
RESEARCH Open Access
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Abstract

Background: The contribution of somatic mosaicism, or genetic mutations arising after oocyte fertilization, to
congenital heart disease (CHD) is not well understood. Further, the relationship between mosaicism in blood and
cardiovascular tissue has not been determined.

Methods: We developed a new computational method, EM-mosaic (Expectation-Maximization-based detection of
mosaicism), to analyze mosaicism in exome sequences derived primarily from blood DNA of 2530 CHD proband-
parent trios. To optimize this method, we measured mosaic detection power as a function of sequencing depth. In
parallel, we analyzed our cohort using MosaicHunter, a Bayesian genotyping algorithm-based mosaic detection tool,
and compared the two methods. The accuracy of these mosaic variant detection algorithms was assessed using an
independent resequencing method. We then applied both methods to detect mosaicism in cardiac tissue-derived
exome sequences of 66 participants for which matched blood and heart tissue was available.

Results: EM-mosaic detected 326 mosaic mutations in blood and/or cardiac tissue DNA. Of the 309 detected in
blood DNA, 85/97 (88%) tested were independently confirmed, while 7/17 (41%) candidates of 17 detected in
cardiac tissue were confirmed. MosaicHunter detected an additional 64 mosaics, of which 23/46 (50%) among 58
candidates from blood and 4/6 (67%) of 6 candidates from cardiac tissue confirmed. Twenty-five mosaic variants
altered CHD-risk genes, affecting 1% of our cohort. Of these 25, 22/22 candidates tested were confirmed. Variants
predicted as damaging had higher variant allele fraction than benign variants, suggesting a role in CHD. The
estimated true frequency of mosaic variants above 10% mosaicism was 0.14/person in blood and 0.21/person in
cardiac tissue. Analysis of 66 individuals with matched cardiac tissue available revealed both tissue-specific and
shared mosaicism, with shared mosaics generally having higher allele fraction.

(Continued on next page)

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: ys2411@cumc.columbia.edu
†Alexander Hsieh, Sarah U. Morton, Jon A. L. Willcox, Wendy K. Chung,
Christine E. Seidman, J. G. Seidman and Yufeng Shen contributed equally to
this work.
1Columbia University Medical Center, 1130 St Nicholas Ave, New York, NY
10032, USA
Full list of author information is available at the end of the article

Hsieh et al. Genome Medicine           (2020) 12:42 
https://doi.org/10.1186/s13073-020-00738-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-020-00738-1&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:ys2411@cumc.columbia.edu
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Conclusions: We estimate that ~ 1% of CHD probands have a mosaic variant detectable in blood that could
contribute to cardiac malformations, particularly those damaging variants with relatively higher allele fraction.
Although blood is a readily available DNA source, cardiac tissues analyzed contributed ~ 5% of somatic mosaic
variants identified, indicating the value of tissue mosaicism analyses.
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Background
Mosaicism results from somatic mutations that arise
post-zygotically in an early embryonic cell, resulting in
two or more cell populations with distinct genotypes in
the developing embryo [4]. The developmental status of
the early embryonic cell at the time of mutagenesis de-
termines the proportion of variant-carrying cells and the
tissue distribution of these cells in the post-natal child
[1]. While germline variants have a variant allele fre-
quency (VAF) of 0.5, somatic mosaic variants have a sig-
nificantly lower VAF.
Post-zygotic mosaic mutations have been implicated in

several diseases including non-malignant developmental
disorders such as overgrowth syndromes [47, 55, 64],
structural brain malformations [41, 49, 64, 69], epilepsy
[76], and autism spectrum disorder [16, 23, 45, 54]. Re-
cent analyses also identified mosaic variants in a cohort
of patients with congenital heart disease (CHD) [57], but
the prevalence of these was far less than germline vari-
ants (CHD) [34, 42, 86, 87].
Assessment of the frequency of mosaicism in human

disease is confounded by technical issues, including differ-
ences in sequencing depth, DNA sources, and variant as-
sessment pipelines. Low levels of mosaicism can escape
the detection threshold of traditional sequencing methods
with standard read depths, while post-zygotic mutations
with a higher percentage of affected cells are difficult to
discriminate from germline de novo mutations [1]. All of
these issues can lead to substantially different conclusions.
For example, analyses of mosaicism in autism spectrum
disorder was recently assessed from whole exome se-
quence (WES) data from whole blood DNA from 2506
families (proband, parents and unaffected sibling; trios
and quads) in the Simons Simplex Collection (SSC) [21].
The primary sequence data were analyzed by three groups;
one that identified a protein-coding somatic mosaic vari-
ant rate of 0.074 per individual [23], another that found a
mosaic rate of 0.059 per individual [54], and a third group
that reported a mosaic rate of 0.125 per individual [45].
This disparity both highlights algorithm-specific differ-
ences and suggests the need for a more systematic mosaic
mutation detection method that accounts for dataset-
specific confounding factors.
By contrast, analyses of affected tissues can improve

the sensitivity and specificity of detection of somatic

mosaicism. In cancer, methods to detect these events,
such as MuTect [7], compare tumor and benign tissues
from the same patient. Mosaicism has also been demon-
strated from the analyses of unpaired samples with can-
cer and other pathologies [37, 73, 77] by the
demonstration of variants in affected tissues that are ab-
sent from blood-derived DNA [59, 78]. With access to
cardiac tissues from patients with CHD obtained during
surgical repair, we hypothesized that analyses of mosai-
cism in cardiac tissue might improve insights into the
causes of this common congenital anomaly. As many
cardiomyocyte lineages share a mesodermic origin with
blood cells but exit the cell cycle during embryogenesis,
we also sought to determine if mosaicism in the heart
exhibited distinct patterns of mosaicism with regard to
variant frequency and allele fractions.
In this study, we developed a computational method,

EM-mosaic (Expectation-Maximization-based detection
of Mosaicism) [35], to detect mosaic single-nucleotide
variants (SNVs) using WES of proband and parent
DNA. To optimize this method, we measured mosaic
detection power as a function of sequencing depth. We
applied both EM-mosaic and MosaicHunter [37] to in-
vestigate mosaicism in 2530 CHD proband-parent trios
from the Pediatric Cardiac Genomics Consortium
(PCGC) [42], using exome sequences derived from
blood-derived DNA, and compared the two methods.
We detected predicted deleterious mosaic mutations in
genes involved in known biological processes relevant
to CHD or developmental disorders in 1% of probands.
The accuracy of these mosaic variant detection algo-
rithms was assessed using an independent resequencing
method. We found that among high-confidence mosaic
mutations in CHD-relevant genes, likely damaging vari-
ants tended to have higher VAF than likely benign
variants.
In parallel, we assessed mosaicism by EM-mosaic

and MosaicHunter in 70 discarded tissues from sev-
eral heart regions obtained from 66 probands who
underwent cardiac surgical repairs. While VAF varied
significantly (> 3 fold) between blood and cardiovascu-
lar tissue at about 60% of sites, in general mosaic var-
iants with high (> 15%) VAF were more likely shared
between blood and cardiac tissue than variants with
lower VAF.
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Methods
Samples and sequencing data
We analyzed WES data from 2530 congenital heart dis-
ease (CHD) proband-parents trio families who were re-
cruited as part of the Pediatric Cardiac Genomics
Consortium (PCGC) study [34, 42]. Genomic DNA from
venous blood or saliva was captured using Nimblegen
v.2 exome capture reagent (Roche) or Nimblegen Seq-
Cap EZ MedExome Target Enrichment Kit (Roche)
followed by Illumina DNA sequencing (paired-end,
2x75bp) [42, 86]. Of 2530 participant DNA samples,
2453 were from blood and 77 were from saliva. Genomic
DNA from 70 surgically discarded cardiovascular tissue
samples (2-10mg) was isolated using DNeasy Blood &
Tissue Kit (QIAgen), then captured using xGen Exome
Research Panel v1.0 reagent (IDT) followed by Illumina
DNA sequencing (paired-end, 2 × 75 bp). Sequence reads
were mapped to the hg19 human reference genome with
BWA-MEM [51], and BAM files were further processed
following GATK Best Practices [81], which included du-
plication marking, indel realignment, and base quality
recalibration steps. Blood and saliva samples had sample
average depth 60× and cardiovascular tissue samples had
sample average depth 160×. A summary of germline and
mosaic variants called from blood and saliva DNA can
be found in Additional file 1: Table S15.

De novo variant calling and annotation
We processed our sample BAMs and called variants on
a per-trio basis using SAMtools (v1.3.1-42) and BCFtools
(v1.3.1-174) [52]. Pileups were generated using samtools
“mpileup” command with mapQ 20 and baseQ 13 to
minimize the effect of poorly mapped reads on variant
allele fraction, followed by bcftools “call” using a cutoff
of 1.1 for the posterior probability of the homozygous
reference genotype parameter (-p) to capture additional
sites with variant allele fraction suggestive of post-
zygotic origin that would otherwise be excluded under
the default threshold of 0.01. To identify de novo muta-
tions from trio VCF files, we selected sites with (i) a
minimum of 6 reads supporting the alternate allele in
the proband and (ii) for both parents, a minimum depth
of 10 reads and 0 alternate allele read support. Variants
were then annotated using ANNOVAR (v2017-07-17)
[83] to include information from refGene [63], gnomAD
(March 2017) [44], 1000 Genomes (August 2015) [2],
ExAC [43], genomicSuperDups [32], CADD (v1.3) [68],
COSMIC (v70) [79], and dbSNP (v147) [56] databases,
as well as pathogenicity predictions from a variety of
established methods included as part of the dbNSFP
(v3.0a) database or generated in-house (MCAP, REVEL,
MVP, MPC). We used REVEL [38] to evaluate missense
variant functional consequence, using the recommended
threshold of 0.5 corresponding to sensitivity of 0.754

and specificity of 0.891. We used spliceAI [39] to predict
the variant functional impact on splicing using the delta
score thresholds of 0.2 for likely pathogenic (high recall),
0.5 for pathogenic (recommended), and 0.8 for patho-
genic (high precision). We considered sites predicted to
be loss of function (LoF) (stopgain, stoploss, frameshift
indels, splice-site), deleterious missense (Dmis; nonsy-
nonymous SNV with REVEL> 0.5), or splice-damaging
(benign missense or synonymous SNV with delta score
> 0.5) to be damaging and likely disease causing. We
considered sites predicted to be synonymous (delta score
≤ 0.5) or benign missense (Bmis; nonsynonymous SNV
with REVEL ≤ 0.5 and delta score ≤ 0.5) to be non-
damaging.

Pre-processing and QC
To reduce the number of low VAF technical artifacts in-
troduced by our variant calling approach, we prepro-
cessed our variants using a variety of filters (Fig. 1). We
first excluded indels from further analysis, as their
downstream model parameter estimates were less stable
than those of SNVs. We then filtered our variant call set
for rare heterozygous coding mutations (minor allele fre-
quency (MAF) ≤ 10− 4 across all populations represented
in gnomAD and ExAC databases). To account for re-
gions in the reference genome that are likely to affect
read depth estimates, we removed variant sites found in
regions of non-unique mappability (score < 1; 300 bp),
likely segmental duplication (score > 0.95), and known
low-complexity [53]. We then excluded sites located in
MUC and HLA genes and imposed a maximum variant
read depth threshold of 500. We used SAMtools PV4 to
exclude sites with evidence of technical issues using a
cutoff of 1e−3 for baseQ bias and tail distance bias and a
cutoff of 1e−6 for mapQ bias. To account for potential
strand bias, we used an in-house script to flag sites that
have either (1) 0 alternate allele read support on either
the forward or reverse strand or (2) P < 1e−3 and (odds
ratio (OR) < 0.33 or OR > 3) when applying a two-sided
Fisher’s exact test to compare proportions of reference
and alternate allele read counts on the forward and re-
verse strands. We also excluded sites with cohort fre-
quency > 1%, as well as sites belonging to outlier samples
(with abnormally high de novo SNV (dnSNV) counts,
cutoff = 8) and variant clusters (defined as sites with
neighboring SNVs within 10 bp). Finally, we applied an
false discovery rate (FDR)-based minimum Nalt filtering
step (Additional file 2: Figure S5) to control for false
positives caused purely by sequencing errors.

IGV visualization of low allele fraction de novo SNVs
To reduce the impact of technical artifacts on model par-
ameter estimation, we manually inspected de novo SNVs
with VAF < 0.3 (n = 558) using Integrative Genomics
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Viewer (v2.3.97) [70] to visualize the local read pileup at
each variant across all members of a given trio family. We
focused on the allele fraction range 0.0–0.3 since this
range is enriched for technical artifacts that could poten-
tially impact downstream parameter estimation. Sites were
filtered out if (1) there are inconsistent mismatches in the
reads supporting the mosaic allele, (2) the site overlaps or
is adjacent to an indel, (3) the site has low MAPQ or is
not primary alignment, (4) there is evidence of technical
bias (strand, read position, tail distance), or (5) the site is
mainly supported by soft-clipped reads.

Expectation-maximization to estimate prior mosaic
fraction and control FDR
Current estimates for the fraction of de novo events oc-
curring post-zygotically are unstable due to differences
in study factors such as variant calling methods, average
sequencing depth, and paternal ages. In order to use this
fraction as a prior probability in our posterior odds and
false discovery calculations, we reason that this value
must be estimated from the data itself. We used an
expectation-maximization algorithm to jointly estimate

the fraction of mosaics among apparent de novo muta-
tions and to calculate a per-site likelihood ratio score.
This initial mosaic fraction estimate gives us a prior
probability of mosaicism, independent of sequencing
depth or variant caller, and allows us to calculate for
each variant the posterior odds that a given site is mo-
saic rather than germline. To control for false discovery
among our predicted mosaic candidates, we chose a pos-
terior odds threshold of 10 to restrict FDR to 9.1%.

Mosaic mutation detection model
To distinguish variant sites that show evidence of mosai-
cism from germline heterozygous sites, we modeled the
number of reads supporting the variant allele (Nalt) as a
function of the total site depth (N). In the typical case,
Nalt follows a binomial model with parameters N = site
depth and P =mean VAF. However, we observed notable
overdispersion in the distribution of variant allele frac-
tion compared to the expectations under this binomial
model (Additional file 2: Figure S4). To account for this
overdispersion, we instead modeled Nalt using a beta-
binomial distribution [33, 66]. We estimated an

Fig. 1 Mosaic detection pipeline flowchart. Summary of approach for detecting mosaic variants in our cohort of n = 2530 CHD proband-parent
trios. EM-mosaic flowchart (left). We first processed our SAMtools de novo calls using our upstream filters (n = 2396 sites passing all filters). We
then applied the same upstream filters to the published dnSNVs from Jin et al. (n = 2650 sites passing all filters) before finally taking the union of
these two call sets (n = 3192). High-confidence mosaics (n = 309) were defined as mosaics passing IGV inspection and having posterior odds > 10.
Italicized text indicates which filters removed candidate mosaic variants called by MosaicHunter but not by EM-mosaic. MosaicHunter workflow
(right). Quality control filters excluded any sites that were (1) present in ExAC (2) G>T with Nalt < 10 (3) parent Nalt > 2. Outliers were defined as
probands carrying more than 20 mosaics, or non-unique sites. We also removed sites called as germline by GATK Haplotype Caller. High-
confidence mosaics (n = 116) were defined as having a likelihood ratio > 80 and affecting coding regions excluding MUC/HLA genes. Italicized
text indicates which filters removed variants called by EM-mosaic but not by MosaicHunter
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overdispersion parameter θ for our model as follows: for
site depth values N in the range 1 to 500, we (1) bin var-
iants by identifying all sites with depth N, (2) calculate a
maximum-likelihood estimate θ value using N and all
Nalt values for variants in a given bin, and (3) estimate a
global θ value by taking the average of θ values across all
bins, weighted by the number of variants in each bin.
We then used θ in our expectation-maximization ap-
proach to jointly estimate prior mosaic fraction and to
calculate per-site likelihood ratios.
To calculate the posterior odds that a given variant

arose post-zygotically, we first calculated a likelihood ra-
tio (LR) of two models: M0: germline heterozygous vari-
ant, and M1: mosaic variant. Under our null model M0,
we calculated the probability of observing Nalt from a
beta-binomial distribution with site depth N, observed
mean germline VAF P, and overdispersion parameter θ.
Under our alternate model M1, we calculated the prob-
ability of observing Nalt from a beta-binomial distribu-
tion with site depth N, observed site VAF P =Nalt/N,
and overdispersion parameter θ. Finally, for each variant,
we calculated LR by using the ratio of probabilities
under each model and posterior odds by multiplying LR
by our E-M estimated prior mosaic fraction estimate.
We defined mosaic sites as those with posterior odds
greater than 10 (corresponding to 9.1% FDR). We used
posterior odds in this context to be able to control for
false discovery, but we output similarly valid P value and
likelihood ratio scores for each de novo SNV.

Mutation confirmation by MiSeq amplicon sequencing
Chromosome coordinates were expanded 500 bp up-
stream and downstream of the candidate mosaic variants
in the UCSC Genome Browser. Primer 3 Plus software
was used to design forward and reverse primers to gen-
erate 150–300-bp amplimers containing the candidate
site. PCR reactions consisting of genomic DNA, primers,
and Phusion polymerase were amplified by thermal

cycling and purified with AMPure XP beads. The puri-
fied PCR product was quantified, and 0.5–1.0 ng of
product was used to construct Nextera XT libraries ac-
cording to the protocol published by Illumina. Libraries
were purified using AMPure XP beads, and final libraries
were quantified and pooled to undergo sequencing
through Illumina MiSeq.
We experimentally tested for the presence our pre-

dicted post-zygotic sites in the original blood DNA and
cardiovascular tissue DNA samples using Illumina
MiSeq Amplicon sequencing. The Amplicon Deep Se-
quencing workflow, optimized for the detection of som-
atic mutations in tumor samples, offers ultra-high
sequencing depth (> 1000×) that gives us the resolution
to confirm low VAF variants, to accurately estimate site
VAF, and to distinguish true variant calls from technical
artifacts. Mosaic candidates were considered validated if
the variant allele matched the MiSeq call and both the
mosaic VAF and MiSeq VAF indicated post-zygotic ori-
gin (VAF < 0.45).
Mosaic candidates were selected for confirmation on

the basis of VAF, plausible involvement in CHD (based
on predicted pathogenicity and HHE status), and detec-
tion method (Additional file 1: Table S11; Add-
itional file 1: Table S12). We sampled mosaics from both
ends of the VAF spectrum to evaluate our ability to dis-
tinguish high VAF mosaics (VAF > 0.2; n = 29) from
germline variants and to distinguish low VAF mosaics
(VAF < =0.1; n = 52) from technical artifacts. Confirm-
ation rate across different VAF bins is shown in Add-
itional file 2: Figure S12. We also selected for
confirmation mosaics detected uniquely by either EM-
mosaic or MosaicHunter, for the sake of method com-
parison (Table 1).
To examine a potential source of bias in our candidate

selection process, we compared the posterior odds distri-
bution of selected candidate mosaics (n = 97) against
those not chosen (n = 212). We found that our tested

Table 1 Mosaic variant detection by EM-Mosaic and MosaicHunter and validated by PCR product sequencing

Union Shared Unique

EM-Mosaic MosaicHunter

High-confidence mosaic variants* 332 57 240 35

Mosaic candidates 367 58 251 58

Mosaic candidate VAF mean (SD) 0.13 (0.06) 0.12 (0.05) 0.13 (0.06) 0.10 (0.05)

MiSeq confirmation

Total tested 143 22 75 46

Mosaic 108 21 64 23

Germline 3 0 3 0

No variant 32 1 8 23

Validation rate 76% 95% 85% 50%

*Mosaic variants detected from blood DNA of 2530 CHD probands, after excluding sites failing MiSeq confirmation
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candidates had lower posterior odds than untested mo-
saics (meantested = 5.382, meanuntested = 7.050, log10-scale;
Mann-Whitney U P = 0.002) (Figure 13), suggesting that
our validation rate is not buoyed by testing variants with
the strongest evidence of mosaicism. For method devel-
opment purposes, we intentionally focused on mosaics
with lower posterior odds as these fall in the VAF range
for which it is most difficult to distinguish germline
from mosaic.

Investigating the relationship between VAF and
pathogenicity
We hypothesized that mosaic contribution to disease is
positively correlated with cellular percentage and by ex-
tension mutational timing. Here, we used variant allele
fraction as a proxy for cellular percentage. We grouped
mosaics into likely damaging and likely benign and com-
pared the distribution of allele fraction in CHD-related
genes. We defined likely damaging variants as (a) likely
gene-disrupting (LOF) variants (including premature
stopgain, frameshifting, and variants located in canonical
splice sites), (b) missense variants predicted to be dam-
aging by REVEL [38] (with score ≥ 0.5), or (c) missense
variants and synonymous predicted to be splice-
damaging by spliceAI (with score > 0.5). One of the main
findings from previous CHD studies is that damaging de
novo variants in genes highly expressed in the develop-
ing heart (“HHE”, ranked in the top 25% by cardiac ex-
pression data in mouse at E14.5 [34, 86]) contribute to
non-isolated CHD cases that have additional congenital
anomalies or neurodevelopmental disorders. Therefore,
we considered the union of HHE genes and known can-
didate CHD genes [42] as CHD-related genes (n = 4558).
For mosaics in CHD-related genes and for mosaics in
other genes, we used a Mann-Whitney U test to com-
pare the VAF distributions of likely damaging and likely
benign groups.

Estimated contribution of mosaicism to CHD
We identified likely disease-causing mosaic mutations
on the basis of predicted pathogenicity and presence in
genes involved in biological processes relevant to CHD
or developmental disorders. Each mosaic mutation was
annotated with gene-specific information, including
heart expression percentile, probability of loss-of-
function intolerance (pLI) score [50], whether dysregula-
tion causes CHD in mice [20, 72], and gene function
(NCBI RefSeq). We focused on HHE genes, genes with
high pLI (pLI > 0.9), genes that cause CHD phenotypes
in mice, and genes involved in key developmental pro-
cesses such as Wnt, mTOR, and TGF-beta signaling
pathways. Then, for each patient, we used the clinical
phenotype to further prioritize mosaic mutations most
likely contributing to that individual’s clinical features.

Detailed mutation annotation and clinical phenotypes
for the mosaic carriers described above can be found in
Additional file 1: Table S10. We estimate the contribu-
tion of mosaicism to CHD as the percentage of individ-
uals carrying likely disease-causing mosaic mutations
among all individuals in our CHD cohort.

Results
High-accuracy detection of mosaic mutations in WES data
using EM-mosaic
We analyzed whole exome sequence (WES) data from
2530 CHD proband-parent trios [34, 42] (Add-
itional file 1: Table S1). Among this cohort, 1205 pro-
bands had CHD with neurodevelopmental disorders
(NDD) and/or extracardiac manifestations (EM), 788
had isolated CHD at the time of enrollment, 539 had un-
determined NDD status due to young neonatal age at
the time of enrollment, and 9 subjects had incomplete
data (Additional file 1: Table S2).
Previous WES analyses [42] identified 1742 germline

de novo SNVs carried by 2005 CHD proband-parent
trios, including 838 cases with NDD and/or EM, 516 iso-
lated cases, 644 cases of unknown NDD status, and 7
with incomplete data. These de novo variants were iden-
tified using the Genome Analysis Toolkit (GATK) pipe-
line [14, 58] assuming a germline diploid model in
which the expected VAF is 0.5. This model has limited
sensitivity to detect mosaic mutations for which the frac-
tion of alternative allele reads is significantly below 0.5,
especially because de novo variants with VAF < 0.2 were
excluded to reduce false discovery.
To efficiently capture mosaic variants with VAF < 0.4,

we developed a new method (EM-mosaic) to detect mo-
saic variants in WES sequence of a proband and parents
(trios). Potential mosaic variants were identified in WES
sequence data using SAMtools mpileup [52] with set-
tings designed to capture sites with VAF between 0.1–
0.4 and merged with the variants found by the GATK
pipeline [42] (Fig. 1) to create a union variant set. To re-
duce the elevated false positive rate inherent in low-VAF
calls, we applied a set of empirical filters to remove likely
technical artifacts due to sequencing errors associated
with repetitive and/or low-complexity sequences. We
then manually inspected de novo SNVs with VAF < 0.3
(n = 582) using IGV and filtered out an additional 188
likely false positives. After preprocessing, outlier re-
moval, and an FDR-based minimum alternate allele read
support (Nalt) filter (Additional file 2: Figure S5), the
remaining 2971 de novo SNVs were used as input to our
mosaic detection model.
Among the 2971 de novo SNVs, this pipeline identi-

fied 309 sites as candidate mosaics based on posterior
odds score (Fig. 2a, b; Additional file 1: Table S3), in-
cluding 50 sites that were previously reported as
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germline de novo variants [42]. Among our 2530 partici-
pant DNA samples, 2453 were from blood and 77 were
from saliva yielding 300 mosaic candidates and 9 mosaic
candidates, respectively; a summary of germline and mo-
saic variants called from blood and saliva DNA can be
found in Additional file 1: Table S15. We also did not
find evidence of a relationship between proband age and
mosaic rate (Additional file 2: Figure S9) or between par-
ental age (paternal or maternal) and proband mosaic
rate (Additional file 1: Table S16; Additional file 2: Fig-
ure S10; Additional file 2: S11). Among sites predicted
to be germline, 86 sites were identified as having poster-
ior odds below our chosen threshold of 10 but greater
than 1 (Additional file 2: Figure S1), including a ZEB2
variant with a posterior odds score of 4.7 that was previ-
ously confirmed via ddPCR [57]. Among these 86 vari-
ants, we estimate that 53 are likely mosaic and 33 are
likely germline (Additional file 2: Figure S1B). We chose
not to include these sites since there was insufficient evi-
dence to confidently resolve them individually as mosaic
or germline.

Mosaic mutations found in blood-derived DNA with
MosaicHunter
We also employed MosaicHunter, which uses a Bayesian
genotyping algorithm with a series of stringent filters
(see Supplemental Methods) for discovering mosaic vari-
ants using WGS genotype information from trios [37].
Among the 2530 CHD trios, MosaicHunter identified an
initial set of 58,976 sites showing evidence of mosaicism,
including 214 high-confidence variants located in coding
regions (Fig. 1). After applying a minimum likelihood
ratio (LR) cutoff of 80 for distinguishing mosaic from
germline mutation, and additional heuristic filters

(Supplemental Methods), MosaicHunter identified 116
coding sites (Additional file 1: Table S4) or 0.05 mosaics
/individual.
Candidate mosaic variants were compared between

the EM-mosaic and MosaicHunter pipelines. Of the mo-
saic candidates detected by MosaicHunter, 58/116 (50%)
were also identified by EM-mosaic while 58/116 (50%)
candidates were unique to MosaicHunter (Table 1; Add-
itional file 2: Figure S2). Of the 58 candidates unique to
MosaicHunter, 35 were filtered out by EM-mosaic on
the basis of insufficient alternate allele read support, 16
had a non-zero allelic depth in the parents, and 7 failed
quality filters. The 251 candidates unique to EM-mosaic
were discarded by the MosaicHunter pipeline during
BAM reprocessing (n = 13), quality filtering (n = 146),
and application of LR cutoff (22), or were not called due
to inadequate read depth (n = 70) (Fig. 1).

Sequence confirmation of candidate mosaic variants
Candidate mosaic variants from the EM-mosaic and
MosaicHunter were combined into a single list for fur-
ther evaluation. From the 367 high-confidence EM-
mosaic and/or MosaicHunter mosaic SNVs, we selected
143 candidates (75 uniquely identified by EM-mosaic; 46
uniquely identified by MosaicHunter; 22 identified by
both) for experimental confirmation using MiSeq ampli-
con resequencing (Table 1; Additional file 1: Table S5;
Additional file 1: Table S11; Additional file 1: Table S12;
“Methods”). DNA fragments encompassing the putative
mosaic variant were PCR-amplified from proband and
each parent DNA, sequenced on an Illumina MiSeq
next-generation sequencer and VAF was calculated for
each individual. These candidate mosaics included SNVs
on the extremes of the VAF spectrum, as well as mosaics

Fig. 2 Mosaic detection by Expectation-Maximization. a Expectation-Maximization (EM) estimation to decompose the variant allele fraction (VAF)
distribution of our input variants into mosaic and germline distributions. The EM-estimated prior mosaic fraction was 12.15% and the mean of the
mosaic VAF distribution was 0.15. b Read depth vs. VAF distribution of individual variants. The blue line denotes mean VAF (0.49) and the red
lines denote the 95% confidence interval under our Beta-Binomial model. Mosaic variants are defined as sites with posterior odds > 10,
corresponding to a false discovery rate of 9.1%. Germline variants are represented in black and mosaic variants are represented in red. c
Estimated mosaic detection power as a function of average sample depth for values between 40× and 500×
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that were flagged by MosaicHunter quality filters. In total,
we confirmed 108 of 143 candidates as mosaic (Additional
file 2: Figure S3A-B), including 21/22 (95%) sites identified
by both pipelines. Candidate variants were considered
confirmed by MiSeq analyses if they demonstrated an
amplicon VAF exceeding 0.01 but less than 0.45, so as to
indicate a variant of post-zygotic origin. MiSeq VAF
values closely correlated with those originally determined
by exome sequencing (P = 2.2 × 10− 16). Average MiSeq se-
quencing read depth was 4639 among all candidates and
4354 among confirmed mosaics.
Based on MiSeq VAF values, we confirmed 85/97

(88%) of EM-mosaic candidate mosaic variants with a
mean read depth of 4460 (Additional file 2: Figure S3A,
C). Three candidate variants were likely germline de
novo SNVs (VAF > 0.45). Nine candidate variants were
“false positives” that were neither germline de novo
SNVs nor mosaic SNVs since either no variant reads
were detected by MiSeq sequencing of the proband
amplicon, or the same small fraction of variants were de-
tected in proband amplicon and one parent’s amplicon.
Parallel analyses with MosaicHunter confirmed 44/68

(65%) candidate mosaic variants with a mean read depth
of 4505 (Additional file 2: Figure S3B,D). There were 23
sites for which no variant reads were detected by MiSeq
amplicon sequencing (MiSeq VAF < 0.001) or in which
the same small fraction of variant reads was detected in
the proband amplicon as in one parent’s amplicon.

Mosaic detection power calibrated by sequencing depth
and estimated true frequency of mosaicism
To better characterize how sequencing data parameters
affect the detection of mosaic variants, we considered
whether estimates of mosaic variant frequency were sen-
sitive to whole exome sequencing depth by calibrating
estimates of mosaic detection power using properties of
the sequence data (average read depth, prior mosaic
fraction, and the value of our overdispersion parameter
θ) (Additional file 2: Figure S4; Supplemental Methods).
Our projected mosaic detection power curves demon-
strated more than a doubling of power to detect mosaic
variants with VAF 0.2 as sequencing depth increases
from 40× to 80× (Fig. 2c). Projected mosaic detection
power curves for less stringent mosaic cutoffs showed
similar increases of power with increasing sequencing
depth (Additional file 2: Figure S6).
Next, to estimate the “true” frequency of mosaicism

per blood DNA exome, independent of average coverage
detection power constraints, we estimated the “true”
mosaic count in a VAF range by multiplying the number
of mosaics by the inverse of the detection power for
each VAF bin. Applying this method to the 184 of 309
high-confidence EM-mosaic variants with VAF > 0.1, we
estimated the adjusted number of mosaics with VAF >

0.1 to be 361 (Additional file 2: Figure S6A, below).
Thus, the true frequency of coding mosaics in the blood
(0.4 > VAF > 0.1) is 0.14 variants per individual, repre-
senting a non-negligible class of mutations with poten-
tial contribution to genetic risk for congenital heart
disease. The estimated true mosaic frequency does not
change significantly when using less stringent mosaic
definitions (Additional file 2: Figure S6, below). In sum,
after excluding sites failing MiSeq confirmation, we
identified 332 blood mosaic variants in 2530 CHD pro-
bands (Table 1) or 0.13 mosaic variants per subject with
a mean VAF of 0.13 ± 0.06. We do not anticipate that
doubling the sequencing depth would significantly
change this estimate—our estimated true frequency of
mosaicism above 10% allele fraction (assuming full de-
tection power) in the coding region was 0.14 per subject.

Mosaic variants occurred most frequently at CpG
sequences
The nucleotides surrounding candidate mosaic variant
mutations were examined to identify whether any di-
nucleotide sequences were more likely to be associated
with mosaicism. Previous studies demonstrated a strong
preference for de novo C>T mutations at CpG dinucleo-
tides compared to other dinucleotides due to the spon-
taneous deamination of 5-methylcytosine [22, 24]. We
asked whether the germline de novo variants observed
in CHD probands and the 332 mosaic sites demon-
strated a similar sequence preference (Fig. 3; Table 1;
Additional file 1: Table S3; Additional file 1: Table S4).
Of the 2662 germline de novo mutations identified in
2530 CHD probands, 979 variants (37% of all variants)
involved mutation of the cytosine of a CpG dinucleotide
(Fig. 3a). By contrast, 99 (29% of all mosaic SNVs) of
332 mosaic SNVs altered the cytosine of a CpG di-
nucleotide; significantly more than expected by chance
(2.2× above expectation; P = 2 × 10− 15). These observa-
tions suggest that somatic de novo mutations were 1.4-
fold less likely to involve a CpG dinucleotide than germ-
line de novo mutations in CHD probands (P = 0.01;
Fig. 3b). Even ignoring the high CpG mutation fre-
quency, cytosines and guanines were ~ 2-fold more likely
to be mutated than adenines or thymidines both for
germline mutations and for mosaic variants. Surpris-
ingly, somatic mutations of A>C/T>G transversions in
ApC dinucleotides were ~ 2-fold greater than the corre-
sponding germline mutations (P = 5 × 10− 8; Fig. 3b). Di-
nucleotide frequencies for mosaic variants detected in
cardiac tissue DNA are shown in Fig. 3c.

Detection of mosaic mutations in CHD tissues
In addition to exome data from blood or saliva samples,
a subset of participants also had exome sequencing data
available from cardiac tissue. Using EM-mosaic and
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MosaicHunter, we analyzed exome sequences from 70
cardiac tissues derived from 66 subjects with CHD
(Additional file 1: Table S6) and paired blood samples.
Among 57 de novo variants (allele fraction approxi-
mately 0.5) that were previously identified in blood-
derived DNA, 54 were also found in CHD tissues. Of the
3 de novo variants not present in cardiac tissue, 1 was
outside of the tissue WES capture region and 2 occurred
in a single proband (Table 2). In addition, 23 distinct
candidate mosaic variants were detected by EM-mosaic

(n = 13), MosaicHunter (n = 6), or by both algorithms
(n = 4). We also detected 5 mosaic candidates in blood
WES data that had non-zero read depth in the cardiac
tissue WES data corresponding to the same individual
but below our minimum alternate allele read depth re-
quirement. All 28 candidates identified in either blood
or cardiac tissue were tested via MiSeq amplicon se-
quencing using both blood and cardiac tissue DNA; 15
of 28 (57%) unique candidate mosaics were confirmed
(Table 2; Additional file 1: Table S7), including a CCNC

Fig. 3 Mutation spectrum of detected germline and mosaic variants. Rates of specific mutations were compared in a germline, b blood mosaic,
and c cardiac tissue mosaic variants. Transitions predominated in both variant sets

Table 2 Mosaics detected in individuals with matched cardiovascular tissue and blood

ID Gene Variant
class

Pipeline CHD tissue Blood WES VAF

Location WES AD WES VAF MiSeq VAF WES AD WES VAF MiSeq VAF

1-00543 CTCFL Bmis EM-mosaic AO 138,36 0.21 0.32 29,8 0.22 0.19

1-00984 ZNF16 syn EM-mosaic LV 262,1 0.00 0.01 100,7 0.07 0.07

1-01282 GABRA6 Dmis MosaicHunter RV 104,1 0.01 0.01 55,12 0.18 0.18

1-01684 CCNC Bmis Both AoValve, RV 36,7 0.16 0.17, 0.19 224,40 0.15 0.14

1-02672 TOR1A syn Both AtrSpt 159,10 0.06 0.10 29,6 0.17 0.19

1-03512 RFX3 LoF MosaicHunter RV 156,15 0.09 0.08 39,0 0.00 0.03

1-04652 PCDH10 syn Both AtrSpt 154,19 0.11 0.14 15,1 0.06 0.10

1-07004 ANK2 Bmis MosaicHunter SubAoMembr 226,13 0.05 0.04 30,0 0.00 0.00

1-07004 MYH14 Bmis Both SubAoMembr 124,22 0.15 0.27 33,0 0.00 0.00

1-07004 NRG3 Bmis EM-mosaic SubAoMembr 152,30 0.16 0.24 43,0 0.00 0.00

1-07004 NUDT21 Bmis Both SubAoMembr 137,22 0.14 0.14 74,0 0.00 0.02

1-07004 TET3 Dmis MosaicHunter SubAoMembr 131,1 0.01 0.03 81,16 0.16 0.27

1-07299 RRS1 syn Both RV, UNK 160,25 0.14 0.25 22,2 0.08 0.14

1-09869 PIK3C2G LoF MosaicHunter LV 126,9 0.07 0.10 31,0 0.00 0.00

1-11800 TMEM45A Bmis MosaicHunter RV 213,0 0.00 0.00 32,7 0.18 0.06

Characteristics of mosaic variants predicted for individuals with blood and cardiovascular tissue WES data available. Among 15 mosaics, 5 were detected via
analysis of blood WES, 8 were detected from cardiovascular tissue WES, and 2 were detected by both approaches. Six of 7 (86%) mosaics detected from analysis
of blood were present in both DNA sources with MiSeq VAF ≥ 0.01. Two additional variants previously identified as de novo germline variants in blood WES were
absent from CHD tissue WES. Minimum 1023 MiSeq reads used to determine VAF. Note: multiple cardiovascular tissue samples were available for participants 1-
01684 and 1-07299. Abbreviations: AD allelic depth (reference, alternate), AO aorta, AtrSpt atrial septum, Bmis benign missense, Dmis deleterious missense, LOF
loss of function variant, LV left ventricle, RV right ventricle, VAF variant allele fraction
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variant that was identified in two different cardiac tissues
from proband 1-01684 and an RRS1 variant identified in
two different cardiac tissues in proband 1-07299. Ten of
15 (66%) confirmed mosaic variants were detected in
blood and cardiac tissues (VAF > 0.01), four were found
only in cardiac tissue, and one was found only in blood.
Of the 7 mosaics detected by blood WES analysis, 4
were confirmed in the corresponding cardiac tissue sam-
ple. Remarkably, five confirmed cardiac tissue mosaic
variants occurred in one proband (1-07004), one of
which was also present in blood DNA.
These analyses indicate an observed frequency of cod-

ing mosaics in the cardiac tissues of 0.23 per individual
(15 confirmed mosaics among 66 probands). In order to
estimate the true frequency of mosaicism, we applied
the same power-based adjustment approach to the 12 of
15 mosaics with allele fraction greater than 10%. Consid-
ering the increased sequencing depth (150×) in our car-
diac tissue samples, our estimated true frequency of
coding mosaics with VAF > 0.1 is 0.21 per individual (14
mosaics among 66 probands; 2 confirmed mosaics with
VAF > 0.1 + 2 additional mosaics assuming full detection
power). Finally, comparing the allele fraction of mosaics
detected in probands with both blood and cardiac tissue
available, we found that mosaics with higher VAF in
blood were more likely to be found in both tissues
(Mann-Whitney U test P = 0.019), presumably indicating
that the mutation occurred earlier in lineage develop-
ment (Fig. 4; Additional file 1: Table S7).

Blood and cardiac tissue mosaics likely to contribute to CHD
Our prior genetic studies of CHD studies showed that
damaging de novo variants typically occurred in genes
highly expressed in the top quartile of the developing
E9.5 mouse heart (HHE) [34, 86] or contributed to CHD
in mouse models [42]. Among the 347 mosaic variants
identified from blood or cardiac tissue analyses that were
not false by MiSeq, 65 altered these HHE and/or mouse
CHD genes (n = 4558; Additional file 1: Table S8).
RefSeq functional annotation predicted 52 variants as
likely damaging variants (LOF, Dmis), and 46 as likely
benign, missense (Additional file 1: Table S8; Add-
itional file 1: Table S9). In total, we observed potentially
CHD-causing mosaic mutations in 25 participants,
representing 1% of the 2530 total participants in our CHD
cohort. Among these 25 mosaics, we confirmed 22/22
(100%) candidates tested via MiSeq. Notably, multiple
likely damaging mosaic variants altered genes (ISL1,
SETD2, NOVA2, SMAD9, LZTR1, KCTD10, KCTD20,
FZD5, and QKI) involved in key developmental pathways,
which may account for the extracardiac phenotypes ob-
served in these patients (Table 3; Additional file 1: Table
S10). There was no difference in the proportion of individ-
uals with extracardiac features among those with dam-
aging mosaic variants compared to the overall cohort (11/
25 vs 909/2521, P = 0.68), and there was a wide range of
CHD subtypes. Among genes harboring multiple mosaic
variants, none carried more than one mosaic mutation
predicted to be damaging (Additional file 1: Table S13).
Eight genes were found to harbor one damaging (LoF or
Dmis) mosaic mutations and at least one damaging germ-
line variant (Additional file 1: Table S14). Three of the
eight genes have more than one damaging germline vari-
ants. Among these, FBN1 and LZTR1 are well-known risk
genes implicated with syndromes that include heart de-
fects. WASHC5 has been implicated with Ritscher-
Schinzel syndrome under a recessive model in an isolated
community [18], with CHD as one of the main clinical
features. In our cohort, having two damaging germline
and one mosaic mutations supports WASHC5 to be a can-
didate CHD gene. No CNVs were detected in these sub-
jects, with the exception of 1-00192 (duplication at chr15:
22062306-23062355; non-overlapping with the GLYR1
mosaic).
If mosaic variants were unrelated to CHD, we would

expect similar allelic fractions between mosaics with var-
iants predicted as likely damaging or likely benign. How-
ever, we found that the allele fraction of likely damaging
variants in CHD-related genes (union of HHE and
mouse CHD genes) was significantly higher (Mann-
Whitney U test P = 0.001; Fig. 5a). Moreover, among
mosaic variants in non-CHD-related genes, we found no
significant difference in allele fraction (P = 0.985; Fig. 5b).
We repeated these analyses using (i) less stringent

Fig. 4 Validated mosaics detected in probands with matched blood
and cardiovascular tissue samples available. Validation VAF from
blood compared to validation VAF from cardiovascular tissue
demonstrated tissue-specific mosaicism (red) as well as shared
mosaicism (blue). Predicted effect of mosaic variants corresponds to
marker shape
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posterior odds cutoffs of 2 and 5 (Figure S8) and (ii)
after excluding the 9 mosaics detected from saliva DNA
(Additional file 2: Figure S14) and found the same result.
Together, these data support our conclusion that at least
some likely damaging mosaic variants identified here
contribute to CHD. These results were determined inde-
pendently of MiSeq validation results.

Discussion
Distinguishing mosaic mutations from constitutional
mutations has both clinical management and reproduct-
ive implications for proband and parents. Individuals
with mosaic mutations are generally clinically less se-
verely affected for conditions that affect multiple parts
of the body [8, 15, 19, 30, 82, 84]. Mutations that occur
post-zygotically should have no recurrence risk for the
parents and could have a recurrence risk of less than
50% for the proband depending on gonadal involvement.
This study is among the first investigations of the role of
post-zygotic mosaic mutations in CHD. We developed a
new computational method to robustly detect mosaic
single-nucleotide variants from blood WES data at
standard read depth. Contrary to existing methods, EM-
mosaic estimates prior mosaic fraction directly from the
data instead of using a fixed parameter, which improves
our ability to distinguish high allele fraction mosaic mu-
tations from germline mutations. Additionally, our
method also uses a stringent filtering approach to re-
move false positive calls, minimizing their impact on
downstream mosaic detection and improving model spe-
cificity. Applying this method to a cohort of 2530 CHD
patients, EM-mosaic detected 309 high-confidence mo-
saics (with a confirmation frequency of 88% in a subset
of variants assessed) or 0.12 variants per proband. Se-
quencing of cardiac tissue to greater depth identified an

additional 8 mosaic variants that had not been detected
in blood WES, 6 of which are present in cardiac tissue
but not blood. We found more variants per proband in
cardiac tissue DNA (0.23 variants per proband) than in
blood DNA (0.13 variants per proband). While the in-
creased numbers of mosaic variants in cardiac tissue
DNA vs blood DNA may reflect technical (capture
method) differences such as sequencing read depth or
coverage uniformity of cardiac tissue DNA vs blood
DNA, it is possible that somatic variation occurs more
frequently in cardiac tissue of CHD probands than in
their blood. Ten of 15 mosaic variants among those
identified in our 66 CHD proband cardiac tissues had
higher VAF in cardiac tissue than in blood (Table 2) and
5 of 15 variants among these individuals had a higher
VAF in blood than in tissue.
In total, we observed potentially CHD-causing mosaic

mutations in 25 participants, representing 1% of the
2530 total participants in our CHD cohort. Among these
25 mosaics, we confirmed 22/22 (100%) candidates
tested. We found that in CHD-related genes, likely dam-
aging mosaic mutations have significantly greater alter-
native allele fraction than likely benign mosaics,
suggesting that some of these variants contribute to
CHD. Comparison of blood and cardiovascular tissues
demonstrated tissue-specific mosaic variants, though
those variants with a higher VAF were more likely to be
shared between tissues. Due to limitations of conven-
tional clinical interpretation for both mosaic and consti-
tutional CHD variants (Supplemental Methods), we
cannot know with complete certainty which among
these 25 variants is pathogenic and instead propose that,
among our detected mosaics, the 23 detected from blood
WES data provide an estimate of the disease-causing
mosaics detectable in blood with standard exome

Fig. 5 Damaging mosaics in CHD-related genes have higher variant allele fraction than likely benign mosaics. a Among the 76 mosaics in CHD-
related genes, likely damaging variants have a higher VAF than likely benign (Mann-Whitney U p = 0.001). b Among the 233 mosaics in other
(non-CHD-related) genes, there is no difference in VAF based on predicted effect (p = 0.985)
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sequencing read depth. Nine of these variants affect
genes known to have a role in cardiac development:
ISL1, SETD2, NOVA2, QKI, SMAD9, LZTR1, KCTD10,
KCTD20, and FZD5.
The mosaic LoF mutation in ISL1 is likely to be the

cause of CHD in participant 1-05095. ISL1 is a transcrip-
tion factor essential to normal cardiac development that
regulates expression of NKX, GATA, and TBX family
genes [9, 28] and controls secondary heart field differen-
tiation and atrial septation [5, 9]. ISL1 deficiency has
been shown to lead to severe CHD in mice [6, 28]. Par-
ticipant 1-05095 has an isolated atrial septal defect con-
sistent with a secondary heart field defect phenotype
[75] and has no other previously reported damaging
germline variants in CHD-related genes.
Damaging germline de novo variants in CHD subjects

are enriched in genes related to chromatin modification
and RNA processing [34, 42]. Three genes with dam-
aging mosaic variants discovered here have related func-
tions. SETD2 is a histone methyltransferase required for
embryonic vascular remodeling [36]; it is both sensitive
to haploinsufficiency and highly expressed in the heart
during development. NOVA2 is a key alternative-splicing
regulator involved in angiogenesis that has been shown
to disrupt vascular lumen formation when depleted [27].
QKI encodes an RNA-binding protein that regulates
splicing, RNA export from the nucleus, protein transla-
tion, and RNA stability [48]. QKI is also highly expressed
in the heart during development and has been shown to
cause CHD and other blood vessel defects in mice when
dysregulated [62].
Other damaging mosaic variants affect processes

known to be relevant to CHD. SMAD9 is involved in the
TGF-beta signaling pathway. TGF-beta signaling plays a
critical role in cardiac development and cardiovascular
physiology, leading to pulmonary arterial hypertension
and cardiac abnormalities in mice when dysregulated
[17, 74]. LZTR1 encodes a member of the BTB-Kelch
superfamily that is highly expressed in the heart during
development and has been associated with Noonan [26,
85] and DiGeorge Syndromes [46], both of which are
characterized by CHD. The individual with the LZTR1
damaging mosaic variant did have pulmonary lymphan-
giectasias that are a less common feature of Noonan
syndrome, but did not have other clinical findings com-
mon to Noonan syndrome. KCTD10 binds to and re-
presses the transcriptional activity of TBX5 (T-box
transcription factor), which plays a dose-dependent role
in the formation of cardiac chambers [80]. KCTD10 is
highly expressed in the heart during development and
has been shown to produce CHD in mice when dysregu-
lated [67]. KCTD20 is a positive regulator of Akt [61]
also highly expressed in the heart during development.
FZD5 is haploinsufficient and encodes a transmembrane

receptor involved in Wnt, mTOR, and Hippo signaling
pathways and has been shown to play a role in cardiac
development [10]. The individual with a damaging mo-
saic variants in FBN1, which is associated with several
genetic syndromes, had features consistent with Weill-
Marchesani syndrome such as brachycephaly, mitral
valve stenosis, short stature, and midface hypoplasia.
Finally, two mosaic variants found in cardiac tissue,

genes encoding RFX3 and PIK3C2G, may be disease-
relevant. PIK3C2G is a signaling kinase involved in cell
proliferation, survival, and migration, as well as onco-
genic transformation and protein trafficking (OMIM:
609001). The effects of PIK3C2G haploinsufficiency dur-
ing cardiac development have not been characterized.
RFX3 is a highly constrained ciliogenic transcription fac-
tor that leads to pronounced laterality defects [65], and
disruption of RFX3 leads to congenital heart malforma-
tions in mice (MGI: 5560494) [72]. Notably, the RFX3
LoF variant has a fourfold higher VAF in cardiac tissue
than in blood.
Three capture platforms were used in this study. The

main technical difference between capture platforms is
depth of coverage. We do not believe this to confound
the main results of this study. Regarding (1) the esti-
mated rate of mosaic mutations in coding regions—we
estimated the rate based on observed number of mosaic
mutations normalized by the detection power of such
mutations in individual samples. The sequencing depth
was a main factor considered in our calculation of detec-
tion power. Regarding (2) the genetic contribution of
mosaic mutations to CHD—we concluded that mosaic
mutations contribute to CHD based on the fact that the
damaging mosaic mutations have overall greater allele
fraction than benign mosaic mutations in plausible CHD
genes. Since capture method and sequencing depth are
independent of the type of variants in each gene, we do
not expect capture kit to confound this analysis.
Several investigators, who studied cancer and diseases

with cutaneous manifestations, proposed that the VAF
correlates with time of mutation acquisition and disease
burden [3, 31, 71]. In this study, we used VAF as a proxy
for cellular percentage and mutational timing, with in-
creasing VAF corresponding to events occurring earlier
in development. Thus, we assume that CHD-associated
mosaic events identified in blood-derived DNA occurred
during or shortly after the gastrulation process (third
week of development) [60] in the mesodermal progeni-
tor cells that differentiate into both heart precursor cells
(cardiogenic mesoderm) and blood precursor cells
(hemangioblasts). We found that in CHD-relevant genes,
mosaic sites predicted to be damaging tended to have
higher VAF than sites predicted to be likely benign, con-
sistent with the hypothesis that these mutations arose
early in fetal development and play significant roles in
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CHD. However, additional functional studies are neces-
sary to fully assess causality.
We recognize that while our method is able to detect

a large fraction of mosaic variants in blood, our cali-
brated estimates for the true number of mosaics suggest
there are a non-negligible number of additional muta-
tions that were not identified by our method. At our
current average sequencing depth of 60×, we have lim-
ited sensitivity in the low VAF (< 0.05) range. To reliably
identify these low allelic fraction sites, ultra-deep se-
quencing will be critical to distinguishing true variants
from noise. At 500×, we estimate detection sensitivity
for mosaic events at VAF 0.05 to be above 80%. Add-
itionally, copy number variations (CNVs) are well docu-
mented as contributors to CHD [87] and somatic CNVs
comprise a class of potentially impactful mosaic events.
However, neither of the methods presented are designed
to detect mosaic CNVs since the computational problem
of detecting mosaic CNVs is very different to detecting mo-
saic SNV/indels. We also recognize age-related clonal
hematopoiesis [25, 40] as a potential confounding factor in
somatic mutation detection; however, our study cohort in-
cludes mostly pediatric cases and we did not observe mo-
saic mutations in genes related to clonal expansion (e.g.,
ASXL1, DNMT3A, TET2, JAK2) nor did we observe a rela-
tionship between proband age and mosaic rate (Add-
itional file 2: Figure S9), suggesting minimal impact from
this process. We also did not find evidence of a relationship
between parental age (paternal or maternal) and proband
mosaicism (Additional file 1: Table S16; Additional file 2:
Figure S10; Additional file 2: Figure S11).
In this manuscript, we presented the results of our

case-only analysis due to the lack of appropriate con-
trols. To allow direct comparison, controls would need
to be matched on the basis of age, sex, sequencing
depth, and DNA source (blood). While at the time of
this study such controls were not available, recent efforts
to promote data sharing and availability may yield an ap-
propriate set of controls in the near future and enable
estimating the contribution of mosaicism to CHD with
higher resolution and certainty.

Conclusions
This study is among the first investigations of the role of
post-zygotic mosaic mutations in CHD. Despite limita-
tions in sequencing depth and sample type, EM-mosaic
was able to detect 309 high-confidence mosaics from
blood, with resequencing confirmation in 88% of cases
assessed, and 17 candidates in cardiac tissue (41% con-
firmation rate). Using MosaicHunter, an additional 64
candidate mosaic sites were identified, of which 23/46
(50%) candidates from blood DNA and 4/6 (67%) from
CHD tissue DNA validated. We observed mosaic fre-
quencies of 0.13/individual in blood and 0.23/individual

in cardiac tissue. Assuming full detection power, we esti-
mate the true frequency of mosaic variants in the coding
region above 10% mosaicism to be 0.14/individual in
blood and 0.26/individual in cardiac tissue. In total, we
observed potentially CHD-causing mosaic mutations in
25 participants, representing 1% of our CHD cohort, and
propose that these 25 cases provide an estimate of the
disease-causing mosaics detectable in blood with stand-
ard exome sequencing read depth. Additionally, we
found that in CHD-related genes, likely damaging mo-
saics have significantly greater alternative allele fraction
than likely benign mosaics, suggesting that many of
these variants cause CHD and occurred early in develop-
ment. In the subset of our cohort for which cardiovascu-
lar tissue samples were available, we show that mosaics
detected in blood can also be found in the disease-
relevant tissue and that, while the VAF for mosaic vari-
ants often differed between blood and cardiovascular tis-
sue DNA, variants with higher VAF were more likely to
be shared between tissues. Given current limitations in
sequencing depth and on the availability of relevant tis-
sues, particularly for conditions impacting internal or-
gans like the heart, the full extent of the role of
mosaicism in many diseases remains to be explored.
However, as datasets containing larger numbers of blood
and other tissue samples sequenced at higher depths be-
come increasingly available, we will be able to more fully
characterize the biological processes underlying post-
zygotic mutation and, by extension, the contribution of
mosaicism to disease using the methods presented here.
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