
considered an image of the whole in a reduced scale. The object is self-similar, when it
exhibits the same statistical properties independently of the scale. Mandelbrot described it
on the example of the scaled coastlines, which also exhibited self-similarity. This property
can also be used in the case of time-series analysis. The degree of self-similarity in this case
determines whether Long-Range Dependence (LRD) and Short-Range Dependence (SRD)
occur in data. These relationships were observed as early as the middle of the twentieth
century, when Sir H. E. Hurst described the occurrence of long-range dependence based on
the value of water level fluctuations in the Nile River. Although the terms of self-similarity
and LRD are sometimes used interchangeably, they are not the same [42].

A continuous-time series Y(t) is exactly self-similar when the following condition
is satisfied:

Y(t) d
= a−HY(at), (1)

for t ≥ 0, a ≥ 0 and 0 < H < 1. It results in the statistical invariability in different time
scales. H is usually used to denote the Hurst exponent/parameter, which expresses the
degree of self-similarity. The parameter can take values from range (0; 1), and specific
values represent:

• H ∈ (0; 0.5): negative correlation—the LRD does not occur (the SRD occurs).
• H = 0.5: no correlation.
• H ∈ (0.5; 1): positive correlation—the LRD occurs.

It was first proven in [43] that actual network traffic exhibits self-similarity. This work
provided the motivation for numerous studies that demonstrated the significant impact
of self-similarity on TCP transmissions [44], or to confirm its occurrence in Wide Area
Networks (WANs) [45]. Self-similarity results in performance degradations, such as mean
queue length enlargement and the increase in packet loss probability [42]. The topic of
self-similarity is still relevant in the literature and found its application in e.g., DoS attack
detection (e.g., [46]). Our previous works were also related to this topic. They regarded
determining the degree of traffic self-similarity expressed by the Hurst parameter and also
using data obtained from the IITiS data traffic traces to examine self-similar properties [25].
Self-similarity significantly impacts queue occupancy and transmission performance [47].
For that reason, the samples generated for the purpose of this article are characterized by
different degrees of self-similarity.

Artificial Neural Networks have found application in many different domains, e.g., im-
age classification, natural language processing, signal processing etc. Additionally, Deep
Learning approaches have become a solution to many problems due to their better ability to
extract patterns than shallow learning [48]. The versatility of neural networks has resulted
in them also being frequently used in the network traffic domain for tasks including attack
detection [49,50], traffic generation [51] and classification of the traffic type [52].

Network traffic and its features are often represented as a time series. To process
time-series data with Artificial Neural Networks, different types of networks (e.g., Au-
toencoders) and layers can be used, namely Recurrent layers (including Long-Short Term
Memory (LSTM) layers and Gated Recurrent Unit (GRU) Layers) and 1D Convolutional
Neural Networks.

Autoencoders can be built using different types of layers, e.g., Dense Layers or Con-
volutional layers. The goal of this type of network is to compress input data and then
reconstruct it on output [53]. It can be used for the purpose of data denoising, but also
anomaly detection. When the neural network is not able to reconstruct the input data well,
it suggests that the sample can be anomalous [53].

LSTM layers are often used for the purpose of time-series data processing. Single
LSTM units solve the gradient vanishing and exploding issues typical for simple Recurrent
Layers and are able to propagate gradients over a long period of time [54]. The key
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characteristic of this type of layer is that they store the internal state, which enables them
to ’remember’ the past information [52]. Due to that their internal ’memory’ is longer than
in the traditional recurrent units.

The alternative for LSTM layers is a GRU layer. It is very similar to LSTM layer,
also stores the Long-Time memory of the past information, which is vital for time-series
processing. Nevertheless, it is simpler to implement and compute than the LSTM layer,
thus more efficient [55].

Additionally, convolutional layers can be used to process time-series data. In this case,
time has to be treated as a spatial dimension [22]. In fact, it is an efficient alternative to
recurrent layers. In a Convolutional Neural Network, transformed time-series data are
processed in turns using convolutional and pooling layers. As a result deep, more abstract
representations are generated on the basis of raw data. Processing ends with a classifier
part (Multi-Layer Perceptron), which consists of dense layers.

4. Data Preparation and Neural Networks Training Process

In this paper, we used artificial neural network models to develop an active queue
management mechanism. The neural networks were trained to mimic the operation of
the AQM based on the fractional order PIα controller mechanism. The training data were
generated based on simulation data, and a detailed description of the learning model is
given in this section.

The neural network model was based on four convolutional layers and two dense
layers. After each convolutional layer, the data were normalized and the results were
averaged. Additionally, a dropout layer was placed to prevent over-fitting to the learning
data. Python and Keras libraries were used to implement the model. The conceptual
structure of the model used in this paper is presented in Figure 1. To design this model
structure we relied on the experience of our earlier work [25], where the degree of self-
similarity of network traffic was classified using Convolutional Neural Networks expressed
by Hurst parameter.

In order to prepare the training set for the proposed neural network model, network
simulations were performed, reflecting the queueing behavior of a fractional order con-
troller PIα. The values of the fractional order PIα controller parameters have been presented
in the Table 1. These values were determined based on our previous work [26]. The results
of these articles have shown that the choice of controller parameters significantly affects
the queue length control properties. The process of choosing proper AQM/PI controller
parameters is non-trivial. It has a significant impact on the packet dropping function
(i.e., for an integral order α it can strengthen and accelerate the response of a controller).
Properly selected AQM parameters should allow us to obtain adaptation to the changing
transmission conditions and desired queue behavior. We discussed the influence of these
parameters on queue behavior in papers [15]. The controller parameters were chosen in
such a manner that controller PIα1 was the weakest controller, and controller PIα3 was the
strongest one, which implies a large number of packet rejections and ease of maintaining
the desired queue length.

Table 1. The PIα controller parameters.

KP KI α

PIα1 0.0001 0.0004 −0.4

PIα2 0.0001 0.0004 −0.5

PIα3 0.0001 0.0004 −0.6
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Figure 1. The conceptual structure of a Convolutional Neural Network based classifier used to model
an Active Queue Management mechanism.

To obtain training data for an AQM model based on Convolutional Networks, network
simulations were performed using the AQM mechanism. For this purpose, the discrete
event simulator SimPy (written in Python) was used. This software is available under
the MIT License and has been used in our previous works regarding the evaluation of
AQMs [21,26].

Our simulation model was a discrete model of a G/M/1/N queue. The simulation
time was divided into discrete time intervals of length dt. Arrival of a packet was generated
(or not) in a given time slot by a traffic source. The source of traffic was self-similar and
based on Fractional Gaussian Noise (FGN) process. The advantages of such a source have
been described previously in the articles [10,15,25].

All experiments considered different degrees of traffic self-similarity expressed using
Hurst parameter. In experiments the Hurst parameter changed between H = 0.5 (no
correlation) and H = 0.9 (high degree of LRD).

The input intensity coefficient was set to a constant value λ = 0.5. Thus, the simulation
packet source always had a constant intensity. Parameter µ represents the time of packet
processing and dispatching (probability of taking a packet from the queue). Different values
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of this coefficient were used in the experiments. The parameter µ took values between
µ = 0.5 (moderately stressed system) to µ = 0.15 (highly stressed system). This choice of
simulation parameters allowed us to observe all properties of the AQM mechanism.

In our experiments, we considered different numbers of items from queue occupancy
history taken into consideration in the samples used to train Convolutional Networks.
For simplicity, we refer to this number of samples as ’CNN History’. This length corre-
sponded to the number of time slots in the simulation model that were used as training
data for the network. For example CNN = 200 refers to 200 ∗ dt time intervals taken into
consideration. Throughout this time, we observed the behavior of the AQM queue.
Thus, the training data consisted of:

1. Learning features:

(a) The last n items from the queue’s occupancy history (CNN History).
(b) History of packet rejections in n last queue states

where n ∈ [20; 100; 200; 300; 400; 500; 1000].

2. Classes:

(a) 11 labels that mapped the probability of packet rejection to the current trans-
mission conditions, according to the principle shown in Table 2.

Table 2. Decision class labels representing ranges of probabilities of packet being dropped.

Decision Class Probability Interval [%]

1 [0;5)

2 [5;15)

3 [15;25)

4 [25;35)

5 [35;45)

6 [45;55)

7 [55;65)

8 [65;75)

9 [75;85)

10 [85;95)

11 [95;100]

Therefore, we considered different lengths of queue occupancy history, because from
the perspective of the router, which is a low resource device, minimizing the length of the
history would be beneficial. In our study, we tried to determine the minimum acceptable
length of n last items of the queue’s occupancy history.

For each probability interval, one million one-dimensional learning records were
prepared. Therefore, the training set consisted of 11 million records. They contained
transmission information such as the length of the queue in each consecutive time slot,
the number of dropped packets, and the value of the PIα controller’s packet rejection
probability function. We present the process of data preparation in Figure 2. This amount
of data seemed to be sufficient in comparison with the cardinality of data reported in the
literature [56].
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Figure 2. Training data preprocessing process.

Input data prepared in such a manner were used in the process of supervised learning
of the neural network models. In order to train the model and minimize the cost function,
the optimizer Adaptive Moment Estimation (Adam) was used with the following parameters:

η = 10−3, β1 = 0.9, β2 = 0.999 (2)

where: η is the learning rate, β1 is the exponential decay rate for the first moment estimates
and β2 is the exponential decay rate for the second moment estimates. The Adam optimizer
is expressed by the equation [57]:

vt = β1vt−1 + (1− β1)gt

st = β2st−1 + (1− β2)gt
(3)
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where v is the first moment, which resembles momentum that records the past normalized
gradient, s is the second moment and g denotes the gradient descent.

In both the four convolutional layers and the two dense layers, ReLU was used as the
activation function and Sigmoid/Softmax functions were used to determine the activation
of the output layer. Categorical cross-entropy was used as a cost function. Figure 1 shows
the conceptual structure of a neural network model used for the purpose of active queue
management mechanism.

We limited the training process to 10 epochs. This value was sufficient, since the
values start to stabilize after only 5–6 epochs, as confirmed by the results in Tables 3–5. We
also compare the accuracy of the model, when Softmax activation function (Table 3) and
Sigmoid activation function (Table 4) were used in the output layer. Higher results were
obtained for the Sigmoid function.

In the case of Softmax function (Table 3), the minimum accuracy was 32.3%, and the
maximum 58.9%. For the models in which we applied the Sigmoid activation function
for the last layer the minimum accuracy was 48.77% (for the network trained on the data
from the PIα3 controller, where the CNN History = 20), and the maximum 89.46% (for
the network trained on the data from the PIα3 controller, where the CNN History = 1000).
Taking all the results into consideration, the best results were obtained for the CNN
History ≥ 500, and the worst for the CNN History < 100 (Table 4).

In the case of the model trained on data representing the behavior of three controllers
simultaneously and the use of the Sigmoid activation function of the output layer, the max-
imum accuracy was 72.1% for the CNN History ≥ 500 (see Table 5).

Table 3. The accuracy measurements for testing the CNN model trained on data regarding three
PIα1, PIα2 and PIα3 controllers, n last items in queue occupancy history taken into consideration
(we used Softmax function as an activation function of the last layer).

Softmax

n History Length

20 100 200 300 400 500 1000

C
N

N
by

be
ha

vi
or

P
Iα

1 5
epochs 52.27 54.48 54.50 56.67 58.40 58.81 51.59

6
epochs 52.36 54.88 54.68 56.70 58.42 58.84 51.72

10
epochs 52.40 55.50 54.83 56.74 58.47 58.90 51.82

C
N

N
by

be
ha

vi
or

P
Iα

2 5
epochs 48.37 47.23 40.29 41.99 43.68 44.06 43.94

6
epochs 48.45 47.61 40.32 42.06 43.74 44.06 44.00

10
epochs 48.54 48.42 40.31 42.30 43.78 44.24 44.04
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Table 3. Cont.

Softmax

n History Length

20 100 200 300 400 500 1000

C
N

N
by

be
ha

vi
or

P
Iα

3 5
epochs 47.07 41.83 33.80 32.30 32.92 33.79 38.45

6
epochs 47.18 42.09 33.81 32.31 32.93 33.82 38.44

10
epochs 47.41 42.62 34.18 32.32 32.92 33.83 38.50

Table 4. The accuracy measurements for test data for a neural network model trained with data
representing the behavior of PIα1, PIα2 and PIα3 controllers, n last items in queue occupancy history
taken into consideration (we used Sigmoid function as an activation function of the last layer).

Sigmoid

n Last Items in Queue Occupancy History

20 100 200 300 400 500 1000

C
N

N
by

be
ha

vi
or

P
Iα

1 5
epochs 55.98 73.95 80.76 83.67 85.22 86.15 88.46

6
epochs 56.04 74.06 80.88 83.80 85.39 86.31 88.74

10
epochs 56.16 74.38 81.19 84.13 85.69 86.64 89.46

C
N

N
by

be
ha

vi
or

P
Iα

2 5
epochs 50.34 70.70 75.94 76.92 77.03 77.20 83.71

6
epochs 50.38 70.83 76.08 77.06 77.18 77.32 84.04

10
epochs 50.53 71.13 76.40 77.36 77.57 77.79 84.81

C
N

N
by

be
ha

vi
or

P
Iα

3 5
epochs 48.77 67.16 67.54 65.65 64.39 64.04 77.46

6
epochs 48.82 67.29 67.70 65.83 64.57 64.24 77.76

10
epochs 49.06 67.60 68.03 66.23 64.99 64.68 78.68
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Table 5. The accuracy measurements for test data for a neural network model trained with data
representing the behavior of three controllers simultaneously, given n recent queue occupancy
history elements.

Sigmoid

n Last Items in Queue Occupancy History

20 100 200 300 400 500 1000
C

N
N

by
be

ha
vi

or
3

P
Iα 5

epochs 49.52 67.03 68.55 68.48 68.40 68.42 70.98

6
epochs 49.58 67.12 67.70 68.65 68.60 68.61 71.30

10
epochs 49.74 67.34 68.99 69.03 69.15 69.21 72.10

5. Evaluation of the Neural Network-Based AQM

This section presents the behavior of the trained neural network (as assumed in
Section 4 and evaluates its effectiveness as an AQM mechanism. This evaluation was
performed using previously described simulation mechanisms. During the study, we
evaluated the number of packets dropped from the queue and the average queue occupancy.
We compared the effectiveness of the neural network-based AQM mechanism with the
results of the PIα controller-based AQM mechanism. We used the network traffic with
different degrees of self-similarity during the experiments.

To increase the readability of the paper, we present only two extreme cases - the results
obtained for a non-self-similar traffic (H = 0.5) and for a traffic with high degree of LRD
(H = 0.9).

The intensity of the packet source in the simulation was assumed to be (lambda = 0.5).
On the other hand, the packet service time in a system was set to a constant value (µ = 0.25)
in order to obtain a heavily loaded system.

In our experiments, we evaluated four separate neural network models. The first three
neural networks were trained with the data obtained from controllers PIα1, PIα2, and PIα3.
The fourth model was trained with data regarding all of these controllers. In the first phase
of the experiment, we considered two neural network models (see Figure 1): the first one
with Softmax, and the second one with Sigmoid activation function of the last layer.

A comparison of Tables 3 and 4 shows that although Softmax function is more com-
monly used in the literature as an activation function of the output layer of the neural
network for multiclass classification, Sigmoid function performs better in our case. In the
worst case, in which the network obtained accuracy of 32.31%, changing the activation
function to Sigmoid resulted in significant accuracy increase (65.65%). Additionally, in the
best obtained case accuracy changed from 58.90% to 86.65%. Figures 3 and 4 show average
queue lengths for AQM mechanism based on neural network. Detailed results are com-
pared on Tables 6 and 7 for Sigmoid function and on Tables 8 and 9 for Softmax function.
Both presented networks imitate the behavior of the first controller—PIα (see Table 1).
Comparing the number of discarded packets and the average queue sizes, we find that they
are similar regardless of the chosen network activation function in the last layer. As Hurst
increases, the number of dropped packets decreases slightly in the case of Sigmoid function
(<1%).
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Figure 3. Distribution of queue length obtained for CNN model with the last layer activation function
Sigmoid, trained using data regarding PIα1 controller and parameters: KP = 0.0001, KI = 0.0004,
α = −0.4, H = 0.5 (left), H = 0.9 (right).
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Figure 4. Distribution of queue length obtained for CNN model with the last layer activation function
Softmax, trained using data regarding PIα1 controller and parameters: KP = 0.0001, KI = 0.0004,
α = −0.4, H = 0.5 (left), H = 0.9 (right).

Taking into consideration higher accuracy obtained using Sigmoid function, we chose
this function to be used in further experiments.

Figure 3 compares the behavior of two AQM mechanisms: PIα1 controller and the
CNN-based AQM trained on the data reflecting the behavior of this controller.

For the CNN model, different lengths of the last n elements of the queue occupancy
history (input to the neural network) were considered. Regardless of the value of n,
the resulting queue length distributions are similar to the queue length distribution of the
PIα1 controller. For Poisson traffic (non-self-similar traffic, H = 0.5), the average queue
length oscillates between 166 and 176 packets (see Table 6). For highly self-similar traffic
(parameter H = 0.9), the average queue length was between 139 and 147 (see Table 7).
In this case, all the Convolutional Neural Network models (with different numbers of CNN
History) obtained larger values of the average queue length, with fewer packets dropped,
than the PIα1 mechanism.

Figure 5 presents the results for stronger AQM mechanism PIα2. The detailed results of
dropped packets numbers and queue lengths are presented in Tables 10 and 11. Because of
the fact that the PIα2 controller was stronger than the one presented above, the obtained
average queue lengths were smaller.
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Table 6. Detailed results of queue occupancy obtained for CNN model with the last layer activation
function Sigmoid, trained using data regarding PIα1 controller and parameters: KP = 0.0001,
KI = 0.0004, α = −0.4 and H = 0.5.

AQM Packet Dropped Average Queue Length

PIα1 249,878 168.98

CNN History = 20 251,198 172.97

CNN History = 100 248,936 176.45

CNN History = 200 250,063 175.69

CNN History = 300 249,510 166.87

CNN History = 400 250,104 166.23

CNN History = 500 250,800 174.31

CNN History = 1000 249,561 173.33

Table 7. Detailed results of queue occupancy obtained for CNN model with the last layer activation
function Sigmoid, trained using data regarding PIα1 controller and parameters: KP = 0.0001,
KI = 0.0004, α = −0.4 and H = 0.9.

AQM Packet Dropped Average Queue Length

PIα1 263,387 139.16

CNN History = 20 261,678 145.66

CNN History = 100 262,304 145.81

CNN History = 200 262,518 147.22

CNN History = 300 262,935 139.28

CNN History = 400 263,872 140.89

CNN History = 500 263,440 142.22

CNN History = 1000 263,654 143.14
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Figure 5. Distribution of queue length obtained for CNN model with the last layer activation function
Sigmoid, trained using data regarding PIα2 controller and parameters: KP = 0.0001, KI = 0.0004,
α = −0.5, H = 0.5 (left), H = 0.9 (right).
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Table 8. Detailed results of queue occupancy obtained for CNN model with the last layer activation
function Softmax, trained using data regarding PIα1 controller and parameters: KP = 0.0001,
KI = 0.0004, α = −0.4 and H = 0.5.

AQM Packet Dropped Average Queue Length

PIα1 249,878 168.98

CNN History = 100 250,038 182.21

CNN History = 300 250,455 164.06

CNN History = 500 250,017 174.73

Table 9. Detailed results of queue occupancy obtained for CNN model with the last layer activation
function Softmax, trained using data regarding PIα1 controller and parameters: KP = 0.0001,
KI = 0.0004, α = −0.4 and H = 0.9.

AQM Packet Dropped Average Queue Length

PIα1 263,387 139.16

CNN History = 100 261,271 148.89

CNN History = 300 263,609 134.64

CNN History = 500 264,569 145.64

Table 10. Detailed results of queue occupancy obtained for CNN model with the last layer activation
function Sigmoid, trained using data regarding PIα2 controller parameters: KP = 0.0001, KI = 0.0004,
α = −0.5 and H = 0.5.

AQM Packet Dropped Average Queue Length

PIα2 250,314 134.72

CNN History = 20 249,610 135.27

CNN History = 100 250,657 140.37

CNN History = 200 249,633 137.95

CNN History = 300 249,752 142.29

CNN History = 400 248,852 134.86

CNN History = 500 249,960 138.85

CNN History = 1000 249,744 129.60

Figure 6 compares the last pair of controllers: controller PIα3, with the corresponding
models based on Convolutional Neural Networks. The results prove that this controller is
the strongest one. The AQM mechanism increased considerably the number of dropped
packets and decreased the obtained queue lengths. In the case of traffic without LRD (see
Table 12, for parameter H = 0.5) the average queue occupancy oscillateds between 116 and
139 packets, and in the case of traffic characterized by a high degree of LRD (see Table 13,
for parameter H = 0.9) between 94 and 121 packets.

It should be noted that for all three CNN-based AQM models, a more efficient AQM
model was obtained compared to the controllers that were used to create the test data.
Even for the model that obtained the smallest accuracy during the learning process (48.77%,
see Table 4), based on non-integer controller data of order PIα3, for CNN History < 100,
the obtained average queue length was larger than for the base mechanism PIα3. This
situation occurred both for traffic without LRD (see Table 12) and for traffic characterized
by a high degree of LRD (see Table 13).
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Table 11. Detailed results of queue occupancy obtained for CNN model with the last layer activation
function Sigmoid, trained using data regarding PIα2 controller parameters: KP = 0.0001, KI = 0.0004,
α = −0.5 and H = 0.9.

AQM Packet Dropped Average Queue Length

PIα2 264,819 109.37

CNN History = 20 263,014 117.57

CNN History = 100 264,135 112.98

CNN History = 200 264,217 115.69

CNN History = 300 264,668 116.24

CNN History = 400 265,538 110.05

CNN History = 500 264,533 112.47

CNN History = 1000 265,839 105.25
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Figure 6. Distribution of queue length obtained for CNN model with the last layer activation function
Sigmoid, trained using data regarding PIα3 controller and parameters: KP = 0.0001, KI = 0.0004,
α = −0.6, H = 0.5 (left), H = 0.9 (right).

Table 12. Detailed results of queue occupancy obtained for CNN model with the last layer activation
function Sigmoid, trained using data regarding PIα3 controller and parameters: KP = 0.0001,
KI = 0.0004, α = −0.6 and H = 0.5.

AQM Packet Dropped Average Queue Length

PIα3 250,840 117.53

CNN History = 20 251,892 139.26

CNN History = 100 250,362 136.35

CNN History = 200 248,878 117.67

CNN History = 300 250,533 116.40

CNN History = 400 250,011 118.85

CNN History = 500 250,166 118.67

CNN History = 1000 249,801 118.20
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Table 13. Detailed results of queue occupancy obtained for CNN model with the last layer activation
function Sigmoid, trained using data regarding PIα3 controller and parameters: KP = 0.0001,
KI = 0.0004, α = −0.6 and H = 0.9.

AQM Packet Dropped Average Queue Length

PIα3 265,707 95.13

CNN History = 20 265,737 121.19

CNN History = 100 263,952 110.79

CNN History = 200 265,383 97.28

CNN History = 300 266,295 94.09

CNN History = 400 266,366 95.79

CNN History = 500 265,592 97.31

CNN History = 1000 266,184 96.90

In the next simulation step, we evaluated the AQM-CNN mechanism whose learning
data were generated from the behavior of all three PIα controllers. Figure 7 shows the
queue distribution, and Figure 8 shows the changes in queue occupancy over time. Details
of the number of packets dropped and the resulting average queue occupancy are presented
in Table 14 for the traffic without LRD and in Table 15, for traffic with a high degree of LRD.

The results show that when the number of last n elements of queue occupancy history
taken as a CNN input is too small (CNN History < 100), then, independent of the degree
of self-similarity of the traffic, the number of dropped packets, and the average queue
length, approximates the results obtained using the sets of controllers PIα2 and PIα3
(see Tables 10–13).

On the other hand, when the considered number of last n queue occupancy history
elements is larger (CNN History ≥ 100), the obtained average queue length increases by
46 packets for traffic without LRD (Table 14, for H = 0.5), or by 32 packets, for traffic
characterized by a high degree of LRD (see Table 15, for H = 0.9). This means that the
resulting queue distribution matches the one of the original and the most efficient controller
PIα1 (Figure 3).

This feature indicates that for the AQM model based on Convolutional Networks,
as the number of story elements used increases, the ability of the mechanism to adapt to
current Internet transmission conditions also improves.
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Figure 7. Distribution of queue length obtained for CNN controller trained using data regarding
three PIα controllers, H = 0.5 (left), H = 0.9 (right).
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Figure 8. Queue occupancy obtained for CNN controller trained using data regarding three PIα

controllers, with CNN History = 500, H = 0.5 (left), H = 0.9 (right).

Table 14. Detailed results of queue occupancy results obtained for CNN model trained using data
regarding three PIα controllers and H = 0.5.

AQM Packet Dropped Average Queue Length

CNN 3 History = 20 249,727 128.75

CNN 3 History = 100 249,988 174.64

CNN 3 History = 200 250,583 164.87

CNN 3 History = 300 249,907 169.98

CNN 3 History = 400 249,593 173.41

CNN 3 History = 500 250,157 138.08

CNN 3 History = 1000 249,334 170.46

Table 15. Detailed results of queue occupancy results obtained for CNN model trained using data
regarding three PIα controllers and H = 0.9.

AQM Packet Dropped Average Queue Length

CNN 3 History = 20 262,841 120.94

CNN 3 History = 100 263,859 152.15

CNN 3 History = 200 262,298 137.21

CNN 3 History = 300 263,205 131.49

CNN 3 History = 400 263,818 129.81

CNN 3 History = 500 263,872 127.37

CNN 3 History = 1000 263,554 138.32

6. Conclusions

The paper presents a new Active Queue Management mechanism based on Convolu-
tional Neural Networks and supervised learning.

To train the Convolutional Networks used in the experiments, data obtained through
simulation have been used. The training data of the CNN model reflect the behavior of the
AQM mechanism, based on a fractional order controller PIα.

In our experiments, we took into account the effect of the degree of traffic self-similarity
and long-term dependence on the performance of the proposed mechanism.

We also considered the effect of the number of last n elements of the queue occupancy
history, used as input of the neural network, on the efficiency of the proposed mechanism.



Sensors 2021, 21, 4979 18 of 21

The best results were obtained for CNN History = 500. The minimum length of CNN
History for which results are still acceptable is 100.

In the experiments, neural networks with different number of convolutional layers
and different optimizers and cost functions were considered to build the AQM model.
After comparing the results obtained with different activation functions, the results have
shown that the most efficient model used Sigmoid activation function in the output layer,
therefore we chose this function for further experiments. The decisions made in this work
were also influenced by our previous work regarding traffic classification in terms of the
degree of self-similarity [25].

The most efficient AQM obtained in our study was based on the Convolutional
Neural Network model, trained using the data reflecting the behavior of all three PIα

controllers jointly.
The results confirmed that the model based on Convolutional Neural Networks can

effectively reproduce the results of the classical AQM algorithm and effectively manage
the data transmission. Such a model maintains the assumed average number of packets in
the queue and reduces the total number of dropped packets, independent of the degree of
traffic self-similarity.

It seems that the proposed mechanism exhibits some advantages over previously
proposed mechanisms encountered in the literature. Our previous study [26] demonstrated
that the reinforcement learning methods are well suited for maintaining the assumed
queue size. However, in computer networks, the process of controlling packet traffic is
more complex. The objective is to maximize the transmission efficiency. This efficiency
is characterized by: throughput, delay, and possible retransmissions. Efficiency of AQM
mechanisms is influenced by self-similarity of network traffic. The higher the Hurst param-
eter value is, the greater problems with correct packet management occur. The proposed
solution addresses this problem much more effectively. The biggest disadvantage of this
solution is greater computational and memory complexity of solutions based on Convolu-
tional Neural Networks. This complexity may affect the difficulty of implementing this
solution in real routers.

In our previous study [58], we used a Linux-based computer as a router. In that study,
we used a special router implementation based on a special forwarding mechanism (based
on the iptables mechanism), which delivered all packets to the user program implementing
AQM. This solution greatly simplifies the research model. Unfortunately, the tests have
shown that forwarding packets from kernel space to userspace requires a significant amount
of time and is not optimal. In the target solutions the whole implementation should be
realized in the kernel of the system. The implementation may be a great challenge on
routers with low hardware resources. In such solutions instead of multiplication operations
bit shifting is used, which causes calculation errors. For CNN calculations these errors may
be too high. However, it seems that the computational power of routers will increase in the
future. We want to devote a separate article to the problems of implementing AQMs in
real routers.
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