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Abstract Simultaneous measurement of surface proteins and gene expression within single cells

using oligo-conjugated antibodies offers high-resolution snapshots of complex cell populations.

Signal from oligo-conjugated antibodies is quantified by high-throughput sequencing and is highly

scalable and sensitive. We investigated the response of oligo-conjugated antibodies towards four

variables: concentration, staining volume, cell number at staining, and tissue. We find that staining

with recommended antibody concentrations causes unnecessarily high background and amount of

antibody used can be drastically reduced without loss of biological information. Reducing staining

volume only affects antibodies targeting abundant epitopes used at low concentrations and is

counteracted by reducing cell numbers. Adjusting concentrations increases signal, lowers

background, and reduces costs. Background signal can account for a major fraction of total

sequencing and is primarily derived from antibodies used at high concentrations. This study

provides new insight into titration response and background of oligo-conjugated antibodies and

offers concrete guidelines to improve such panels.

Introduction
Analysis of surface proteins in multimodal single-cell genomics such as cellular indexing of transcrip-

tomes and epitopes by sequencing (CITE-seq) is a powerful addition to conventional single-cell RNA

sequencing (scRNA-seq) (Stoeckius et al., 2017; Peterson et al., 2017; Mair et al., 2020). Unlike

flow- and mass cytometry, CITE-seq is not limited by spectral overlap or availability of distinguish-

able isotopes (Gullaksen et al., 2019; Hulspas et al., 2009). This is due to the practically unlimited

number of distinct oligo barcodes and discrete sequence counting, allowing high numbers of anti-

bodies to be included in individual experiments.

While signal acquisition in CITE-seq is different, the reagents and staining procedure are highly

analogous to staining for flow cytometry. Traditional titration for flow or mass cytometry aims to

identify the conjugated antibody concentration, allowing the best discrimination between the signal

from positive and negative cells (Gullaksen et al., 2019; Hulspas, 2010). Multiple factors may affect

antibody binding and subsequent signal including antibody concentration, total amount of antibody,
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as well as the level of target expression (epitope amount). Epitope amount is governed by the num-

ber of cells and the per-cell expression of the target epitope. These factors are in turn influenced by

the cellular composition of the sample as well as their activation and differentiation state. Nonspe-

cific binding is expected to increase as the total amount of antibody molecules greatly exceeds the

epitopes present in a sample. As such, nonspecific binding is dependent on the total number of anti-

body molecules, rather than the antibody concentration (Hulspas et al., 2009). This makes staining

volume, cell composition, and cell number important parameters for optimal staining (Hul-

spas, 2010). Consequently, flow and mass cytometric optimization aims to use antibody concentra-

tions that reach the highest signal-to-noise ratio (often reached at the ‘saturation plateau’) in a

minimal volume (and thus minimal number of antibody molecules) (Gullaksen et al., 2019;

van Vreden, 2019).

Oligo-conjugated antibody signal has been shown to be highly analogous to fluorochrome-conju-

gated antibodies of the same clone in flow cytometry in regards to the concentration needed to

reach the ‘saturation plateau’ (Stoeckius et al., 2018). However, unlike flow cytometry, where anti-

body (fluorescence) signal intensity has no influence on analysis cost, oligo-conjugated antibody sig-

nal is analyzed by counting sequencing reads, making costs strictly dependent on signal intensity (by

requiring increased sequencing depth). This is particularly important for methods sequencing vast

numbers of cells stained with a high number of antibodies such as single-cell combinatorial indexed

cytometry by sequencing (SCITO-seq), where shallow sequencing is paramount for the economic

feasibility of such methods (Hwang, 2020). Thus, while an optimal antibody concentration in flow

cytometry aims to get the highest signal-to-noise ratio, oligo-conjugated antibody staining condi-

tions should be titrated to get sufficient signal-to-noise at the lowest possible signal intensity. In

practice, this means that concentrations of most antibodies in an optimized CITE-seq panel are not

intended to reach their ‘saturation plateau’, but should be within their linear concentration range

(where doubling the antibody concentration leads to twice the signal). Such concentrations are much

more sensitive to the number of available epitopes (i.e., cell number and cell composition) than an

optimized flow cytometry panel. Unlike flow and mass cytometry, where the major source of back-

ground is autofluorescence, spillover between neighboring channels, and nonspecific binding of the

antibodies (Hulspas et al., 2009; Au-Yeung et al., 2019), a major source of background signal for

oligo-conjugated antibodies appears to be free-floating antibodies in the cell suspension

(Mulè et al., 2020). In droplet-based single-cell sequencing methods, these free-floating antibodies

will be distributed between cell-containing and empty droplets. As signal from empty droplets can

only be distinguished from signal from cell-containing droplets after sequencing and due to the

much higher number of empty than cell-containing droplets, background signal can make up a con-

siderable fraction of the sequenced reads, and thus sequencing costs.

In this study, we present a limited but practically applicable titration of four variables in a 50-CITE-

seq panel of 52 antibodies: (1) antibody concentration (fourfold dilution response), (2) staining vol-

ume (50 mL vs. 25 mL), (3) cell count (1 � 106 vs. 0.2 � 106), and (4) tissue of origin: peripheral blood

mononuclear cells (PBMCs) from healthy donor vs. immune cell compartment from a lung tumor

sample. We find that oligo-conjugated antibodies show high background and limited response to

titration when used above 2.5 mg/mL and that most antibodies appear to reach their saturation pla-

teau at concentrations between 0.62 and 2.5 mg/mL. Many antibodies can be further diluted, despite

being at their linear concentration range, without affecting the identification of epitope-positive

cells. Reducing staining volume has a minor effect on signal and only impacts signal from antibodies

used at low concentrations targeting highly expressed epitopes; this effect is counteracted by reduc-

ing the number of cells present during staining. We compare samples stained with pre-titration and

adjusted concentrations of the same antibody panel and find that adjusting concentrations increases

signal, lowers background, and reduces both sequencing and antibody costs. Finally, we find that

background signal in empty droplets can constitute a major fraction of the total sequencing reads

and is skewed towards antibodies used at high concentrations targeting epitopes present in low

amounts.
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Results

Fourfold antibody dilution in PBMC and lung tumor immune cells
A panel of 52 oligo-conjugated antibodies was allocated into several groups of starting concentra-

tions based on previous experience with each antibody, epitope abundance or following vendor rec-

ommendations (concentration range between 0.05 and 10 mg/mL; Supplementary file 1). We

stained two samples of either 106 PBMCs or 5 � 105 lung tumor leukocytes in 50 mL of antibody mix-

ture with various starting concentrations, hereafter referred to as ‘dilution factor (DF) 1’. To deter-

mine how the signal from each antibody changed by dilution across the two tissues, we stained the

same number of cells in the same volume with a four times diluted antibody mixture (DF4).

Single-cell gene expression was assessed by shallow sequencing (~4000 reads per cell) to assign

cells into major cell lineages (Figure 1A) and cell types (Figure 1B) based on their transcriptional

profile (see Figure 1—figure supplement 1 for gene detection and unique molecular

identifier (UMI) distributions and details on cell-type annotation). Leukocytes from lung tumor sam-

ples exhibited distinct transcriptional profiles within each cell type, but showed overall good co-clus-

tering with similar cell types (Figure 1C). To allow direct comparison of UMI counts from the

different conditions, we reduced the number of cells included in analysis from each condition to con-

tain the same number of cells from each cell type. By only using the gene expression modality for

cell-type assignment, we can directly compare antibody-derived tag (ADT) UMI counts at different

staining conditions within transcriptional subclusters without risk of having differences in ADT signal

interfere with cell-type assignment.

Comparing the total ADT UMI counts from each condition, we saw fewer UMIs from samples

stained with DF4 as compared with DF1, both at 77% sequencing saturation (Figure 1D). However,

the reduction in UMI counts from DF1 to DF4 by 38% (761,350 to 474,404) and 51% (1,121,940 to

548,393) in PBMC and lung, respectively, was markedly less than the fourfold difference (75% reduc-

tion) in antibody concentrations used in staining. It is worth noting that 4/52 antibodies used at the

highest concentration (10 mg/mL) accounted for more than 20% of the total UMI counts irrespective

of tissues and dilution factors and without showing any clearly positive populations (Figure 1D, E;

gating thresholds shown in Figure 1—figure supplement 2). Indeed, we found that the majority of

antibodies used in concentrations at or above 2.5 mg/mL showed minimal response to fourfold titra-

tion, both in terms of total UMI counts (Figure 1F) as well as UMI counts at the 90th quantile of the

cell type with the highest overall expression level (Figure 1G; expressing cell types identified in

Figure 1E), reflecting the response within the positive population where such could be identified. In

contrast, antibodies used in concentrations at or below 0.62 mg/mL all showed close to linear

response to fourfold dilution (shown as a reduction around two ‘logs’ on a log2 scale; Figure 1F, G).

This indicates that the signal for many antibodies reach their saturation plateau in the range between

0.62 and 2.5 mg/mL, and that higher concentrations are likely to only increase the background

signal.

In the present antibody panel, the response to fourfold dilution can be divided into five catego-

ries (Figure 2, Figure 2—figure supplements 1–5) that warrant different considerations in the

choice of whether to reduce concentration or not. For category A (Figure 2A), reducing concentra-

tion is always the right choice. For the other categories (Figure 2B–E), the choice of whether to

reduce concentration or not depends on the balance between the need for signal and the economic

cost of signal (see Table 1).

Reducing staining volume primarily affects highly expressed markers
To investigate the effect on ADT signal caused by further reducing the staining volume, we included

PBMC samples stained with the same concentration of antibodies in 50 mL or 25 mL (effectively using

half the amount of antibodies at twice the cell density). In both samples, we used the DF4 panel on

106 cells to assess the worst-case scenario of the reduction as the amount of epitopes in this setting

is likely to be competing for antibodies that are not in excess. Despite having many antibodies

responding linearly to concentration reduction (Figure 1), we found much less response to reduced

staining volume, both in regard to total number of UMIs (9% reduced; 469,541 to 428,680) and on a

marker by marker basis (Figure 3A–C). As expected, antibodies used in low concentrations (0.0125–

0.025 mg/mL) targeting highly abundant epitopes were most severely affected by the reduced
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Figure 1. Fourfold antibody dilution response in peripheral blood mononuclear cell (PBMC) and lung tumor immune cells. (A–C) Single cells from all

samples and conditions were clustered and visualized according to their gene expression and colored by (A) overall cell lineage, (B) cell type, and (C)

tissue of origin. (D) Summarized unique molecular identifier (UMI) counts within cell-containing droplets segmented by the individual antibodies stained

at the starting concentrations (dilution factor 1 [DF1]) or at a fourfold dilution (DF4) in PBMC and lung samples (concentrations of each antibody can be

Figure 1 continued on next page
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staining volume (such as CD31, CD44, and CD45; Figure 3D, E, Figure 3—figure supplements

1 and 2), whereas antibodies targeting less abundant epitopes were largely unaffected (such as CD8

and CD19; Figure 3F).

Reducing cell number during staining increases signal for antibodies at
low concentration
To determine if the limited effect of reduced staining volume on ADT signal could be counteracted

by simultaneously reducing the number of cells at the time of staining (effectively reducing the total

amount of epitopes), we analyzed two PBMC samples with either 1 � 106 or 0.2 � 106 cells stained

with the same concentration of antibodies (DF4) in 25 mL. Similar to reducing staining volume, the

majority of the included antibodies were largely unchanged by lowering the cell density at staining,

as reflected by only 8% increase in detected UMIs (from 428,680 to 462,916), and also reflected by

the analogous distribution of individual markers (Figure 4A–C). Encouragingly, reducing the cell

number at staining increased the signal from the antibodies used at low concentration and targeting

highly expressed epitopes (Figure 4D, E, Figure 4—figure supplements 1 and 2), thus largely miti-

gating the loss of signal observed when the staining volume was reduced from 50 mL to 25 mL

(Figure 3B–D). Interestingly, despite reducing the cell density at staining fivefold (from 40 to 8 �

106 cells/mL), the resulting signal did not appreciably surpass that of the sample stained in 50 mL

with an intermediate cell density of 20 � 106 cells/mL (Figure 4—figure supplement 3).

Adjusting antibody concentration improves signal, lowers background,
and reduces cost and sequencing requirements
To evaluate the benefits of adjusting antibody concentrations, we stained 200,000 PBMCs in a stain-

ing volume of 25 mL using the same antibody panel, with individual antibody concentrations adjusted

based on their assigned categories (individual concentrations can be found in Supplementary file 1,

and how each category was adjusted is described in Table 1). On average, the adjusted panel used

1.9-fold less antibody than the DF1 staining and 8.4-fold less than the vendor-recommended starting

concentration (Supplementary file 2). Together with the reduced staining volume, this decreased

antibody costs per sample to 50 USD, which is a 3.9- and 33.6-fold reduction from DF1 (195 USD)

and vendor recommendations (1690 USD), respectively (based on list price of 325 USD per 10 mg;

Supplementary file 2).

To allow direct comparison with the DF1 sample, we integrated and down-sampled the DF1 and

adjusted samples to include similar numbers cells within each cell type (Figure 5A). We then down-

sampled the sequenced ADT reads to yield similar UMI totals of 522,469 and 521,331 across the

comparable cell populations for the DF1 and adjusted sample, respectively (Figure 5B). As

expected, antibodies used at reduced concentrations yielded relatively fewer UMIs (categories

A and B and some from E), whereas increased concentrations yielded more (category E and some

from C). Importantly, we found that antibodies with unchanged concentration yielded more UMIs at

similar sequencing depth (Figure 5B, C). This was primarily due to a reduction of category A anti-

bodies that accounted for 25% of the sequenced UMI sequences in the DF1 sample and only 10% in

the adjusted sample.

Due to the cost of signal in these sequencing-based approaches, an optimal panel would ideally

use similar number of UMIs per positive cell for each antibody (Figure 5D) and exhibit approximately

Figure 1 continued

found in Supplementary file 1). Antibody segments are colored by their concentration at DF1. (E) Heatmap of normalized antibody-derived tag (ADT)

signal within each transcription-based cluster identified in (B). Visualized by frequency of positive cells (circle size) and colored by the median ADT

signal within the positive fraction (i.e., signal from a marker that is highly expressed by all cells in a cluster will have the biggest circle and be colored

yellow). Red and blue colored boxes denote the clusters chosen for evaluating titration response within blood and lung samples, respectively. (F, G)

Change in ADT signal for each antibody by fourfold dilution. Individual antibodies are colored by their concentration at DF1 and quantified by (F) sum

of UMIs within cell-containing droplets assigned to each antibody and (G) 90th percentile UMI count within expressing cell cluster identified in (E) and

annotated by numbers to the right.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Quality control metrics and cell-type annotation.

Figure supplement 2. Gating positive cells based on antibody-derived tag (ADT) signal at dilution factor 1.
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Figure 2. Fourfold antibody dilution response is dependent on epitope abundance. Titration plots (unique molecular identifier [UMI] count vs. cell rank)

showing response to reduction in antibody concentration from dilution factor 1 (DF1) to DF4 within peripheral blood mononuclear cells (left) and lung

(right). Histogram depicts distribution of UMIs at each condition colored by dilution factor (and annotated with concentration). Numbers within bar plot

denote total UMI count within cell-containing droplets at each antibody concentration. Barcodes to the right depict cell type by color at the

Figure 2 continued on next page
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Figure 2 continued

corresponding rank to visualize specificity of the antibody. Horizontal line depicts gating threshold for cells considered positive for the marker.

Antibody response to fourfold dilution can be divided into five categories exemplified in (A-E). (A) Antibodies where the positive signal is obscured

within the background signal (category A). (B) Antibodies that respond by a reduction in signal but without hampering the ability to distinguish positive

from negative cells (category B). These antibodies also show strict cell-type specificity (i.e., HLA-DR is restricted to non-T cells, whereas CD4 is highly

expressed in T cells and intermediately expressed in myeloid cells as shown in the barcode plot). (C) Antibodies that respond by a reduction in both

signal and change the ability to distinguish positive from negative cells (category C). (D) Antibodies targeting ubiquitously expressed markers (category

D). (E) Antibodies that do not show a convincing positive population due to either lack of epitopes (no positive cells in either tissue) or lack of antibody

binding (non-functional antibody) (category E). Titration plots for all markers can be found in Figure 2—figure supplements 1–5.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Response of individual antibodies to fourfold reduction in concentration in peripheral blood mononuclear cells (PBMCs) and
lung tumor immune cells – category A.

Figure supplement 2. Response of individual antibodies to fourfold reduction in concentration in peripheral blood mononuclear cells (PBMCs) and
lung tumor immune cells – category B.

Figure supplement 3. Response of individual antibodies to fourfold reduction in concentration in peripheral blood mononuclear cells (PBMCs) and
lung tumor immune cells – category C.

Figure supplement 4. Response of individual antibodies to fourfold reduction in concentration in peripheral blood mononuclear cells (PBMCs) and
lung tumor immune cells – category D.

Figure supplement 5. Response of individual antibodies to fourfold reduction in concentration in peripheral blood mononuclear cells (PBMCs) and
lung tumor immune cells – category E.

Table 1. Five categories of response to fourfold dilution.

Categories Responses to fourfold dilution Markers Considerations

A
(Figure 2A)

Antibodies exhibiting no response to dilution,
indicating that the positive signal is fully saturated,
absent, or obscured within high background
signal.

CD1a, CD30, CD86, CD134, CD138,
CD152, CD183, CD197, CD279,
CD336, IgG1, IgG2A, and TCRgd

Reducing antibody concentration is always the
right choice. These antibodies sequester a large
amount of unique molecular identifiers without
yielding critical insight. Reducing concentration
may reveal a true positive population obscured by
the background signal.

B
(Figure 2B)

Antibodies that respond by a reduction in signal
but without hampering the ability to distinguish
positive and negative fractions.

CD4, CD5, CD8, CD11b, CD19,
CD62L, CD69, CD103, CD107a,
CD194, CD274, EpCAM, HLA-DR,
and TCRab

Reducing antibody concentrations will be
economically beneficial with minimal loss of
biological information. For instance, In the lung at
dilution factor 1, HLA-DR uses 9% of the total
unique molecular identifier counts within cell-
containing droplets and can be reduced at least
fourfold without any apparent change in ability to
discriminate between positive and negative cells.

C
(Figure 2C)

Antibodies that respond by a reduction in signal
that subsequently changes the ability to
distinguish positive from negative cells or bring
the cutoff value for positive cells down to only a
few unique molecular identifiers.

CD1c, CD2, CD3, CD14, CD25,
CD26, CD28, CD31, CD39, CD45RA,
CD45RO, and CD141

Reducing antibody concentration will reduce
biological information as cells expressing the
targeted epitopes may not exhibit sufficient
signal. If only cells expressing high levels of the
marker need to exhibit signal, these can be
slightly reduced.

D
(Figure 2D)

Antibodies that respond linearly to titration but
take up high numbers of unique molecular
identifiers due to targeting (almost) ubiquitously
expressed markers.

CD44, CD45, and HLA-ABC These can be reduced if all cells exhibit high
unique molecular identifier counts. Unless these
markers have a clear purpose, most experiments
will benefit from dropping them from the panel as
they tend to sequester a large proportion of total
sequencing reads with little biological
information.

E
(Figure 2E)

Antibodies where response is hard to assess due
to not showing expected positive population
either due to lack of epitopes (no positive cells in
either tissue) or lack of antibody binding (non-
functional antibody).

CD24, CD56, CD66b, CD70, CD80,
CD117, CD123, CD127, CD196, and
CD223

Should be evaluated individually. Is there prior
information indicating that this marker is
expressed by cells in these types of samples? Do
any cells in the sample express high levels of the
gene encoding the targeted protein? If so,
increasing the concentration of the antibody or
trying a different clone may yield better signal.
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Figure 3. Reducing staining volume primarily affects highly expressed markers. Comparison of peripheral blood mononuclear cell samples stained in 50

mL (same sample as dilution factor [DF] 4 in Figure 1) or 25 mL volume at DF4. (A) Summarized unique molecular identifier (UMI) counts within cell-

containing droplets segmented by the individual antibodies colored by their concentration. (B, C) Change in antibody-derived tag signal for each

antibody by reducing staining volume from 50 to 25 mL. Individual antibodies are colored by their concentration. Quantified by (B) sum of UMIs within

cell-containing droplets assigned to each antibody and (C) 90th percentile UMI count within the cell type with most abundant expression (the assayed

cell type is annotated to the right). (D) Titration plot (marker UMI count vs. normalized cell rank) for CD31 signal response when reducing staining

volume from 50 mL to 25 mL. Histogram depicts distribution of UMIs at each condition. Barcodes to the right depict cell-type occurrence at the

corresponding rank to visualize cell specificity of the antibody. Numbers on top of the small bar plot denote total UMI count assigned to CD31 within

cell-containing droplets from each condition. (E, F) Non-normalized UMI counts visualized on t-distributed stochastic neighbor embedding (tSNE) plots

of an affected (CD31; E) or an unaffected (CD8; F) marker by the reduction in cell density. Dashed line indicates the region where expression levels vary

between volumes. Titration plots for all markers can be found in Figure 3—figure supplements 1 and 2.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Response of individual antibodies to reduction in staining volume.

Figure supplement 2. Response of individual antibodies to reduction in staining volume.
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Figure 4. Reducing cell number during staining increases signal for antibodies at low concentration. Comparison of peripheral blood mononuclear cell

samples stained in 25 mL antibody staining solution at dilution factor 4 at two cell densities: 1 � 106 (1000k; same sample as 25 mL in Figure 3) or 0.2 �

106 (200k) cells. (A) Summarized unique molecular identifier (UMI) counts within cell-containing droplets segmented by the individual antibodies colored

by their concentration. (B, C) Change in antibody-derived tag signal for each antibody by reducing cell numbers at staining from 1 � 106 to 0.2 � 106

cells. Individual antibodies are colored by their concentration. Quantified by (B) sum of UMIs within cell-containing droplets assigned to each antibody

and (C) 90th percentile UMI count within cell type with most abundant expression (the assayed cell type is annotated to the right). (D) Titration plot

(marker UMI count vs. normalized cell rank) for CD31 signal response when reducing cell numbers at staining from 1 � 106 to 0.2 � 106 cells. Histogram

depicts distribution of UMIs at each condition. Barcodes to the right depict cell-type occurrence at the corresponding rank to visualize cell specificity of

the antibody. Numbers on top of the small bar plot denote total UMI count assigned to CD31 within cell-containing droplets from each condition. (E)

Non-normalized UMI counts visualized on t-distributed stochastic neighbor embedding (tSNE) plot of CD31 and CD44 that are affected by the

reduction in staining volume, mitigated by a concomitant reduction in cell density. Dashed line indicates the region where expression levels vary

between cell densities. Titration plots for all markers can be found in Figure 4—figure supplements 1 and 2.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Response of individual antibodies to reduction in cell numbers at staining.

Figure supplement 2. Response of individual antibodies to reduction in cell numbers at staining.

Figure supplement 3. Fivefold reduction in cell density mitigates but does not supersede twofold reduction in staining volume.
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Figure 5. Adjusting antibody concentrations increases signal, lowers background, and reduces costs and sequencing requirements. (A) Single cells

from the dilution factor (DF) 1 and adjusted sample were integrated and selected to yield similar number of cells within each annotated cell type,

visualized by t-distributed stochastic neighbor embedding (tSNE). (B) Antibody-derived tag reads from DF1 and adjusted samples were subsampled to

yield similar number of unique molecular identifiers (UMIs) within the selected cells. Size of each segment shows the distribution of UMIs among the

antibodies in the panel divided into categories that determined how they were adjusted (Table 1). (C–F) Response of adjustment of individual

antibodies assayed by (C) their overall sequencing usage (fraction of UMIs assigned to each marker), (D) balancing (percent of UMIs used per positive

cell), (E) signal-to-noise (difference in median UMI count within positive and negative cells), and (F) background signal (percentage of UMIs used for

background signal). Shapes of marker denote whether the antibody concentration was changed between the DF1 and adjusted sample. Color of

‘shapes’ denotes antibody concentration. Color of connecting lines denotes antibody category. Center line in box plot denotes the median. (G–L)

Titration plot (left) and tSNE plots showing raw UMI counts (right) for antibodies in different categories. Dashed lines indicate regions of interest

highlighting the differences (or lack thereof) between the DF1 and adjusted samples. Titration plots for all markers by category can be found in

Figure 5—figure supplements 1–5.

Figure 5 continued on next page
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the same positive signal (UMIs above background; Figure 5E). While some markers should be fur-

ther reduced (such as CD4, CD45RA, CD62L, CD107a, and TCRab) and some adjustments were too

extreme (such as CD14, CD19, and HLA-ABC), the adjusted sample exhibited close to a twofold

increase in the median UMIs per positive cell and a 57% increase in the median positive signal (from

7 to 11 UMIs; Figure 5E). Importantly, all the markers with the lowest positive signal as well as num-

ber of UMIs per positive cell were all increased, reflecting a more balanced sequencing library.

Importantly, while exhibiting approximately the same relative background signal as assayed by

proportion of reads within empty droplets (35–45%; data not shown), the adjusted sample generally

showed much lower percentage of UMIs being assigned to background (Figure 5F). This was partic-

ularly remarkable for CD86, which went from 76.5% to 12.6% and thus yielded similar positive signal

while using 4.8-fold fewer UMIs (from 23,971 to 4998; Figure 5G). In fact, the exception to this was

primarily found within category E antibodies for which concentrations were increased due to having

very low UMI counts in the DF1 sample (CD56, CD127, and CD196; see Figure 5—figure supple-

ments 1–5 for data on all markers). In these cases, the increased concentration yielded better defini-

tion of expected positive populations (Figure 5H). To balance the sequencing requirements of the

panel, we reduced concentrations of most category B antibodies. Except CD19 (Figure 5I), all

reduced category B antibodies showed no change in resolution of positive vs. negative populations

despite a marked reduction in their UMI usage (Figure 5C, D) and concomitant reduction in their

positive signal. For instance, when reducing anti-CD5 from 0.62 to 0.16 mg/mL, it showed largely

identical distribution despite using 65% less UMIs (from 22,068 to 7740; Figure 5J). Category C and

E antibodies showed consistently increased positive signal (Figure 5D) and consequently allowed

better identification of populations known to express these markers, such as naive T cells and mono-

cytes for CD45RA and CD45RO, respectively (Figure 5K, L).

Background signal from oligo-conjugated antibodies is dependent on
antibody concentration and abundances of epitopes
Free-floating antibodies in the solution have been shown to be one of the major contributors to

background signal for ADTs (Mulè et al., 2020). Similar to cell-free RNA, background ADT signal

can be assayed from empty droplets. To determine the background signal of the different antibodies

in our panel, we split the captured barcodes into cell-containing and empty droplets based on the

inflection point of the barcode-rank plot for the gene expression UMI counts (Figure 6—figure sup-

plement 1). Despite being a ‘super-loaded’ 10X Chromium run targeting 20,000 cells, the number

of empty droplets vastly outnumbered the cell-containing droplets. Consequently, several antibodies

exhibited more cumulated UMIs within empty droplets than within cell-containing droplets

(Figure 6A). This was particularly prevalent within antibodies used at concentration of or above 2.5

mg/mL, thus drastically skewing the frequency of these antibodies within the empty droplets as com-

pared with cell-containing droplets (Figure 6A, B). Conversely, antibodies targeting highly abundant

epitopes were enriched within cell-containing droplets, irrespective of their staining concentration

(such as CD44 and CD107a, HLA-ABC, HLA-DR; Figure 6C). This was consistent with publicly avail-

able datasets where ADTs from antibodies targeting abundant epitopes (such as CD3, CD4, CD8,

and CD45RA) were enriched within the cell-containing droplets using two different capture

approaches (30- and 50 capture; Figure 6—figure supplement 2). We found that ADT signal in

empty droplets (i.e., background) was highly correlated with the UMI cutoff for detection

(Figure 6D, Figure 6—figure supplements 3 and 4). Markers with low background generally

showed low UMI cutoff and exhibited high dynamic range, allowing identification of multiple levels

of expression (as seen for CD4 and CD19; Figure 6D, E). In contrast, markers with high background

Figure 5 continued

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Dilution factor (DF) 1 vs.adjusted antibody concentration comparisons – category A.

Figure supplement 2. Dilution factor (DF) 1 vs. adjusted antibody concentration comparisons – category B.

Figure supplement 3. Dilution factor (DF) 1 vs. adjusted antibody concentration comparisons – category C.

Figure supplement 4. Dilution factor (DF) 1 vs. adjusted antibody concentration comparisons – category D.

Figure supplement 5. Dilution factor (DF) 1 vs. adjusted antibody concentration comparisons – category E.
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Figure 6. Background signal from oligo-conjugated antibodies is dependent on concentration and presence of epitopes. Signal from free-floating

antibodies in the cell suspension is a major source of background in droplet-based scRNA-seq and can be assayed by their signal within non-cell-

containing (empty) droplets. (A, B) Comparison of signal from each antibody within cell-containing and empty droplets (identified in Figure 6—figure

supplement 1) by (A) their total unique molecular identifier (UMI) counts or (B) their relative frequency within each compartment. Color bar denotes

antibody concentration at dilution factor 1 (DF1). (C) Ratio of UMI frequencies of each marker between cell-containing and empty droplets. Markers with

black bars have greater frequency in cell-containing droplets, whereas gray bars have greater frequency in empty droplets. (D) UMI thresholds for

detection above-background for each marker within peripheral blood mononuclear cells and lung tumor samples (based on gating in Figure 1—figure

supplement 2). (E–G) Examples of t-distributed stochastic neighbor embedding (tSNE) plots showing non-normalized (raw) UMI counts from cells

stained at DF1 for (E) markers with low background, (F) markers with high background that still exhibit cell-type-specific signal (CD86 and CD279), and

(G) markers where positive signal is absent or obscured by the background. Regions of background signal are encircled by dashed lines. To make the

color scale in the tSNE plots less sensitive to extreme values, we set the upper threshold to the 90% percentile. tSNE plots for all markers can be found

in Figure 6—figure supplements 3 and 4.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Quantifying unique molecular identifiers (UMIs) within cells and empty droplets of antibody-derived tag (ADT) and hashtag-
oligo (HTO).

Figure supplement 2. Quantifying unique molecular identifiers (UMIs) within cell-containing and empty droplets from public 10X datasets.

Figure supplement 3. Cellular distribution of ADT signal visualized by t-distributed stochastic neighbor embedding (tSNE) plots displaying raw
(unnormalized) UMI counts from the cells stained at dilution factor 1 for each antibody.

Figure 6 continued on next page
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showed high UMI cutoff regardless of whether they exhibited cell-type-specific signal (such as CD86

and CD279; Figure 6F) or whether their positive signal was absent or obscured by the high back-

ground (such as TCRgd; Figure 6G).

Discussion
In this study, we show that titration of oligo-conjugated antibodies for multimodal single-cell analysis

can improve sensitivity, lower background signal, and reduce costs and sequencing requirements,

and that such optimizations go beyond (and even against) the need to reach the ‘saturation plateau’.

We show that for a representative panel of 52 antibodies, most antibodies used in concentrations at

or above 2.5 mg/mL show high background signal and we observed minimal loss in sensitivity upon a

fourfold reduction in concentration of these antibodies. Antibodies used at concentrations between

0.625 and 2.5 mg/mL show limited (nonlinear) response, whereas most antibodies used at concentra-

tions below 0.625 mg/mL show linear or close to linear response. It should be noted that these esti-

mates may be inherently biased given that the starting concentrations were based on our prior

experience with the individual antibody clones and our assumptions regarding abundance of tar-

geted epitopes. This has favored using higher concentrations for antibodies known to have low per-

formance and for antibodies with unknown performance. Nonetheless, for antibodies with unknown

performance, our results highlight the benefits of conducting titration experiments or initially using

the antibodies at concentrations in the 0.625–2.5 mg/mL range, rather than the 5–10 mg/mL range

recommended by published antibody staining protocols and by commercial vendors. This is particu-

larly important when adding new antibodies to existing panels, where antibodies added in a high

concentration may account for a disproportionate usage of the total sequencing reads without pro-

viding any biological information (as seen for CD86, CD152, CD183, CD197, and TCRgd in the DF1

panel). Our results also show that concentrations of antibodies targeting highly expressed epitopes

can be further reduced without affecting resolution of positive and negative cells, even when these

antibodies are already used within their linear concentration range (such as CD5, CD8, and CD19).

By reducing the concentration of these antibodies, the allocation of reads to each antibody becomes

more balanced between epitopes present at disparate abundance, allowing the overall sequencing

depth to be reduced and maximizing the yield of a sequencing run.

By using varying starting concentrations based on prior experience and titrating the full panel

together, our study does not necessarily identify optimal concentrations of individual antibodies.

This could have been achieved by using saturating starting concentrations and additional serial dilu-

tions, as has been previously done for a few markers (Stoeckius et al., 2018). However, due to the

cost of signal in these cytometry-by-sequencing methods, using all antibodies at their highest signal-

to-noise ratios would require much deeper sequencing as highly expressed markers would use the

vast majority of the total sequencing reads. Instead, we aimed to get sufficient signal-to-noise, while

keeping the sequencing allocated to each marker balanced. A further complication for titration

experiments that start with saturating amounts of antibody is the observation that background signal

can be largely attributed to free-floating antibodies in the solution. Thus, using high concentrations

for all markers in one or more sample would increase the background in all samples if these were

multiplexed into the same droplet segregation. This would likely obscure the positive signals and

possibly titration response at lower concentrations (similar to what we see for category A antibod-

ies). To avoid this, each condition would have to be run in its own droplet segregation, making tradi-

tional titration experiments prohibitively costly.

In this study, we used commercially available antibody clones that have been extensively used for

other applications such as flow and mass cytometry, and we do see high concordance between ADT

signals and the expected antigens within each cell type. Our approach did not allow us to formally

test whether each antibody is specific to its intended antigen as we inferred specificity based on our

understanding of the included cell types and looked for concordance with gene expression signature

Figure 6 continued

Figure supplement 4. Cellular distribution of ADT signal visualized by t-distributed stochastic neighbor embedding (tSNE) plots displaying raw
(unnormalized) UMI counts from the cells stained at dilution factor 1.
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of the cells. However, it should be noted, that when using antibody clones that are unfamiliar or

have not undergone extensive testing, it is important to assure their specificity.

Reducing staining volume for 106 PBMCs from 50 mL to 25 mL only showed a minor effect on sig-

nal, and this minimal impact was primarily observed for antibodies used at very low concentrations

(0.0125–0.025 mg/mL) targeting highly expressed epitopes (such as CD31, CD44, and CD45). This

effect was readily counteracted by concomitantly reducing the number of cells at staining to 0.2 �

106 PBMCs in 25 mL. In flow cytometry, while the binding of antibody is strictly dependent on its con-

centration, background signal is dependent on the ratio between the total amounts of antibody and

epitopes (Hulspas, 2010). Consequently, background can be reduced by increasing the number of

cells (increasing the amount of epitope) or decreasing staining volume (effectively reducing the

amount of antibody without changing its concentration). For antibodies optimized to reach their ‘sat-

uration plateau’ (common in flow cytometry), both of these approaches can be applied without

changing the true signal. In contrast, for oligo-conjugated antibodies used in sequencing-based sin-

gle-cell approaches, operating in the linear range, signal from highly abundant epitopes stained with

low concentration of antibody will be affected. In such cases, the cells can be stained in multiple

steps adjusting the staining volume while keeping the concentration the same – that is, staining in a

smaller volume for antibodies with high background and subsequently staining antibodies at low

concentration in a higher volume. In this regard, when multiplexing samples, pre-staining each sam-

ple with hashtags and pooling prior to staining with additional CITE-seq antibodies may provide

multiple advantages: (1) all samples are stained at the same time with the exact same antibody mix-

ture – making cross-sample comparison more accurate, (2) by having more cells in a smaller total vol-

ume, less total antibody is used in the presence of more epitopes conceivably reducing the

background signal and (3) samples where cell number at staining is a limiting factor, such as small tis-

sue biopsies, will be exposed to the same local concentrations of antibody as more abundant sam-

ples (such as PBMCs) removing potential differences between samples by antibodies being

‘sponged’ by differences in overall epitope abundance. However, this approach is only available

when all samples are similarly affected by the staining procedure and can tolerate the additional

washes needed (after both hashing and CITE-seq staining).

We compared ADT signal from PBMCs stained with the same antibody panel at the starting con-

centration with a sample stained at concentrations adjusted following the titration experiment. While

some markers could benefit from further adjustments, the sample stained with the adjusted panel

was more balanced in its distribution of sequencing reads among markers, having twice the median

UMIs per positive cell. Despite intentionally reducing signal in category B antibodies, we found an

overall 57% increase in the median positive signal. Concomitantly, the adjusted panel exhibited 43%

lower background signal (median of 26.3% to 14.9% UMIs assigned to background) despite increas-

ing the concentrations of many category C and E antibodies. Consequently, the adjusted concentra-

tions greatly improved the overall performance of the panel. We took precautions to make the

samples as comparable as possible by down-sampling the sequencing depth to the same level and

comparing similar numbers of analogouscells (at the mRNA level). Nonetheless, as these samples

were from different preparations and different donors, we cannot exclude that some of the observed

differences can be attributed to these factors. For instance, we found that the monocytes in the

adjusted sample exhibited higher nonspecific binding (as seen from the isotype controls) than in the

DF1 sample, despite being treated with the same concentrations of Fc-blocking reagents (which

should minimize such biding; Andersen et al., 2016).

Due to the 10- to 1000-fold higher numbers of individual proteins as compared to mRNA

(Marguerat et al., 2012), ADT libraries have high library complexity (unique UMI content) and are

rarely sequenced near saturation. Thus, either sequencing deeper or squandering less reads on a

few antibodies increases signal from all (other) included antibodies. We found that by simply reduc-

ing the concentration of the five antibodies used at 10 mg/mL, we gained 17% more reads for the

remaining antibodies. Consequently, assuming we are satisfied with the magnitude of signal we got

from all other antibodies using the starting concentration, this directly translates to a 17% reduction

in sequencing costs. Due to different antibodies being adjusted in different directions for different

reasons (according to their assigned categories), it is difficult to convert the overall improved utiliza-

tion of sequencing reads into exact savings calculation. However, assuming signal is improved or

unchanged, the savings on sequencing for each marker can be estimated by how many UMIs are

needed to acquire a given signal. In the case of CD86, we found that the signal was dramatically
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improved by reducing concentration from 10 to 0.667 mg/mL while also using 79% fewer UMIs and

consequently a much lower number of sequencing reads.

Empty droplets have been shown to be useful for determining the background signal of CITE-seq

(Mulè et al., 2020). This suggests that the major source of background signal for ADT libraries can

be attributed to free-floating antibodies (or oligos) in the solution rather than nonspecific antibody

binding to cell surfaces. In the present study, the samples were multiplexed by hashing antibodies,

pooled after oligo-conjugated antibody staining, and then run in the same 10X Chromium lane. This

obscures the contribution of each sample to the total amount of free-floating antibodies in the final

cell suspension, which is conceivably skewed towards the samples stained in high volume with the

highest concentration of antibodies. Consequently, as free-floating antibodies are the major source

of background, this would explain why we do not observe reduced background in the cells stained

at the lowest concentrations (i.e., DF4). As such, for markers with no specific signal due to high back-

ground (such as CD183, CD197, and TCRgd), the titration responses may be underestimated due to

specific signal being lost within the high background. This also means, that for markers with high

background signal our proposed reductions in concentrations are conservative as we would expect

to see decreased background in samples stained with reduced amount of antibodies (as seen in the

comparison with the adjusted concentrations). In droplet-based single-cell analyses, background sig-

nal is not only diminishing the sensitivity and resolution of true signals, but is also a major contributor

to sequencing cost of ADT libraries. Due to empty droplets vastly outnumbering cell-containing

droplets, we found that ADT signal from empty droplets can easily account for 20–50% of the total

sequencing reads and consequently 20–50% of the sequencing cost. The number of antibodies used

in CITE-seq-related platforms is only expected to expand. Additionally, the number of cells included

in each experiment is continuously being increased (as seen for methods such as SCITO-seq;

Hwang, 2020). As such, reducing background signal from oligo-conjugated antibodies should be a

priority. The source of the free-floating antibodies is not completely understood. Observations from

this study suggest that antibodies used at high concentration targeting absent or sparse epitopes

are highly enriched within the empty droplets, as compared to the cell-containing droplets. This indi-

cates that residual unbound antibody from the staining step is a major contributor despite several

washing steps. Practically, this suggests that additional washing after cell staining would be benefi-

cial when the number and type of cells in the samples allow it. Optimal washing is achieved by

repeated washing steps while assuring that maximal residual supernatant is removed after each cen-

trifugation and followed by gentle but complete resuspension in a large buffer volume.

More and more advanced CITE-seq-related cytometry-by-sequencing platforms are rapidly being

developed. However, while these platforms utilize different methods to assure single-cell resolution

and use different approaches to label the cells, they all use high-throughput sequencing to count

signal from a variety of oligo-conjugated probes (such as antibodies with both surface and intracellu-

lar targets, MHC-peptide multimers, and B-cell receptor antigens) (Stoeckius et al., 2017;

Peterson et al., 2017; Hwang, 2020; Setliff et al., 2019; O’Huallachain et al., 2020;

Overall et al., 2020; Gaublomme et al., 2019; Katzenelenbogen et al., 2020). Most of the obser-

vations and conclusions from this study will be applicable to tthese platforms, where improving

oligo-conjugated probe signal is critical to their utility and economic feasibility.

Materials and methods

Clinical samples
Lung adenocarcinoma patient sample (female, 57 years old, former smoker: 15 pack-years, treated

with chemotherapy) was collected at New York University Langone Health Medical Center in accor-

dance with protocols approved by the New York University School of Medicine Institutional Review

Board and Bellevue Facility Research Review Committee (IRB#: i15-01162 and S16-00122).

Cell isolation, cryopreservation, and thawing
PBMCs were isolated from a leukopak and whole blood from healthy donors (New York Blood Cen-

ter) for the pre-titration and adjusted samples, respectively. PBMCs were purified by diluting in PBS

and subsequent gradient centrifugation using Ficoll-Paque PLUS (GE Healthcare) and 50 mL conical

tubes (Falcon). PBMCs in the interphase were collected and washed twice with PBS containing 2%
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FBS. Lung tumor sample were cut into small pieces with a razor blade and enzymatically digested

(100 U/mL Collagenase IV, Sigma-Aldrich, C5138-1G; 50 mg/mL DNase 1, Worthington, LS002138)

for 35 min being rotated at 37˚C in HEPES buffered RPMI 1640 containing 0.5% FBS. After digestion,

the sample was forced through a 100 mm cell strainer to make a single-cell suspension. Single-cell

suspensions from both PBMCs and lung tumor were cryopreserved in freezing medium (40% RPMI

1640, 50% FBS, and 10% DMSO) and stored in liquid nitrogen. On the day of the experiments, cryo-

preserved samples were thawed for 1–2 min in a 37˚C water bath, washed twice in warm PBS con-

taining 2% FBS, and resuspended in complete media (RPMI 1640 supplemented with 10% FBS and 2

mM L-Glut).

Oligo-conjugated antibody staining
We modified the published protocol for ECCITE-seq (Mimitou et al., 2019) to stain cells in round-

bottom 96-well plates (as is common practice for flow cytometry staining in many laboratories). This

allowed us to reduce staining volumes and centrifugation time analogous to staining for flow cytom-

etry. After thawing, the intended number of cells was resuspended in 12.5 mL or 25 mL of CITE-seq

staining buffer (2% BSA, 0.01% Tween in PBS) for samples stained in a total of 25 mL or 50 mL,

respectively. To prevent antibody binding to Fc receptors (Andersen et al., 2016), Fc receptor block

from two vendors (TruStain FcX, BioLegend, and FcR blocking reagent, Miltenyi) was added to the

suspension and incubated for 10 min on ice. During incubation, the antibody solution of 52 Total-

SeqC antibodies (BioLegend; Supplementary file 1) was washed on a pre-wet Amicon Ultra-0.5

Centrifugal Filter to remove sodium azide. The volume of the resulting antibody pool was adjusted

to 2� of final concentrations and 12.5 mL or 25 mL was added to the cells to achieve a total staining

volume of 25 mL or 50 mL, respectively. 10 mg/mL of a unique hashing antibody was added to each

sample and incubated for 30 min on ice. After staining, cells were washed four times in 1 � 150 mL

and 3 � 200 mL CITE-seq staining buffer.

Super-loading of 10X Chromium
Individually hashed samples were counted using a hemocytometer and pooled in equal ratio at high

concentration. Pooled sample was strained through a 70 mm cell strainer and counted again using a

hemocytometer. To achieve approximately 20,000 cells after doublet removal, cell concentration

was adjusted to 1314 cells/mL to achieve the target of 41,645 cells in 31.7 mL for super-loading of

the 10X Chromium Chip A. Gene expression (using 50 v1 chemistry; 10X Genomics) and ADT and

hashtag-oligo (HTO) libraries were constructed using reagents, primers, and protocol from the pub-

lished ECCITE-seq protocol (Mimitou et al., 2019). All libraries from the titration run were

sequenced together with other samples on an Illumina NovaSeq6000 S1 flow cell. The post-titration

(adjusted) sample (using 50 v1.1 chemistry; 10X Genomics) was multiplexed and sequenced together

with other samples not included in this study on Illumina NovaSeq6000 SP and S1 flow cells.

Alignment and counting of single-cell sequencing libraries
The multiplexed gene expression library was aligned using kallisto (v0.46)-bustools (v0.39.0)

(Melsted et al., 2021). Given the polyA selection inherent in the 10X Genomics protocol, reads

were aligned against a reference transcriptome based on the GTF file included in the Cell Ranger

software (refdata-cellranger-GRCh38-3.0.0/genes/genes.gtf; 10X Genomics) that does not include as

many non-polyA transcripts as the human transcriptome included by kallisto-bustools by default.

From the 77,507,446 reads assigned to the gene expression library, 66.9% aligned to the transcrip-

tome. ADT and HTO libraries were counted using the kallisto indexing and tag extraction (KITE)

workflow (https://github.com/pachterlab/kite), resulting in 82,527,351 and 65,875,774 counted

reads, respectively. Number of UMIs and genes detected per cell across cell lineages can be found

in Figure 1—figure supplement 1A, B.

Single-cell demultiplexing, preprocessing, and down-sampling
To allow detection of UMI counts within non-cell-containing droplets, unfiltered count matrices from

each modality were loaded into a ‘Seurat’ (v3.1.4) object (Stuart et al., 2019). Samples were demul-

tiplexed by their unique HTO using the Seurat function ‘MULTIseqDemux’ yielding 19,560 demulti-

plexed cells. This allowed the removal of 3724 (19%) cross-sample doublets. Due to the shallow
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sequencing of the mRNA library (~4000 reads/cell), expression of at least 60 genes and a percent

mitochondrial reads below 15% were used to remove barcodes from non-viable cells or debris (2499

or 15% of cells removed). Intra-sample doublets were removed using the ‘scDblFinder’ (v1.1.8) R

package (392 cells removed). UMI counts from ADTs were normalized using default configuration of

the DSB (v0.1.0) R package with ADT signal from HTO-negative droplets used as empty drop matrix

and using included isotype controls. Gene expression was preprocessed using the default Seurat v3

pipeline, and fine-grained clusters were identified using the ‘FindClusters’ function with a resolution

of 1.2. Clusters were annotated by lineages and cell types using their distinct expression of markers

within the mRNA or ADT modality and aided by cell-by-cell annotation from the SingleR R package

(v1.4.0) using the ‘Monaco reference’ from the celldex R package (v1.0.0) made from bulk RNA-seq

samples of sorted immune cell populations from GSE107011 (Monaco et al., 2019). Top five differ-

entially expressed marker genes for each cluster can be found in Figure 1—figure supplement 1D.

To allow direct comparison of UMI counts across conditions, each condition was down-sampled by

tissue of origin to include the same number of cells within each fine-grained cell-type cluster (result-

ing in 1777 cells from each PBMC sample and 1681 cells from each lung tumor sample).

Integration and sub-sampling for pre- and post-titration comparison
The post-titration (adjusted) sample was pre-processed as described above. Together with the DF1

sample, the adjusted sample was normalized and integrated based on their mRNA expression using

the SCTransform and IntegrateData functions from the Seurat package as described in the Seurat

integration vignette (Stuart et al., 2019; Hafemeister and Satija, 2019). After mRNA-based cluster-

ing using FindClusters at resolution 1.2, similar number of comparable cells was selected by taking

the nearest neighbors in PCA-space for each cell in the sample with the fewest cells within the given

cluster. This sampling assured that similar number of comparable cells (at the mRNA level) were

selected for comparison, thus minimizing the effect of the sample differences. To allow direct com-

parison of UMI counts and eliminate differences in sequencing depth as a factor, we down-sampled

the FASTQ files from the ADT modality of the adjusted sample to achieve similar totals of UMIs

within the DF1 (522,469) and adjusted (521,331) samples.

Comparing ADT signal from cell-containing and empty droplets
For comparison of UMI counts within cell-containing and non-cell-containing (empty) droplets for the

present dataset and the 10X Genomics datasets, we divided the unfiltered count matrices by the

inflection point in their ranked per cell UMI sum from the mRNA library. Barcodes above the inflec-

tion point were then used to extract UMI counts within cell-containing droplets from each antibody

oligo modality. All UMIs that were not included in cell-containing droplets were considered from

empty droplets.

Data and code availability
All codes and commands used to process the data and generate all plots and figures are available at

GitHub: https://github.com/Terkild/CITE-seq_optimization (Buus, 2021; copy archived at swh:1:rev:

1c7fcabb18a1971dc4d6e29bc3ed4f6f36b2361f).

UMI count matrices from the optimization experiment have been deposited at FigShare with

DOI: https://doi.org/10.6084/m9.figshare.c.5018987. The feature barcode 30 and 50 VDJ 10X data-

sets are available from the 10X Genomics website.
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