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Abstract 
 
ATP-dependent chromatin remodeling enzymes mobilize nucleosomes, but how such 
mobilization affects chromatin condensation is unclear. Here, we investigate effects of 
two major remodelers, ACF and RSC using chromatin condensates and single-molecule 
footprinting. We find that both remodelers inhibit the formation of condensed chromatin. 
However, the remodelers have distinct effects on pre-formed chromatin condensates. 
ACF spaces nucleosomes without de-condensing the chromatin, explaining how ACF 
maintains nucleosome organization in transcriptionally repressed genomic regions. In 
contrast, RSC catalyzes ATP-dependent de-condensation of chromatin. Surprisingly, 
RSC also drives micron-scale movements of entire condensates. These newly 
uncovered activities of RSC explain its central role in transcriptional activation. The 
biological importance of remodelers may thus reflect both their effects on nucleosome 
mobilization and the corresponding consequences on chromatin dynamics at the 
mesoscale.   
 
Introduction 
 
Within the nucleus, the level of chromatin condensation typically correlates with 
transcription repression, such that transcriptionally repressed heterochromatin is more 
condensed than transcriptionally active euchromatin (1, 2). ATP-dependent chromatin 
remodeling enzymes (i.e. ‘remodelers’) play critical roles in the formation and 
maintenance of these distinct chromatin domains(3-5). Remodelers drive changes in 
chromatin states by acting on the smallest unit of chromatin, a nucleosome, which 
consists of ~ 140 bp of DNA wrapped around an octamer of histone proteins(6).  
 
Substantial biochemical work has shown that remodelers can slide, disassemble, 
deform, and space nucleosomes, and that each remodeler has a unique impact on 
nucleosomes(3, 4). For example, the imitation switch (ISWI) class remodeler ACF has 
been shown to generate the evenly spaced nucleosome architecture found in 
heterochromatin(7-11). In comparison, the switch/sucrose non-fermentable (SWI/SNF) 
class remodeler RSC, which slides, deforms and disassembles nucleosomes, is critical 
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for enabling DNA access in euchromatin(12-15). Most of our mechanistic understanding 
of remodeler action derives from studies at the nucleosome scale. At a genomic scale, 
ChIP based and genetic studies have shown correlations between the presence of 
specific remodelers and changes in chromatin organization in cells, and in vitro Micro-C 
studies have suggested that remodeler-driven nucleosome positions may promote 
formation of chromatin domains  (16-20). Yet, how remodeler action at the nucleosome 
scale affects chromatin dynamics at a mesoscale remains an open question. 
 
A simple prediction is that ATP-driven nucleosome mobilization disrupts inter-
nucleosomal interactions, resulting in local chromatin de-condensation. Thus, 
remodelers may act as molecular “stir-bars” (21). Additionally, in cells, remodelers must 
operate within a crowded chromatin environment with estimated nucleosome 
concentrations of ~100 uM or higher(22). How chromatin remodelers act in such a 
crowded environment is poorly understood. Recent studies have shown that chromatin 
condenses into phase-separated droplets in vitro that have comparable nucleosome 
concentrations to those within the nucleus(23, 24). Here, we build on these studies to 
ask how two key remodelers, ACF and RSC, which carry out substantially different 
transformations of a nucleosome, contend with a crowded chromatin environment. 
Further, as chromatin varies in nucleosome density and spacing in cells, we also 
investigate how nucleosome spacing and density affect chromatin condensation. 
 
To investigate the interplay between condensed chromatin and remodelers, we combine 
single-molecule footprinting of chromatin fibers reconstituted on a native DNA sequence 
(single-molecule adenine methylated oligonucleosome sequencing assay of chromatin 
accessibility on assembled templates) (SAMOSA-ChAAT)(25) with confocal imaging of 
chromatin condensates. We find that irregular nucleosome spacing substantially 
increases the viscosity of chromatin condensates, but ACF and RSC can still act on 
nucleosomes within this environment. Contrary to simple predictions, ACF remodeling 
does not decondense chromatin, whereas RSC remodeling does. Additionally, unlike 
ACF, RSC activity promotes micron-scale motions of entire condensates. Our method 
for assaying both single-fiber remodeling and condensate properties enables insight into 
the mesoscale consequences of nucleosome remodeling. More generally, our findings 
demonstrate how remodeling activities that differ at the nucleosome scale can 
differentially change the chromatin environment at the mesoscale. 
 
Results 
 
Irregularly-spaced nucleosome arrays form viscous chromatin condensates 
Previous studies have shown that chromatin assembled on DNA containing evenly 
spaced artificial 601 nucleosome positioning sequences forms phase-separated 
condensates under physiologically relevant buffer conditions(23, 24, 26). To investigate 
the phase-separation properties of chromatin assembled on a native sequence with 
weaker nucleosome positioning sequences, we assembled chromatin on a 3.5kb DNA 
sequence from the 5’ end of mouse gene Cyp3a11 (sequence ‘S3’, in relation to 
sequences S1 and S2 studied previously (25)). Chromatin was assembled on 
fluorescently end labeled S3 and imaged by confocal microscopy under physiologically 
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relevant buffer conditions (100mM KCl, 1.5mM free Mg2+)(Fig 1A)(27). Single-molecule 
nucleosome positions were determined as previously (25, 28, 29), by inferring 
methylase inaccessible footprints on individual molecules directly from PacBio 
sequencing data using a neural network-hidden Markov model. In contrast to templates 
assembled from on the evenly spaced 601 sequences (28) nucleosome positions 
assembled on S3 were irregular, consistent with observations for nucleosomes 
assembled on other physiological sequences(25).  
 
Chromatin condensates are formed and stabilized by inter-nucleosomal interactions 
(23). We therefore hypothesized that increasing the number of nucleosomes per 
molecule (i.e. nucleosome density) on our irregularly spaced genomic sequence would 
promote chromatin condensation. Increasing the density of nucleosomes by varying the 
histone octamer:DNA ratio during assembly promoted phase separation, consistent with 
inter-nucleosomal interactions driving chromatin condensation (Fig 1B). In every 
assembly, we observed a distribution of nucleosomes per DNA template (Fig 1C and 
1D), as previously observed(25). The median of this distribution shifted depending on 
how much histone octamer was used.  Using the nucleosome density and the DNA 
concentration in the condensates, we calculated the concentration of nucleosomes in 
the medium and high-density chromatin condensates to be 7.6 +/- 4 uM and 40 +/- 23.5 
uM, respectively (Fig S1A, see Methods). The nucleosome concentration in the high-
density chromatin is comparable to concentrations measured by other groups (23), and 
that estimated within the nucleus (22).  
 
We next investigated the dynamics of chromatin within the condensates by measuring 
the Fluorescence Recovery After Photobleaching (FRAP). Regularly spaced 
nucleosome arrays assembled on comparably long DNA templates containing 601 
repeats (2 kb-3.3 kb) have been shown to display substantial FRAP within ten minutes, 
a feature we also recapitulated (Fig S2) (26). In contrast, we saw minimal fluorescence 
recovery within the S3 condensates ten minutes after photobleaching under all 
conditions, including a condition tested previously for the evenly spaced arrays (Fig 
S1B, Fig S2B)(26). As a complementary assay for chromatin dynamics, we performed a 
droplet mixing experiment using chromatin that was end-labeled with either 
AlexaFluor647 or AlexaFluor555 (Fig S1C). Upon mixing, we observed distinct, single-
colored chromatin territories, indicating that these droplets were viscous, with low 
internal mixing (Fig S1C). However, the merged droplets were spherical, indicating that 
fused chromatin condensates do coalesce to minimize surface tension. Overall, our 
results suggest that irregular nucleosome spacing increases inter-fiber interactions 
inside chromatin condensates compared to regular spacing.   

 
Given the high viscosity of the condensates, we wondered whether chromatin 
remodelers could access their nucleosomal substrates. We therefore investigated how 
the addition of remodeler affected (1) the formation of chromatin condensates and (2) 
the properties of pre-formed chromatin condensates. In both cases, we concomitantly 
assayed remodeling activity using SAMOSA-ChAAT. 
 
ACF inhibits formation of chromatin condensates in an ATP-independent manner 
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ACF generates regular chromatin arrays in vivo and in vitro and catalyzes nucleosome-
spacing by sensing flanking DNA lengths(25, 30). To investigate how ACF regulates 
chromatin condensation, we mixed ACF with chromatin containing a median of 13 
nucleosomes per template (Fig 2A). In the presence of ATP, ACF spaced nucleosomes 
in a density-dependent manner. The distance between nucleosomes was regular for a 
given DNA molecule, but varied from molecule to molecule depending on nucleosome 
density (Fig 2B, Fig S3). This observation is consistent with our previous work 
demonstrating density-dependent spacing by ACF on different genomic templates (25). 
Nucleosome footprints in reactions with ADP did not change relative to control 
chromatin (Fig 2D).  
 
ACF inhibited the formation of chromatin condensates, and condensates that did form 
were less intense and more irregularly shaped (Fig 2B-C). ACF had a similar effect in 
the presence of ADP or ATP, suggesting that binding by ACF to the arrays, rather than 
its nucleosome spacing activity, was responsible for inhibiting condensation (Fig 2B-E). 
Consistent with a binding effect, ACF inhibited chromatin condensation in a 
concentration dependent manner, having the largest inhibitory effect at stochiometric 
ratios of ACF:nucleosome (Fig 2F-G). These results rule out the model that ATP-driven 
nucleosome mobilization by ACF prevents chromatin condensation. Rather, the data 
suggest that ACF binding occludes the nucleosomal surfaces that participate in inter-
nucleosomal interactions.  
 
ACF remodels nucleosomes in pre-formed condensates without dissolving them 
Given our observation that stoichiometric amounts of ACF inhibit formation of chromatin 
condensates, we wondered if ACF would also dissolve pre-formed chromatin 
condensates. To test this possibility, we added ACF into a mixture containing pre-
formed chromatin condensates (Fig 3A). Chromatin condensates persisted after adding 
ACF, regardless of whether we added 350 nM or 800 nM ACF to condensates 
generated from chromatin with ~300 nM nucleosomes (Fig 3B, Fig S3C). These findings 
contrast with those in Fig. 2 showing that pre-mixing 350 nM ACF with chromatin 
inhibits condensate formation. A simple explanation of this result is that only a minimal 
amount of ACF entered the pre-formed condensates.  
 
To quantify the amount of the ACF within the condensates, we fluorescently labeled 
ACF and repeated the add-in reaction using condensates generated from arrays with 
300nM nucleosome concentrations and 350nM ACF (Fig S4). We observed ACF 
throughout the condensates, but it was not evenly distributed (Fig 3C, Fig S4E). ACF 
was approximately two-fold as concentrated (~12 uM) on the outer surfaces of the 
chromatin condensates compared to the interior of the condensates (~6 uM). Based on 
the mean nucleosome concentration within these condensates of ~71 uM, we calculated 
the ratio of ACF:nucleosome inside the condensates as maximally 1:6, and minimally 
1:12. This clarified why ACF did not solvate the preformed condensates, because in our 
previous experiments, ACF detectably inhibited chromatin condensation only when it 
was near stoichiometric relative to nucleosomes. The decreasing concentration gradient 
of ACF towards the center of the condensates suggested that ACF was diffusing slowly 
throughout the condensates. To assay ACF dynamics within the condensates, we 
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FRAPed the labelled ACF. We observed no detectable FRAP at the edge or interior of 
the condensates over the course of five minutes (Fig 3D-E).  It is important to note that 
our photobleached spots, which are approximately 1μm in diameter, contain tens of 
thousands of nucleosomes. Thus, the slow recovery does not necessarily imply that 
ACF is indefinitely stuck on nucleosomes, but rather that it diffuses slower than the 
order of several minutes across μm-scale distances and through this nucleosome 
environment. Interestingly, the arrays in these reactions were completely remodeled by 
ACF at two hours (Fig 3B, S3), indicating that over time, even substochiometric ACF is 
able to access and remodel all the nucleosomes (Fig S3).  
 
The slow diffusion of ACF through the condensate was not ATP-dependent, as even in 
the presence of ADP, we observed enrichment of ACF at the periphery of the 
condensates (Fig S4E). Therefore, we hypothesized that the nM-order Kd of ACF for 
nucleosomes contributed to its slow diffusion through chromatin(30, 31). Consistent with 
this possibility, single molecule FRET data has shown that ACF processively remodels 
nucleosomes, with ATP-dependent residence times of five minutes or longer on 
individual mono-nucleosomes(32).  If high affinity and processivity were responsible for 
the slow diffusion of ACF through chromatin, then a less processive remodeler with a 
lower affinity for nucleosomes may diffuse more quickly and uniformly. We therefore 
repeated the experiment with Snf2h, the catalytic subunit of ACF, which is less 
processive and has a ~50-fold weaker affinity for nucleosomes than ACF(30, 31, 33). 
Consistent with our hypothesis, labelled Snf2h recovered from photobleaching much 
faster, within a minute, and uniformly distributed throughout chromatin condensates in 
the presence of ATP or ADP (Fig S4 C-D). In congruence with this result, the catalytic 
subunit of Drosophila ISWI complexes, which has a lower affinity for nucleosomes than 
ACF, diffuses rapidly and uniformly through chromatin condensates within minutes, 
though only in the presence of ATP (34). 
 
Because ACF generates chromatin fibers with regularly spaced nucleosomes, we 
hypothesized that ACF remodeled products would display more rapid dynamics within 
the condensates similarly to the evenly spaced 12x601 arrays.  However, we observed 
no FRAP recovery for chromatin remodeled by ACF over 5 minutes (Fig 3E, Fig S4C-
D). One possible explanation for this result is that even if all nucleosomes are evenly 
spaced by ACF, the nucleosome spacing varies from molecule to molecule, since some 
chromatin molecules have more nucleosomes than others. The spacing distributions are 
best illustrated in the single turnover ACF samples (Fig S3A, 800nM ACF). In contrast, 
essentially all of the regularly spaced 12x601 array molecules have the same 
nucleosome spacing due to the strength of this positioning sequence(28). It is therefore 
possible that uniform spacing across all chromatin molecules within a condensate 
increases dynamics. Another key difference is the presence of ACF, which may make 
additional interactions that stabilize inter-fiber interactions and slow chromatin 
dynamics.  
 
In contrast to ACF, RSC generates a wider variety of nucleosomal products so we next 
investigated whether the different outcomes on nucleosomes result in different 
outcomes within condensates.  
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RSC uses ATP to de-condense chromatin and mobilize whole condensates  
We first analyzed how RSC remodeling affected the formation of chromatin 
condensates by pre-mixing RSC with chromatin containing a median of 14 nucleosomes 
per template (scheme shown in Fig 4A). In the presence of 100 uM ATP-Mg, we 
observed that RSC addition resulted in condensates that were smaller and less intense 
than in the control (Fig 4B, Fig S6). However, RSC inhibited chromatin condensation 
substantially more in the presence of ADP or AMPPNP (Fig 4B). These results 
suggested that analogous to ACF, binding by RSC occludes the nucleosomal surfaces 
that participate in inter-nucleosomal interactions when bound to ADP or AMPNP. 
However, the differential effect with ATP was not consistent with a simple binding-based 
model. 
 
Unlike ACF, the RSC complex slides, disassembles and deforms nucleosomes without 
evenly spacing them(5, 12, 35). These activities are ATP-dependent, but RSC can also 
bind and distort nucleosomes without ATP(12, 36). We observed that RSC substantially 
displaced nucleosome footprints from their original positions in the presence of ATP (Fig 
4C). We also observed minor footprint displacement in the context of ADP (Fig 4C, 
S5A). In contrast, almost no displacement was seen with AMPPNP (Fig S5A).  
Interestingly, not all nucleosomes were remodeled to the same extent with ATP, 
suggesting that the outcome of remodeling depends on DNA sequence (Fig 4C)(35, 
37). Furthermore, the remodeled nucleosomes were not evenly spaced, as confirmed 
by autocorrelation analysis (Fig 4D-E). Overall, our analysis indicated that RSC 
catalyzes outcomes within chromatin condensates are consistent with its previously 
characterized activities on nucleosomes.  
 
The decreased intensity of condensates in the presence of RSC and ATP suggested 
that RSC was de-condensing the chromatin. Unexpectedly, we also observed that these 
condensates moved much more than control droplets (Movie S1-S2). We wondered if 
preformed chromatin condensates would be similarly de-condensed by RSC. Adding 
RSC to preformed chromatin condensates made them larger, less intense, and more 
mobile (Scheme shown in Fig 5A, Fig 5B-E, Movie S3-S6, Fig S6). The volume increase 
calculated for the condensates accounted for the lower nucleosome concentration (see 
Methods) consistent with de-condensation rather than loss of chromatin from the 
droplets. Further, to control for effects of droplet size on droplet motion we size-matched 
condensates from all four conditions (before RSC and after RSC) and measured the 
displacement of these condensates over 20 seconds, selecting for condensates that 
moved > 1.5 um (Fig 5E).  

 
The increased droplet motion and chromatin de-condensation seen with RSC could be 
a consequence of the remodeled chromatin products or could require active ATP 
hydrolysis. To uncouple the effects of remodeling outcome from active ATP hydrolysis, 
we compared RSC action at 100 uM and 2 mM ATP. At both of these ATP 
concentrations, the chromatin is completely remodeled at the time of imaging. Yet, there 
was more condensate motion at the higher ATP concentration (Movie S3-6). These 
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results indicate that the condensate motion observed after adding RSC and ATP 
depends on active ATP hydrolysis.  
 
These results uncover a major difference between how ACF and RSC affect compacted 
chromatin. Unlike with ACF, RSC has two ATP-hydrolysis dependent effects: (1) 
decompaction of chromatin condensates without dissolution and (2) increase of 
condensate motion. To better understand how RSC may drive condensate motion we 
investigated how RSC was distributed within the condensates (Fig. S5). Unlike ACF, we 
found that RSC is evenly distributed throughout condensates with ATP or ADP and 
recovers from photobleaching within 10 minutes (Fig 5F-G). However similar to ACF, we 
observed sub-stoichiometric RSC relative to nucleosomes (1 RSC:13 nucleosomes) 
inside the condensates even when stoichiometric concentrations of RSC were added 
into the condensates (Fig 5F). As elaborated in the discussion, we propose that the 
larger size of RSC and its lower processivity compared to ACF may explain its unique 
ATP-dependent effects on condensates.  

 
Discussion 
Nucleosome concentrations are estimated to range from ~100-500uM in vivo (22), and it 
is poorly understood how chromatin remodelers act within such crowded environments. 
Chromatin condensates allow recreation of comparably crowded conditions in vitro.  
Here, by carrying out mechanistic biochemistry in chromatin condensates, we have 
uncovered new consequences of ATP-dependent chromatin remodeling by ACF and 
RSC, two remodelers that respectively enable heterochromatin and euchromatin 
formation. Below we discuss the biological implications of our findings. 
 
Nucleosome spacing and density regulate the properties of condensed chromatin 
Chromatin condensation depends on inter-nucleosomal interactions. Therefore, 
nucleosome density is expected to influence the formation and compaction of 
condensates. Here, we systematically tested this prediction. Keeping DNA 
concentrations constant, we found that median densities of 4.6 nucleosome/kb yield 
condensates with nucleosome concentrations comparable to in vivo, densities of 2.9 
nucleosome/kb yield condensates with a fivefold lower concentration of nucleosomes, 
and densities of 1 nucleosome/kb do not yield detectable condensates. Furthermore, 
condensates formed by chromatin assembled on the native S3 sequence show 
increased viscosity relative to condensates from chromatin with regularly spaced 
nucleosomes at comparable density. Recent Cryo-ET studies of native mammalian 
chromatin show a high proportion of irregularly spaced nucleosomes and find that such 
chromatin is found in short intra-fiber stacks of nucleosomes in cis interspersed with 
inter-fiber interactions in trans (38). In contrast, regularly spaced nucleosome arrays 
appear to contain a greater proportion of intra-fiber nucleosome stacks (38-40). These 
differences may result in more stable inter-fiber interactions with irregularly spaced 
nucleosomes, explaining the greater viscosity.  
 
Remodeler affinity and processivity govern diffusion within condensed chromatin 
Although the chromatin condensates are viscous, nucleosomes within the condensates 
are still accessible to nucleosome remodelers. Both ACF and RSC can diffuse 
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throughout chromatin condensates and remodel the nucleosomes within. Interestingly, 
diffusion of ACF is much more restricted than that of RSC. We propose that this 
difference arises from the differences in the kinetics of how ACF and RSC engage 
nucleosomes. ACF has been shown to move nucleosomes in a bidirectional and highly 
processive manner, remaining bound to nucleosomes for several minutes during a 
remodeling cycle(32). In contrast, the residence time of RSC on nucleosomes is on the 
order of seconds(41). Therefore, within a condensate, ACF would be trapped on a 
nucleosome more often, slowing its effective diffusion relative to RSC. Consistent with 
this hypothesis, we find that the catalytic subunit Snf2h, which has lower nucleosome 
affinity and lower processivity, diffuses more rapidly throughout the chromatin 
condensates.  
 
Chromatin condensates also seem to inherently limit remodeler concentrations. Both 
ACF and RSC, when added to pre-formed condensates in stoichiometric concentrations 
to nucleosomes, only achieve sub-stoichiometric enrichment within condensates. We 
speculate that the network of inter-nucleosomal interactions within condensates limits 
the number of remodeler molecules that can be accommodated. Thus, diffusion of a 
remodeler through a chromatin condensate would be regulated by both the off rate of 
the remodeler and the kinetics of breaking the local network of inter-nucleosomal 
interactions. Interestingly, single particle tracking studies in yeast show much faster 
diffusion of remodelers through the yeast nucleus than we observe in our reconstituted 
condensates (42). It is possible that in cells, additional factors compete with remodelers 
to drive facilitated dissociation or help disrupt inter-nucleosomal interactions (43). 
 
ACF has been shown to play a critical role in maintaining heterochromatin domains 
through its nucleosome spacing activity. Our findings suggest that ACF’s high affinity 
and processivity may allow for its sustained localization within condensed 
heterochromatin. By comparison, the faster diffusion by RSC may enable faster de-
condensation of a chromatin domain during the formation of euchromatin and increase 
the local fluidity of chromatin as discussed below.  
 
Nucleosome scale remodeling can explain meso-scale consequences  
We find that ACF and RSC have different effects within condensed chromatin. We 
propose that these differences arise from two features (1) how ACF and RSC bind and 
remodel nucleosomes (Fig 5H) and (2) their residency times on nucleosomes during 
ATP-hydrolysis. Compared to ACF, RSC, which is bigger, is expected to occlude a 
larger region of the nucleosome and therefore have a larger effect on disrupting inter-
nucleosomal interactions (44-46). However, during ATP hydrolysis, the residency time 
of RSC on nucleosomes has been shown to be shorter than for ACF (47). We propose 
that ATP hydrolysis switches RSC between nucleosome-bound states that inhibit inter-
nucleosomal interactions and nucleosome free states that allow inter-nucleosomal 
interactions (Fig 5H). We speculate that such ATP-driven cycling between states 
transiently and locally disrupts inter-nucleosomal interactions without globally dissolving 
the condensate. Such a cycle may increase the local dynamics within condensed 
chromatin. Interestingly, RSC catalyzes whole condensate motion despite being 
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substantially sub-stoichiometric relative to nucleosomes (Fig 5H). This result suggests 
that disrupting some inter-nucleosomal interactions can have cooperative effects.  
 
In vivo, remodelers likely need to engage nucleosomes in at least two different contexts: 
in open chromatin states prior to condensation, and in states where the chromatin is 
condensed. ACF has been implicated in regulating heterochromatin(8, 48). We 
speculate that newly replicating heterochromatin would be prevented from prematurely 
condensing by stoichiometric ACF binding and remodeling. In contrast, in the context of 
an existing heterochromatin domain, our findings imply that ACF can maintain the 
nucleosome spacing within heterochromatin without decondensing chromatin. Our 
studies also clarify that ACF does not require other nuclear proteins in order to 
penetrate, remodel, and remain localized at condensed chromatin domains. In contrast 
to ACF, we find that RSC decondenses pre-formed chromatin condensates in an ATP-
hydrolysis dependent manner. It is well established that chromatin de-condensation 
correlates with transcription, but genomic studies cannot evaluate the effects of RSC on 
chromatin condensation in a transcription-independent manner, because RSC 
mutations affect transcription(16, 49). Our approach reveals that RSC remodeling does 
induce transcription-independent chromatin de-condensation, which likely contributes to 
de-condensation of active gene promoters in vivo. Additionally, we speculate that the 
increased condensate motion caused by RSC may enable faster local diffusion of the 
transcription machinery and other proteins through the viscous environment of 
condensed chromatin.  
 
We demonstrate that chromatin remodelers impact chromatin beyond the scale of 
individual nucleosomes, influencing the accessibility and dynamics of kilobase-size 
chromatin domains. Our findings further demonstrate that ATP-dependent remodelers 
do not generically act as molecular stir bars; rather, their meso-scale effects on 
chromatin derive from their specific, nucleosome-scale interactions and activities. 
Future work is needed to clarify whether other nucleosome remodelers that catalyze 
distinct transformations of nucleosomes also have unique effects on meso-scale 
chromatin dynamics.  
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Figure 1. Nucleosome density drives chromatin condensate formation. (A) 
Scheme of experimental workflow. (B) Confocal images of chromatin reactions with 
varying histone octamer concentration showing Alexa647 fluorescence. (C) Per-
molecule nucleosome density for each chromatin assembly shown in B. Inset is median 
nucleosomes per molecule and variance. (D) Heatmaps of accessible and inaccessible 
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bases for 3000 molecules per condition. Cartoon chromatin molecules illustrate that 
each row in the heatmap represents a chromatin molecule and the number of 
nucleosomes per molecule increases according to octamer concentration. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. ACF prevents chromatin condensate formation in an ATP-independent 
manner. (A) Scheme of premix experimental workflow. (B) Titration of ACF in the 
presence of ATP-Mg. Confocal images showing Alexa647 fluorescence. Histograms of 
mean pixel intensity per condensate with histogram bin number equal to 0.1*number of 
condensates per condition. Heatmaps of accessible and inaccessible bases for 1000 
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molecules per condition. (C) Boxplot of mean pixel per droplet intensities from B.  (D) 
Titration of ACF in the presence of ADP. Widefield images showing Alexa647 
fluorescence, histograms and heatmaps as in B. Lower intensity threshold was 
increased for 140 and 280 nM samples for better visualization of condensates against 
background. (E) Boxplot of mean pixel intensities per condensate from D. (F) Titration of 
lower concentrations of ACF in the presence of ATP-Mg. Confocal images, histograms, 
and heatmaps as in B. (G) Boxplot of mean pixel intensities per condensate from F. All 
scale bars are 20 um.  
 

 
 
Figure 3. ACF remodels chromatin inside of condensates and is concentrated in 
condensates. (A) Scheme of ACF add-in experimental workflow. (B) Alexa647 
fluorescence before and after adding in ACF, along with heatmap of accessible and 
inaccessible bases for 3000 molecules from the add-in reaction. (C) Example 
condensates after adding ACF using AF488-labeled ACF. Chromatin is labeled with 
AF647. (D) Example droplet before and after photobleaching, AF488 channel. (E) 
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Quantification of recovery after photobleaching for chromatin (AF647) and ACF 
(AF488). Recovery is normalized to pre-bleach droplet intensity. All scale bars are 5 um.  
 
 
 
 
 
 
 

 

Figure 4. RSC inhibits chromatin condensation and generates diverse 
nucleosome products that are not evenly spaced. (A) Scheme of premix 
experimental workflow. (B) RSC reactions have 100nM RSC, 100uM nucleotide-Mg2+, 
and 150nM nucleosome, with median 15 nucleosomes per molecule. Confocal images 
show Alexa647 fluorescence and histograms of mean pixel intensity per condensate, 
with bin size equal to 0.1*number of condensates per condition. Scale bars are 5 um. 
(C) Heatmaps of accessible and inaccessible bases for 2000 molecules per condition. 
(D) Average single-molecule autocorrelograms resulting from Leiden clustering of 
individual molecules. We observe six different array types, four with regular spacing 
(NRL) and two with irregular spacing (IR). (E) Stacked bar chart representation of 
cluster representation for molecules from two different conditions, plotted as a function 
of nucleosome density. In the presence of RSC and ATP, the proportion of IR fibers (red 
and pink colors) increases. 
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Figure 5. RSC decondenses chromatin condensates and increases condensate 
motion in an ATP-dependent manner. (A) Scheme of RSC add-in experimental 
workflow. (B) Confocal images of chromatin condensates for the RSC premix 
experiment (scheme shown in Fig 4A) in conditions with 150nM nucleosome, 100uM 
ATP-Mg. Estimated mean nucleosome concentration inside condensates is 38uM 
(control reaction) and 9uM (+100nM RSC reaction). (C) RSC add-in experiment as 
shown in A, done in conditions with either 100uM ATP-Mg or 2mM ATP-Mg and 150nM 
nucleosome. Estimated mean nucleosome concentration inside condensates is 43uM 
(before RSC, 100uM ATP-mg), 21uM (after RSC, 100uM ATP-mg), 21uM (before RSC, 
2mM ATP-mg), 7uM (after RSC, 2mM ATP-mg). (D) Boxplots of mean condensate 
intensity for premix (left) and add in experiments in A and B (right). (E) Example traces 
of condensate displacement over 20 seconds. Displacement analysis was limited to 
condensates with diameter of approximately 5 um and the number of 5 um diameter 
condensates tracked in each condition is listed above the example droplets. (E) Boxplot 
of size-matched condensate displacement before and after RSC add-in. (F) On left, 
confocal images of RSC add-in using AF488 labeled RSC, 488 channel. Top row 
images are from 7nM AF488-RSC add-in, bottom row images from 350nM AF488-RSC 
add-in. Both were done in conditions with 100uM ATP-Mg. The molar ratio of 
nucleosome to RSC inside condensates is shown. (G) AF488 fluorescence recovery 
after photobleaching for 7nM and 350nM RSC. Recovery is normalized to pre-bleach 
droplet intensity and plotted an average of 6 droplets for 350nM RSC and 3 droplets for 
7nM RSC. (H) Model for chromatin condensation and remodeling within the condensate 
by ACF or RSC. All scale bars are 5 um. 
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