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Abstract: Precious metals, in particular Pd, have a wide range of applications in industry. Due to
their scarcity, precious metals have to be recycled, preferably with green and energy-saving recycling
processes. In this article, palladium extraction from an aluminosilicate-supported catalyst, containing
about 2 wt% (weight%) of Pd (100% PdO), with supercritical CO2 (scCO2) assisted by complexing
polymers is described. Two polymers, p(FDA)SH homopolymer and p(FDA-co-DPPS) copolymer
(FDA: 1,1,2,2-tetrahydroperfluorodecyl acrylate; DPPS: 4-(diphenylphosphino)styrene), were tested
with regards to their ability to extract palladium. Both polymers showed relatively low extraction
conversions of approximately 18% and 30%, respectively. However, the addition of piperidine as
activator for p(FDA-co-DPPS) allowed for an increase in the extraction conversion of up to 60%.

Keywords: extraction; supercritical CO2; palladium recycling; polymers; sustainable chemistry; catalysts

1. Introduction

Platinum group metals, especially Pd, are extensively used in applications for catalysis,
not only in petrochemistry, but also in the fields of automotive and fine chemical synthe-
sis [1–3]. The annual demand is constantly increasing, with the demand for Pd up from
242 t in 2010, to over 305 t in 2018 [4]. The scarcity of these metals poses a risk for European
countries, which only have very limited primary platinum group resources [1,5,6].

Thus, recycling of precious metals is of high interest. The state-of-the-art recycling
processes are either pyro-metallurgical or hydro-metallurgical treatments. The pyro-
metallurgical treatment consumes a large amount of energy, due to the high temperatures
used, while the hydro-metallurgical treatment has the disadvantage of high wastewater
streams, due to the large amounts of leaching solvents [7–9]. Accordingly, new alternative
recycling methods for precious metals are needed, which are greener, produce smaller
amounts of waste, and operate at lower temperatures (<<1450 ◦C) [9].

Most research focuses on the optimization of the leaching process. For instance, Ding
et al. leached Pd from spent catalysts with a hydrochloric acid leaching agent, containing
NaCl and FeCl3 [10]. By using optimized process conditions (leaching mixture composition,
80 ◦C and 90 min), a leaching efficiency of 99.5% was reached. Fontana et al. reported
a leaching process with aqua regia, followed by the separation of Pd from the leaching
solution by solvent extraction, and metal precipitation using NaBH4, achieving 83% Pd
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recovery [11]. Furthermore, Sarioglan et al. leached Pd completely from spent carbon-
supported Pd catalysts with an acid leaching solution consisting of HCl and H2O2 [12].

In contrast, Liu et al. presented a method for recycling Pd from waste printed circuit
boards (PCB) without a leaching procedure [13]. Through an initial supercritical water
oxidation (SCWO) (425 ◦C; ≥22.1 MPa) and a post-treatment of the SCWO residue with
diluted HCl, extraction-disturbing base metals such as Cu, as well as organic compounds,
could be removed. Using this procedure, the Pd concentration in the samples was enriched
many times. Afterwards, the Pd was extracted by supercritical CO2 (scCO2) with acetone
as co-solvent, and organic ligand combined with an I2-KI combination acting as Pd oxidizer
and complexing agent. An extraction of 93.7% of the Pd was achieved.

These recycling methods work, with good Pd recovery rates, but a significant quantity
of polluting and environmentally dangerous wastes is still produced [10–13], or high
temperatures are required (425 ◦C) [13]. Hence, further investigation for a green Pd
recycling process is necessary.

Supercritical CO2 is a highly available solvent with a tunable solvent power, depend-
ing on the applied temperature and pressure. It has a gas-like viscosity and high diffusivity.
It is non-toxic, non-flammable, and can be easily separated and recycled after extrac-
tion. With a supercritical point that can be achieved under mild conditions (TC = 31 ◦C,
pC = 7.38 MPa) [14–16], scCO2 is a suitable and attractive solvent for the extraction of Pd
under mild operating conditions, and with low waste.

Recently, our group published an article regarding the polymer-assisted extraction
of Pd in scCO2 from an aluminosilicate-supported catalyst (catalyst Cat D, 2 wt% Pd
in the form of PdO (100%)), as well as from pretreated versions of this catalyst [17]. In
one case, the catalyst was reduced by H2 before extraction (the reduction led to a catalyst
composition of Pd0 (79%), with a minor amount of PdO (21%)); in the other case, the catalyst
was reduced by H2, and afterwards oxidized with Cl2 (the oxidation led to a catalyst
composition of Na2PdCl4 (85%), with a minor amount of PdO (15%)). The complexing
polymers used were p(4VP-grad-FDA) and p(4VP-grad-FDA)SH (4VP: 4-vinyl pyridine,
FDA: 1,1,2,2-tetrahydroperfluorodecyl acrylate). While the extraction conversion of Pd
(the amount of Pd removed from the catalyst) without pretreatment was low (≤20%), it
was very promising in the case of the oxidized form of the catalyst, reaching up to 73%.
Nevertheless, as oxidizing with chlorine generates harmful waste streams, and is difficult to
scale-up, a high conversion method for the extraction of Pd from a non-pretreated catalyst
would be more advantageous.

The extraction of Pd from a non-pretreated, alumina-supported catalyst containing
61% Pd0 and 39% Pd(II) was previously studied by Li et al. [18], using scCO2-soluble
polymers containing 4-(diphenylphosphino)styrene (DPPS) complexing units. Up to 49%
of Pd was extracted from the support, but no details were provided regarding the selectivity
of the extraction towards the two oxidation states of Pd (Pd0 and Pd(II)), nor regarding the
nature of the Pd(II) species.

This study aims to improve the extraction conversion of Pd(II), in the form of PdO,
from a non-pretreated catalyst, in order to show that pretreatment of the catalyst (with
chlorine) is not required to achieve high extraction conversions through the use of different
combinations of polymers and additives, as well as a range of extraction conditions. In
this study, the extraction of Pd from a non-pretreated aluminosilicate-supported catalyst
(catalyst Cat D, 2 wt% Pd in the form of 100% PdO) in scCO2, assisted by complexing
polymers and additives is described. For the sake of simplicity, a pristine catalyst (Cat
D) was used to avoid complications possibly encountered in the case of a spent catalyst
(such as the presence of carbon residues). The extraction process was carried out at mild
reaction conditions (40 or 60 ◦C, 25 or 27 MPa) and had a low waste stream, as most of
the components (CO2, polymer, Pd, catalyst support) can be potentially recycled later on.
Herein, the potential of the scCO2 extraction procedure and the influence of the extraction
parameters on the extraction conversion and yield are investigated. Promising extraction
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conversions and yields would show that, combined with previous results [17,18], the scCO2
polymer-assisted extraction process can be applied to a wide range of materials.

2. Results and Discussion

In this article, extraction screening experiments were performed in a small extraction
cell (35 mL) to get a first impression of the extraction ability of the polymer/additive/Pd-
catalyst system. Then, in a larger extractor (250 mL), promising extractions were investi-
gated in more detail. In the extraction experiments, the extraction conversion, Xextraction,
refers to the amount of Pd extracted from the catalyst support, and extraction yield,
Yextraction, refers to the amount of extracted Pd recovered. The amount of Pd extracted
used to calculate Xextraction and Yextraction was determined by inductively coupled plasma
optical emission spectrometry (ICP-OES) in the different sample fractions, as detailed in
the materials and methods section and in the Supporting Information. The Pd-balance is
the overall mass balance of palladium in the extraction system. The calculations for the
Pd-balance are detailed in the materials and methods section.

2.1. Design of scCO2-Soluble Polymers Capable of Complexing with Pd

In this study, fluorinated polymers containing FDA monomer units were chosen as
assisting complexing polymers for their good solubility in scCO2, while being aware of the
harmful potential of this kind of fluorinated polymer. However, as the polymers are to be
recycled later on (as will be taken into account in the life cycle analysis, LCA), there should
be no exposure of the polymer to the environment. The first polymer was a homopolymer
of FDA with a thiol complexing group, p(FDA)SH. The second polymer was a copolymer
of FDA with DPPS, providing triphenylphosphine ligands for complexing with Pd (p(FDA-
co-DPPS)). The polymerization was carried out by a reversible addition-fragmentation
chain transfer (RAFT) technique, using a chain transfer agent (CTA) (cf. SI-Chapter 1).
The polymers serve as binding agents to bind to the Pd on the catalyst and carry the Pd
through the scCO2 medium, as the solubility of Pd in scCO2 alone is negligible or null.
Thus, polymers consisting of one type of scCO2-soluble group (FDA) and one or more
types of group capable of complexing with Pd (DPPS, -SH) were employed. This general
design is shown in Figure 1, with scCO2-soluble groups in blue, and the Pd complexing
groups in green.
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The two polymers used in this study are presented in Figure 2, with scCO2-soluble
FDA groups in blue, metal complexing groups in green (thiol group for p(FDA)SH and
triphenylphosphine groups for p(FDA-co-DPPS)), and protected thiol groups in red. The
p(FDA-co-DPPS) copolymer bears two different metal complexing groups, given that the
protected thiol group is activated by deprotection with an amine (aminolysis). This step
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was done in situ during the extraction using piperidine (Figure 2), giving two groups
capable of complexing with Pd (DPPS units and −SH end group).
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2.2. Pd Extraction from Catalyst Cat D with Only scCO2

Before using the polymers in extraction, the extraction ability of scCO2 alone was in-
vestigated. Control tests were performed in both experimental setups (60 min for screening
experiments and 90 min for detailed investigations), with and without piperidine (pip),
to determine the amount of precious metal extracted using only scCO2. The extraction
parameters are shown in Table 1, and the extraction results in Figure 3. Further information
can be obtained from the supporting information (cf. SI-Chapter 4.1).

For the screening experiment, the extraction of Pd from the pristine catalyst after
60 min (E1S-Control) using only scCO2 resulted in a low extraction conversion (where
extraction conversion, Xextraction, is the amount of Pd extracted from the catalyst support)
and extraction yield (where extraction yield, Yextraction, is the amount of extracted Pd
recovered), of 3% each. For the detailed investigation with a 90 min extraction time (E2-
Control), an extraction conversion of about 13% was achieved with a low extraction yield
of 2%. These low extraction conversions were expected, as there was no complexing agent
for the precious metal. The extraction yield of E2-Control being lower than the extraction
conversion was due to a loss of Pd during the Pd recovery process. As the Pd-balance was
incomplete, some Pd was possibly lost to the atmosphere during CO2 depressurization
and system flushing after extraction.

Table 1. Extraction parameters for control tests (ExS-Control: Screening experiments; Ex-Control: Detailed investigation
experiments).

Experiment
Number Polymer Activation

Reagent
Piperidine/Pd
Molar Ratio p/MPa T/◦C Extraction

Time/min
mCO2,flushing/g

E1S-Control - - - 25 40 60 145
E2-Control - - - 25 40 90 1500

E3S-Control - Piperidine 25.9 25 40 60 145
E4-Control - Piperidine 3.8 25 40 90 1500
E5-Control - Piperidine 12 25 40 90 600
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Piperidine was used as an in situ activation agent for the deprotection of the terminal
dithioester group of the polymers to give a terminal –SH group. Since the –NH group of
piperidine can potentially complex with Pd [19], additional control experiments with scCO2
and piperidine were performed at different piperidine/Pd ratios (E3S-Control, E4-Control,
E5-Control) and extraction times. For the screening experiment, results showed that with
60 min of extraction time, the addition of piperidine, at a molar piperidine/Pd ratio of 25.9,
increased the extraction conversion by up to 30% (E3S-Control). In the larger extractor
for the detailed investigations, the addition of piperidine at a molar piperidine/Pd ratio
of 3.8 and an extraction time of 90 min (E4-control) resulted in an extraction conversion
of 24%, while with a piperidine/Pd ratio of 12 (E5-Control), a slightly lower extraction
conversion of 19% was achieved. Thus, piperidine has a promoting effect, which is not fully
understood at this point, and would deserve further attention. Nevertheless, the extraction
conversions (<30%) were still too low for a scale-up and industrial application. Moreover,
the extraction yields were even lower (less than 12%), due to loss of Pd during recovery.

2.3. Pd Extraction from Catalyst Cat D with PPh3

The previous control experiments showed that for a good extraction of Pd in scCO2, an
extracting agent (polymer), containing complexing groups, is necessary to bind to the metal.
Taking into account the structure of p(FDA-co-DPPS), it can be easily identified that the
DPPS units mimic the triphenylphosphine ligand (PPh3), which is extensively used to form
Pd complexes [19,20]. Based on this assumption, the efficiency of the triphenylphosphine
molecule as an extracting agent in supercritical CO2 was tested (cf. Table 2, Figure 4 and SI-
Chapter 4.2). The extraction experiment E6S-PPh3 was performed in the presence of PPh3
alone for 60 min, without the use of other complexing or activating agents. This test showed
the low efficiency of the low molecular weight additive, PPh3, as an extracting agent, since
the extraction conversion only reached 17%. In addition, the extraction yield was low (8%),
due to the same reason as for the control tests (loss of Pd during depressurization and
flushing). This result was likely due to the low solubility of PPh3 in scCO2 [21], which
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would further decrease if Pd complexation occurred. Despite the low conversion, it was
an improvement compared to the control test E1S-Control (in scCO2 alone, 60 min). This
indicates that the presence of the complexing agent in scCO2 increases the extraction of Pd
from the aluminosilicate support, simultaneously confirming the complexing ability of the
PPh3 group for Pd species.

Table 2. Extraction parameters for PPh3 extraction tests (ExS-PPh3: Screening experiments).

Experiment
Number Polymer Activation

Reagent
PPh3/Pd

Molar Ratio p/MPa T/◦C Extraction
Time/min

mCO2,flushing/g

E6S-PPh3 - PPh3 10.8 25 40 60 145
E7S-PPh3 - PPh3/Piperidine 10.3 25 40 60 145
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As the p(FDA-co-DPPS) extraction experiments involve the in situ activation of the
thiol group by piperidine, the addition of both piperidine and PPh3 in the scCO2 extraction
was tested to see if there were any synergic extraction effects between the two complexing
groups (E7S-PPh3). The results showed a small increase in the extraction conversion, of
up to 24% (7% higher than E6S-PPh3), while the extraction yield remained nearly constant
(10% instead of 8%). However, the amount of extracted palladium and recovered palladium
using this combination (E7S-PPh3) was actually slightly lower than that measured when
piperidine was used alone (E3S-Control) (X: 6% lower; Y: 2% lower), meaning no synergy,
and even possibly an unfavorable interaction between the two systems on a molecular level.

2.4. Pd Extraction from Catalyst Cat D with Polymer p(FDA)SH

After the initial screening of the effect of only scCO2, and that of molecular additives
in Pd extraction, polymer-assisted extraction was investigated. The first polymer used
for this investigation was p(FDA)SH (cf. Figure 2; Table 3; Figure 5; SI-Chapter 4.3). This
fluorinated homopolymer is highly soluble in scCO2, and contains a thiol end-group, which
is a well-known ligand for transition metals, and was expected to be able to complex with
Pd(II) species [19,22]. The thiol functionality (-SH) was activated by ex situ aminolysis of
the protected polymer in order to have at least one potential complexing group, as the
fluorinated units are not able to interact with Pd. The conditions used for the aminolysis of
the polymer (N2 atmosphere in the presence of PPh3 as reducing agent) allowed limiting
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the disulfide formation during synthesis [23,24]. The thiol group of the resulting p(FDA)SH
could potentially couple to give disulfide bonds, but as the polymer is solubilized in scCO2
in a predominantly CO2 environment (very little oxygen is present) during extraction, the
formation of disulfide bonds is unlikely [25]. During storage of the polymer, disulfide
formation is possible due to exposure to oxygen [26], but should be limited due to the
semi-crystalline nature of the p(FDA) [27], which drastically reduces the mobility of the
polymer chains in the solid state [28]. This polymer was used in a molar ratio of 10.3/1
with respect to the PdO present on the catalyst, meaning that a large, ten-fold excess of
complexing units was used to perform the metal extraction. The polymer excess of 10.3
was chosen to ensure that a low extraction conversion would not be due to an insufficient
number of complexing groups, but to a low polymer complexing ability.

Table 3. Extraction parameters for extractions performed with polymer p(FDA)SH (ExS-p(FDA)SH: Screening experiments).

Experiment
Number Polymer Activation

Reagent

Complexing
Group (CG)/Pd

Molar Ratio
p/MPa T/◦C Extraction

Time/min
mCO2,flushing/g

E8S-p(FDA)SH p(FDA)11SH - 10.3 25 40 60 145
E9S-p(FDA)SH p(FDA)11SH Piperidine 10.2 25 40 60 145
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The extraction assisted by the thiol-terminated, fluorinated polymer (E8S-p(FDA)SH)
showed limited extraction ability, achieving only 18% extraction conversion. The low
efficiency can be explained by a strong interaction of the PdO with the support, as well
as by the limited activity of organic ligands towards PdO. The extraction yield was also
very low (3%), due to an important loss of Pd (Pd-balance of 85%). A second test was
performed using the same polymer, but with the addition of piperidine to verify if this
secondary amine is able to improve the solubility of the precious metal in the presence of
the fluorinated polymer. The extraction experiment with the combination of p(FDA)SH and
piperidine (E9S-p(FDA)SH) did not show any improvement in the extraction conversion
(18%), showing an absence of synergic effect between p(FDA)SH and piperidine.
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2.5. Pd Extraction from Catalyst Cat D with Polymer p(FDA-co-DPPS)

Extraction tests on the aluminosilicate-supported catalyst Cat D were performed
with the polymer p(FDA-co-DPPS) (cf. Figure 2). Triphenylphosphine derivatives are
well-known for their ability to form complexes with transition metals, especially with
Pd [19,20], and DPPS was therefore targeted for use in the extraction experiments. All
tests were performed at 25 MPa and 40 ◦C, with and without activation of the protected
thiol group, with 60 min and 90 min of extraction time. The activation was done in situ
by a simple addition of piperidine into the extractor, in excess relative to the polymer
chains (2.5 to 5-fold molar excess of piperidine relative to the polymer chains depending
on the extraction conditions). The extraction parameters and results are shown in Table 4
and Figure 6. Further information can be obtained from the supporting information (cf.
SI-Chapter 4.4).

Table 4. Extraction parameters for extractions performed with polymer p(FDA-co-DPPS) (ExS-DPPS: Screening experiments;
Ex-DPPS: Detailed investigation experiments).

Experiment
Number Polymer Activation

Reagent

Complexing
Group (CG)/Pd

Molar Ratio
p/MPa T/◦C Extraction

Time/min
mCO2,flushing/g

E10S-DPPS p(FDA18-co-DPPS7) - 14.6 25 40 60 145
E11S-DPPS p(FDA18-co-DPPS7) Piperidine 17.2 25 40 60 145
E12-DPPS p(FDA18-co-DPPS7) Piperidine 12 25 40 90 1500
E13-DPPS p(FDA18-co-DPPS7) Piperidine 12 25 40 90 -
E14-DPPS p(FDA26-co-DPPS10) Piperidine 12 25 40 90 250
E15-DPPS p(FDA26-co-DPPS10) Piperidine 12 25 40 90 400Molecules 2021, 26, x FOR PEER REVIEW 9 of 20 
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An initial screening extraction experiment with a 60 min extraction time was per-
formed with p(FDA-co-DPPS), with a complexing group (CG)/Pd ratio of 14 (large excess
of complexing groups) (E10S-DPPS). This extraction gave an interesting result, achieving
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an extraction of 32% of the precious metal from the support, although the extraction yield
was again low (8%), due to Pd loss during depressurization (Pd-balance = 76%). The next
step was to try to improve the extraction conversion by activating the protected thiol group
of the polymer (the dithiobenzoate end group) via aminolysis, as the thiol group is a well-
known ligand for Pd complexation [19,22]. Although deprotection can be performed using
several methods, piperidine, a secondary amine, was selected as the aminolyzing agent.
This activation process was performed directly in situ in scCO2, meaning that piperidine
was added directly to the extractor at the beginning of the extraction experiments. This
procedure is favored in order to avoid possible disulfide formation (oxidation of thiols).
Furthermore, in situ activation was preferred to ex situ aminolysis in order to avoid a
synthetic step, and thus optimizing the method for eventual scale-up applications. With
the addition of piperidine, while keeping the other extraction parameters constant, the
extraction process showed a remarkable improvement, allowing for the removal of 64%
of the Pd from the support (E11S-DPPS). This is an increase of over 30% of extracted Pd,
when compared to the same experiment without piperidine addition (E10S-DPPS). Nev-
ertheless, the extraction yield was still low (10%) (E11S-DPPS). This promising extraction
system was further investigated in more detail in the larger extractor. Four extractions
were carried out (E12-DPPS–E15-DPPS) with a 90 min extraction time and a CG/Pd ratio
of 12 (large excess of complexing groups), to see if the positive result of E11S-DPPS could
also be confirmed in the larger extractor. Extraction conversions between 52 and 62% were
achieved, confirming the good Pd complexing ability of p(FDA-co-DPPS) in combination
with piperidine. This indicates that a positive interaction between the polymer, piperidine,
and the catalyst exists, which merits closer investigation. This interaction however, was
not present when p(FDA)SH was used, which suggests an interaction specific to the DPPS
groups. It is important to note that under the experimental conditions, disulfide formation
by oxidative coupling of the thiol group is unlikely. Indeed, the DPPS groups may act as a
reducing agent to limit disulfide formation, as triphenylphosphine is used for the reductive
cleavage of disulfide bonds [23,24]. It has also been shown that polymer disulfide coupling
decreases with increasing polymer molecular weight [28]. Additionally, as the extractions
were carried out in CO2 atmosphere, there should not be enough oxygen present in the
system to favor disulfide formation. However, the in situ formation of thiolactone cannot
be completely discarded [25,28,29].

In experiments E12-DPPS–E15-DPPS, two different batches of p(FDA-co-DPPS) poly-
mers were investigated, differing in the number of FDA and DPPS monomer units per
molecule. Reproducibility of the Pd extractions was confirmed across different polymer
batches at a constant complexing group/Pd ratio.

The extraction yields of experiments E11S-DPPS and E12-DPPS–E15-DPPS were low
(10 to 31%), as a large amount of Pd was lost during the depressurization and flushing of
the cell (Pd-balance in the range of 46 to 74%). Nevertheless, in E13-DPPS to E15-DPPS, ap-
proximately 50% of the extracted Pd was recovered. To increase the Pd recovery (extraction
yield), a cascade of separators could be used to ensure a slow stepwise depressurization of
the CO2-Pd-polymer mixture to atmospheric pressure, minimizing this loss of Pd. During
depressurization, the transition of CO2 from the supercritical domain to gas state occurs,
separating the Pd-polymer mixture from CO2, as the polymer is insoluble in gaseous CO2.

To have a better understanding of the influence of the CG/Pd ratio, as well as the
influence of the extraction time, extraction experiments with p(FDA-co-DPPS) were per-
formed at much higher (42) and lower (5) CG/Pd ratios, and at a much longer extraction
time of 180 min. Extraction tests were also performed at 60 ◦C instead of 40 ◦C. The
extraction parameters and results are shown in Table 5, Figures 7 and 8 (further information
in SI-Chapter 4.4).

As can be observed in experiments E16-DPPS and E17-DPPS, a large increase of
the CG/Pd ratio did not improve the extraction, but rather led to a poorer extraction
performance as extraction conversions of only 35% were obtained, much lower than in
the case of CG/Pd = 12 (approximately 60%). This might have been due to intermolecular
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polymer interaction as a result of the higher polymer concentration, making it more
difficult for the polymers to interact with the catalyst, due to more competition between
the polymers, and thus inhibiting complexation.

A decrease of the CG/Pd ratio to 5 (E18-DPPS) resulted in a lower extraction con-
version as well, likely due to an insufficient amount of polymers for the extraction of the
Pd nanoparticles.

Table 5. Extraction parameters for extractions performed with polymer p(FDA-co-DPPS) at different CG/Pd ratios,
extraction times and temperatures (Ex-DPPS: Detailed investigation experiments).

Experiment
Number Polymer Activation

Reagent

Complexing
Group (CG)/Pd

Molar Ratio
p/MPa T/◦C Extraction

Time/min
mCO2,flushing/g

E12-DPPS p(FDA18-co-DPPS7) Piperidine 12 25 40 90 1500
E13-DPPS p(FDA18-co-DPPS7) Piperidine 12 25 40 90 -
E14-DPPS p(FDA26-co-DPPS10) Piperidine 12 25 40 90 250
E15-DPPS p(FDA26-co-DPPS10) Piperidine 12 25 40 90 400
E16-DPPS p(FDA26-co-DPPS10) Piperidine 42 25 40 90 250
E17-DPPS p(FDA26-co-DPPS10) Piperidine 42 25 40 90 600
E18-DPPS p(FDA26-co-DPPS10) Piperidine 5 25 40 90 600
E19-DPPS p(FDA18-co-DPPS7) Piperidine 12 25 40 180 1500
E20-DPPS p(FDA26-co-DPPS10) Piperidine 12 25 40 180 400
E21-DPPS p(FDA26-co-DPPS10) Piperidine 12 25 40 180 400
E22-DPPS p(FDA26-co-DPPS10) Piperidine 12 25 60 90 600
E23-DPPS p(FDA26-co-DPPS10) Piperidine 12 27 60 90 400Molecules 2021, 26, x FOR PEER REVIEW 11 of 20 
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The extraction yields obtained across extractions performed at different CG/Pd ratios
were inconsistent, and varied between 1 and 31% (E12-DPPS to E18-DPPS). As indicated
previously, a loss of Pd during the recovery process contributes to this variability. From the
set of experiments E12-DPPS to E18-DPPS, a CG/Pd ratio of about 12 appeared to provide
a good excess of complexing groups, yielding good extraction results.

As can be seen from Figure 8, an increase in the extraction temperature to 60 ◦C
resulted in a decrease in the extraction conversions and yields, regardless of the pressure
used, 25 MPa (E22-DPPS) or, to increase the solubility of p(FDA-co-DPPS), at 27 MPa
(E23-DPPS). Further tests will have to be performed at other temperatures to verify this
effect and explain this behavior.

When the extractions were extended to 180 min (doubled extraction time) at 40 ◦C, a
decrease in extraction conversion and extraction yield was observed as well (E19-DPPS
to E21-DPPS). The cause of the lower extraction efficiency with a longer extraction time
cannot be explained at this point, and will require a more detailed investigation into the
effects of the operating conditions and the extraction mechanism. From our present results,
at an extraction temperature of 40 ◦C, it appears that an extraction time of 90 min is optimal
for the larger extractor.

It can also be observed from Figure 8 that the Pd-balances were high in the cases
where extraction conversions were low. As mentioned previously, the loss of Pd during the
depressurization step and flushing of the extractor led to low extraction yields. The fact that
the Pd-balances were high when extraction conversions were low supports this explanation.
If the Pd was not extracted from the catalyst, it remained on the support. However, Pd that
was extracted by the polymer was able to flow through the sCO2 medium, and could leave
the extraction system during depressurization.

From this preliminary parameter study, it appears that the initially chosen conditions
of 40 ◦C and 90 min of extraction time in the larger extractor gave the best results for
the Pd extraction from an aluminosilicate-supported catalyst using p(FDA-co-DPPS) as
complexing polymer, at a CG/Pd ratio of 12, with piperidine as in situ activator. An increase
in the extraction temperature from 40 ◦C to 60 ◦C, a large extension of the extraction time
from 90 to 180 min, or a significant increase or decrease of the CG/Pd ratio did not improve
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extraction conversion. Of course, a more complete parameter study using a wider range of
operating conditions will be required to fully analyze the individual and combined effects
of extraction time, temperature, and the CG/Pd ratio on extraction efficiencies.

3. Materials and Methods
3.1. Reactants
3.1.1. Complexing Polymers

The synthesis and characterization of the complexing polymers, p(FDA)SH and
p(FDA-co-DPPS), are described in the Supporting Information (SI-Chapter 1) [30–32].

3.1.2. Catalyst

The Catalyst D (Cat D) used for the extraction experiments was provided by Heraeus. It is
a pristine Pd/aluminosilicate (2.083 wt% Pd; 100% PdO) catalyst. The detailed characterization
of this catalyst is provided in the Supporting Information (SI-Chapter 2) [17,33].

3.2. Extraction Procedures

Extraction experiments were performed in two different extractors, differing mostly in
their size (Vsmall extraction cell = 35 mL; Vlarger extractor = 250 mL). In the small extraction cell,
the extraction experiments with 60 min of extraction time were performed as a quick screen-
ing of the polymers’ Pd complexing ability at standard operating conditions (T = 40 ◦C; p =
25 MPa). Longer extraction experiments, as well as experiments under other experimental
conditions, were performed in the larger extractor (detailed investigations).

3.2.1. Chemicals

The piperidine used for thiol group activation (aminolysis) was either received from
Sigma Aldrich (purity of 99%) for the screening experiments, or from Merck (purity of
≥99%) for the detailed investigations. Triphenylphosphine (PPh3) was received from
Sigma Aldrich with a purity of 99%. CO2 bottles were provided either by Air Liquide (CO2
SFE 5.2 grade at 99.9% purity) for the screening experiments or from Linde (2.5 grade at
purity 99.5%) for the detailed investigations. All chemicals were used as received.

3.2.2. Extraction Procedure for Screening Experiments

The catalyst, polymer, and if applicable piperidine, were placed in a 35 mL stainless
steel extraction cell (Top Industrie, France), which was then tightly closed. The extraction
cell was equipped with magnetic stirring, a PTFE-coated magnetic stir bar, a rupture disk,
a pressure transducer, and two stainless steel filters (PORAL, class 7) positioned at the
inlet and outlet of the set-up. The extraction cell was heated with a mantle monitored by
a proportional-integral-derivative temperature controller with a thermocouple (type K)
inside the extraction medium. An ISCO model no. 260D automatic syringe pump (with an
internal pressure transducer), thermostated by a water/isopropanol mixture delivered by
a LAUDA RE206 circulating pump, was used to pressurize the extraction cell with CO2.

The ISCO pump was stabilized at 27 MPa and 35 ◦C. Afterwards, the extraction
cell was filled with CO2 until 25 MPa was reached while heating at 40 ◦C (≈39 mL CO2
delivered by the ISCO pump). The extraction was performed under magnetic stirring at
100 rpm for one hour at 25 MPa and 40 ◦C (batch conditions). After the one hour extraction
time was completed, the cell was flushed with ≈ 160 mL CO2 delivered by the ISCO pump
(26 MPa and 35 ◦C in the ISCO pump) at a flow rate of about 0.6–1.2 mL/min, and the
exiting CO2/polymer/Pd mixture was bubbled into water contained in a plastic flask at
the outlet of the extraction set-up.

Then, the extraction cell was opened and the catalyst was recovered (Sample: ExS-B;
where “E” stands for “Experiment”, “x” for the “experiment number”, “S” for ”screening
experiment”, while “B” is the sample assignment to its origin in the experimental setup).
The cell was cleaned with acetone, which was then collected and evaporated (Sample: ExS-
C). The bubbling water sample, containing the precipitated polymer (potentially loaded
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with Pd) was taken as Sample ExS-A. Furthermore, the tubes, valves, and filters were
cleaned with acetone, which was also collected and evaporated afterwards (Sample: ExS-
D). The samples were analyzed by ICP-OES (cf. SI-Chapters 3.1 and 3.2), to determine the
amount of Pd extracted from the catalyst support (Conversion (X)), and recovered (Yield
(Y)). A scheme of the screening extraction apparatus is shown in Figure 9. Table 6 shows
the samples taken after extraction.
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Table 6. Sample nomenclature for the screening experiments.

Sample Name Sample Origin

ExS-A Bubbling water solution
ExS-B Catalyst after extraction
ExS-C Washing of extractor with acetone
ExS-D Washing tubes, valves, and filters with acetone

E: Experiment; x: Experiment number; S: Screening experiment; “A–D”: sample assignment corresponding to
sample origin in the experimental setup).

3.2.3. Extraction Procedure for Detailed Investigations

The catalyst, polymer, and if applicable piperidine, were placed in the extractor
(250 mL stainless steel reactor fitted with a 10 µm sinter) in the desired amounts. The extrac-
tor was closed and the magnetic agitation was set to 250 rpm. The desired temperature (40
or 60 ◦C) was adjusted via a heating cartridge. Afterwards, an HPLC pump (Type: Wadose
from Wagner) connected with a Coriolis flow meter (Type: Bronkhorst; M13-AGD-33-O-S;
6–600 g/h CO2) was used to feed the CO2 into the extractor (5 g/min) until the desired
pressure was obtained: 25 MPa (at 40 ◦C ≈ 217 g CO2; at 60 ◦C ≈ 193 g CO2) or 27 MPa (at
60 ◦C ≈ 202 g CO2). The extractor outlet was closed by a stop valve (exit valve). After the
desired pressure was reached, the CO2 feed was stopped, and the inlet to the extractor was
closed using another stop valve (inlet valve). Afterwards, the extraction was performed
under magnetic stirring at 250 rpm for 90 or 180 min, at 25 or 27 MPa, and 40 or 60 ◦C
(batch extraction).

After the desired extraction time was completed, the exit valve of the extractor was
opened slowly, so that polymer, Pd, and CO2 could flow into the separator (stainless steel
vessel with sapphire windows), and bubble into an acetone bath. The vent and input of
the separator were controlled using two fine valves, one at the extractor and one at the
separator outlet. The HPLC pump fed CO2 to the extractor at about 5 g/min to keep the
extractor at 25 or 27 MPa, and the temperature was kept at 40 or 60 ◦C. Approximately
250 to 1500 g of CO2 was fed through the extractor as a flushing medium to ensure that
all the polymer was transported from the extractor to the separator. As the transported
polymer could be observed as a continuous polymer precipitation in the acetone bath in the
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separator (viewed through the sapphire windows), this gave a visual indication of when
the flushing process was complete. This is the reason for the variation in the quantity of
CO2 used during flushing in the different extraction tests. In the separator, a pressure of
5 MPa and room temperature (20 ◦C) were maintained so that CO2 in the gas state could
leave through a reverse osmosis membrane (Filmtec SW 30, thin film polyamide membrane
(PA + PS), Separation limit: NaCl: 99.6%) (Sample: Exe; where “E” stands for “experiment”;
“x” for the “experiment number”; and “e” for the sample assignment to its origin in the
experimental setup). The Pd and the polymer were collected in the separator acetone bath.
After flushing, the pressure in the extraction apparatus was released slowly and the heating
was switched off.

The supported catalyst was then recovered from the extractor (Sample: Exc), as well as
the acetone sample from the separator (Sample: Exa). Afterwards, the separator, including
tubing to the extractor, (Sample: Exb) and the extractor itself (Sample: Exd) were washed
with acetone separately.

For all acetone-containing samples, the acetone was evaporated under a fume hood.
Afterwards, the samples were analyzed by ICP-OES (cf. SI-Chapters 3.1 and 3.2) to deter-
mine the amount of Pd extracted from the catalyst support (Conversion (X)) and recovered
(Yield (Y)). A scheme of the detailed investigation test apparatus is shown in Figure 10.
Table 7 describes the samples taken after extraction.
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Table 7. Sample nomenclature for the detailed investigations.

Sample Name Sample Origin

Exa Acetone bath separator
Exb Washing of separator and pipes with acetone
Exc Catalyst after extraction
Exd Washing of extractor with acetone
Exe Reverse osmosis (RO) membrane

E: Experiment; x: Experiment number; “a–e”: sample assignment to the sample origin in the experimental setup).

3.2.4. Calculation of the Desired Reactant Quantities

To calculate the correct ratio of catalyst, polymer, piperidine, and CO2, initially an
excess of complexing groups to Pd of 10–17 for the screening experiments (exact adjustment
was impossible due to the small batches) and of 12 for the detailed investigations were
used. Later on, this ratio was varied to much larger (42) and lower (5) values.

This initial excess of complexing groups compared to the Pd content was an estimated
value, and was used to ensure that the initial results were a consequence of the polymer
complexing abilities, and not due to an insufficient quantity of complexing groups.
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The amounts of complexing groups in the different polymers were determined via
1H-NMR (cf. SI-chapter 1.2), as well as the polymer molecular weight.

The p(FDA)SH homopolymer (Mn = 5735 g/mol) contained only one complexing
group per polymer, the -SH group.

The p(FDA-co-DPPS) copolymers contained several monomer units of DPPS complex-
ing groups, plus, in the case of thiol group activation, one -SH complexing group. The
p(FDA-co-DPPS) copolymers used in this work were synthesized in different batches, and
therefore contained different amounts of DPPS groups and different molecular weights.
The first batch contained seven DPPS groups per polymer chain (Mn = 11,600 g/mol), while
the second one contained 10 DPPS groups per polymer chain (Mn = 16,723 g/mol).

With this knowledge, the polymer/Pd molar ratio was calculated by dividing the
complexing group/Pd ratio by the amount of complexing groups in one polymer chain (cf.
Equation (1)).

npolymer

nPd
=

Complexing group/Pd ratio
Amount of complexing groups per polymer chain

(1)

where npolymer is the moles of polymer to be used in the extraction test, and nPd is the
moles of Pd on the pristine catalyst.

To determine the appropriate polymer concentration in scCO2 (cpol(%)) to use, where
the polymer is completely soluble under the extraction conditions, cloud point (CP) curves
of a 1 wt% mixture of the three polymers in scCO2 were measured (cf. SI-Chapter 1.3,
calculation with Equation (2)). Good solubility of all three polymers at the extraction
conditions (40 and 60 ◦C and 25 or 27 MPa) was found for a concentration of 1 wt%
polymer in scCO2. Thus, for the detailed investigations, polymer concentrations of less
than 1 wt% were chosen (cf. reactant ratio tables in SI). For the screening experiments,
higher polymer concentrations were used (cf. reactant ratio tables in SI) in accordance with
previous results [18], where at 25 MPa and 40 ◦C, both p(FDA)SH and p(FDA-co-DPPS)
were completely soluble in scCO2, at least up to 10 wt% of polymer in CO2.

cpol(%) =
mpol

mCO2
× 100 (2)

where mpol is the mass of polymer used in the extraction test, and mCO2 is the mass of CO2
fed to the extractor.

The amounts of polymer and catalyst required for each extraction were calculated
taking into account the polymer concentration in scCO2, the amount of CO2 needed to
reach 25 or 27 MPa, the polymer/Pd molar ratio, and the catalyst Pd loading.

Piperidine, used as thiol group activator (in situ aminolysis of the dithiobenzoate end
group of p(FDA-co-DPPS)), was initially used in a molar excess of 2.5, and subsequently
used in a molar excess of 5, with respect to the polymer.

3.3. Calculation of Conversion (X), Yield (Y), and Pd-Balance

Conversion (X) is defined as the amount of Pd removed from the catalyst. The yield (Y)
is defined as the amount of Pd recovered after extraction, not including the Pd remaining
on the catalyst.

During the study, it was found that large quantities of Pd extracted from the support
remained in the extractors after extraction, and were not transferred during flushing into
the water bath/separator. As this Pd was no longer fixed to the support (the catalyst Cat D
could be easily and completely removed from the extractor after extraction) and could be
easily recovered by washing the extractors with acetone, this Pd was counted as extracted
in this study. The calculations of the extraction conversion and the extraction yield are
shown in Equations (3) and (4), respectively.

Xextraction =
mPd,Cat − mPd,Cat a f ter extraction

mPd,Cat
× 100% (3)
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Yextraction =

(
mPd,water bath/separator + mPd, extractor + mPd,RO−membrane)

mPd,Cat
× 100% (4)

The Pd-Balance was calculated as the quotient of the amount of Pd found in any part
of the extraction apparatus or on the catalyst after extraction, and the amount of Pd on the
catalyst before the extraction (cf. Equation (5)).

Pd − Balance =

(
mPd,water bath/separator + mPd, extractor + mPd,RO−membrane + mPd,Cat a f ter extraction )

mPd,Cat
× 100% (5)

where mPd,Cat is the mass of palladium on the pristine catalyst, mPd,Cat after extraction is the
mass of palladium on the catalyst after extraction (Sample: ExS-B or Exc), mPd,extractor is the
mass of palladium recovered from the extractor (Sample: ExS-C or Exd), mPd,water bath/separator
is the mass of Pd recovered from the water bath/separator (mass of Pd recovered from
bubbling in water/acetone + mass of Pd recovered from separator and tubings acetone
wash) (Sample: ExS-A + ExS-D or Exa + Exb), and mPd,RO-membrane is the mass of palladium
recovered from the reverse osmosis membrane in the separator outlet (Exe).

4. Conclusions

In this study, an effective process for the polymer-assisted supercritical CO2 extraction
of Pd(II) from a non-pretreated aluminosilicate-supported catalyst consisting of 100% PdO
is presented. The p(FDA-co-DPPS) copolymer, activated in situ with piperidine, led to good
extraction conversions of approximately 60% at 40 ◦C and 25 MPa. These results show
that a pretreatment of the catalyst Cat D is not required to achieve promising extraction
conversions, with extraction results from a non-optimized process already comparable
to those achieved with a pretreatment of the catalyst [17]. Through the use of the right
combination of complexing polymers and piperidine, as well as the fine-tuning of extraction
conditions, the harmful waste streams generated during pretreatment of the catalyst with
chlorine can be eliminated.

In screening experiments using p(FDA-co-DPPS) without piperidine or p(FDA)SH,
much lower extraction conversions were obtained. Likewise, the use of scCO2 alone or
scCO2 with piperidine and/or triphenylphosphine molecular ligands resulted in only
low extraction rates or none at all, confirming the necessity of using a macromolecular
CO2-soluble complexing agent that is able to bind to the palladium and transport it through
the supercritical media.

A preliminary extraction parameter study was performed, showing that an increase
in the temperature (from 40 to 60 ◦C), a doubling of the extraction time (from 90 min to
180 min), or a strong increase (from 12 to 42) or decrease (from 12 to 5) of the complexing
group/Pd ratio did not result in higher Pd extraction conversions.

The presented method showed good reproducibility in terms of extraction conversions,
even across different polymer batches. However, as only half of the extracted Pd could be
recovered, with the remaining Pd likely lost to the atmosphere during the recovery process,
there is room for improvement.

A more comprehensive parameter study will be necessary to optimize and improve the
extraction conversion and extraction yield obtained using this p(FDA-co-DPPS)/piperidine
system. For the optimization of the extraction process, a deeper investigation of the
extraction mechanism (synergy effect) in the case of the p(FDA-co-DPPS)/piperidine
system is needed. The separation of Pd from the polymer, and therefore the recycling of
the polymer, is not part of this study. Several methods, e.g., electrochemical deposition, are
currently under investigation, and will be presented in further works. Furthermore, the
life cycle analysis (LCA) of this new Pd extraction procedure is in progress.

Supplementary Materials: Supplementary information is available online. Figure S1. 1H-NMR of
p(FDA)11SH after precipitation. Figure S2. 1H-NMR of p(FDA18-co-DPPS7) post-precipitation. Figure
S3. 1H-NMR of p(FDA26-co-DPPS10) post-precipitation. Figure S4. Cloud point (CP) curve of the
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polymer p(FDA11)SH at 1 wt% in CO2. Figure S5. Cloud point (CP) curve of the polymer p(FDA18-
co-DPPS7) at 1 wt% in CO2. Figure S6. Cloud point (CP) curve of the polymer p(FDA26-co-DPPS10) at
1 wt% in CO2. Figure S7. SEM-EDX image of Cat D. Figure S8. EDX and element compositions at the
surface of Cat D. Figure S9. EDX and element compositions inside Cat D (fractured bead). Figure S10.
XPS spectrum Pd 3d of Cat D. Figure S11. TEM and particle size distribution of Cat D. Figure S12.
Nitrogen adsorption-desorption isotherms and pore size distribution of Cat D. Table S1. Elemental
composition determined by XPS (atomic percentages). Table S2. Specific surface area and average
pore diameter determined by BET. Table S3. Digestion program for samples. Table S4. Reactant ratios
used for the control experiments (cat: catalyst; pip: piperidine; CG: Complexing group; ExS-Control:
Screening experiments; Ex-Control: Detailed investigation experiments). Table S5. Pd content of the
samples from the control experiments (ExS-A to D: Samples from screening experiments; Exa to e:
Samples from detailed investigation experiments). Table S6. Percentage of Pd in samples of control
experiments (ExS-Control: Screening experiments; Ex-Control: Detailed investigation experiments;
ExS-A to D: Samples from screening experiments; Exa to e: Samples from detailed investigation
experiments). Table S7. Extraction results and errors of control experiments (ExS-Control: Screening
experiments; Ex-Control: Detailed investigation experiments). Table S8. Reactant ratios used for PPh3
extraction experiments (cat: catalyst; pip: piperidine; CG: Complexing group; ExS-PPh3: Screening
experiments). Table S9. Pd content of the samples from PPh3 extraction experiments (ExS-A to D:
Samples from screening experiments). Table S10. Percentage of Pd in samples for PPh3 extraction
experiments (ExS-PPh3: Screening experiments; ExS-A to D: Samples from screening experiments;
Exa to e: Samples from detailed investigation experiments). Table S11. Extraction results and errors of
PPh3 extraction experiments (ExS-PPh3: Screening experiments). Table S12. Reactant ratios used for
extraction experiments with p(FDA)SH (cat: catalyst; pip: piperidine; CG: Complexing group; ExS-
p(FDA)SH: Screening experiments). Table S13. Pd content of the samples from extraction experiments
with p(FDA)SH (ExS-A to D: Samples from screening experiments). Table S14. Percentage of Pd
in the samples for extraction experiments with p(FDA)SH (ExS-p(FDA)SH: Screening experiments;
ExS-A to D: Samples from screening experiments; Exa to e: Samples from detailed investigation
experiments). Table S15. Extraction results and errors of p(FDA)SH extraction experiments (ExS-
p(FDA)SH: Screening experiments). Table S16. Reactant ratios used for extraction experiments with
p(FDA-co-DPPS) (40 ◦C, 25 MPa) (cat: catalyst; pip: piperidine; CG: Complexing group; ExS-DPPS:
Screening experiments; Ex-DPPS: Detailed investigation experiments). Table S17. Pd content of
the samples from the extraction experiments with p(FDA-co-DPPS) (40 ◦C, 25 MPa) (ExS-A to D:
Samples from screening experiments; Exa to e: Samples from detailed investigation experiments).
Table S18. Percentage of Pd in the samples of the extraction experiments with p(FDA-co-DPPS)
(40 ◦C, 25 MPa) (ExS-DPPS: Screening experiments; Ex-DPPS: Detailed investigation experiments;
ExS-A to D: Samples from screening experiments; Exa to e: Samples from detailed investigation
experiments). Table S19. Extraction results and errors of the extraction experiments with p(FDA-
co-DPPS) (40 ◦C, 25 MPa) (ExS-DPPS: Screening experiments; Ex-DPPS: Detailed investigation
experiments). Table S20. Reactant ratios used for extraction experiments with p(FDA-co-DPPS)
at parameter screening (cat: catalyst; pip: piperidine; CG: Complexing group; Ex-DPPS: Detailed
investigation experiments). Table S21. Pd content of the samples from the extraction experiments with
p(FDA-co-DPPS) at parameter screening (Exa to e: Samples from detailed investigation experiments).
Table S22. Percentage of Pd in the samples of the extraction experiments with p(FDA-co-DPPS)
at parameter screening (Ex-DPPS: Detailed investigation experiments; ExS-A to D: Samples from
screening experiments; Exa to e: Samples from detailed investigation experiments). Table S23.
Extraction results and errors of the extraction experiments with p(FDA-co-DPPS) at parameter
screening (Ex-DPPS: Detailed investigation experiments).
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