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O I N R e

Simple Summary: Cataracts are a common eye disease in dogs that causes clouding of
the lens and loss of vision. Early diagnosis helps veterinarians provide better treatment;
however, distinguishing different stages of cataract using ultrasound images could be
subjective in some cases. This study developed a computer-assisted method using artificial
intelligence to automatically classify canine cataracts from ultrasound images. Among
several tested computer models, one showed excellent accuracy in distinguishing cataract
stages. This approach could help veterinarians to quickly and accurately identify cataracts,
improving the quality of eye care for dogs.

Abstract: Cataracts are a prevalent cause of vision loss in dogs, and timely diagnosis is
essential for effective treatment. This study aimed to develop and evaluate deep learn-
ing models to automatically classify canine cataracts from ocular ultrasound images. A
dataset of 3155 ultrasound images (comprising 1329 No cataract, 614 Cortical, 1033 Mature,
and 179 Hypermature cases) was used to train and validate four widely used deep learn-
ing models (AlexNet, EfficientNetB3, ResNet50, and DenseNet161). Data augmentation
and normalization techniques were applied to address category imbalance. DenseNet161
demonstrated the best performance, achieving a test accuracy of 92.03% and an F1-score of
0.8744. The confusion matrix revealed that the model attained the highest accuracy for the
No cataract category (99.0%), followed by Cortical (90.3%) and Mature (86.5%) cataracts,
while Hypermature cataracts were classified with lower accuracy (78.6%). Receiver Operat-
ing Characteristic (ROC) curve analysis confirmed strong discriminative ability, with an
area under the curve (AUC) of 0.99. Visual interpretation using Gradient-weighted Class
Activation Mapping indicated that the model effectively focused on clinically relevant
regions. This deep learning-based classification framework shows significant potential for
assisting veterinarians in diagnosing cataracts, thereby improving clinical decision-making
in veterinary ophthalmology.

Keywords: canine cataract; ultrasound imaging; veterinary ophthalmology; deep learning;
convolutional neural network; artificial intelligence; diagnostic imaging

1. Introduction

Cataracts are among the most prevalent ocular disorders in canine patients, charac-
terized by progressive lens opacification that frequently leads to vision impairment and
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potential blindness, and they constitute a significant proportion of intraocular pathologies
encountered in veterinary ophthalmology practice [1-3]. Accurate diagnosis and timely
intervention are essential to preserve visual function and quality of life [1,2]. However, the
complexity of cataract staging and management necessitates evaluation by experienced
clinicians to achieve optimal patient outcomes [1,4].

B-mode ocular ultrasonography is a widely used, cost-effective, and non-invasive
imaging technique that provides detailed cross-sectional images of the eye [1,5,6]. By detect-
ing echoes reflected from various ocular tissues, this modality enables clinicians to evaluate
intraocular and retrobulbar structures [2,5]. Consequently, ultrasonography has become an
essential diagnostic tool for various ophthalmic conditions, including cataracts, intraocular
tumors, and retinal detachment, thereby facilitating diverse therapeutic strategies [1,6,7].
Due to these advantages, ultrasonography remains indispensable in general veterinary
practices where access to advanced ophthalmic imaging modalities and specialized ophthal-
mologists may be limited [2,7]. Despite its utility, B-mode ultrasound images are limited by
acoustic artifacts and relatively low resolution, which can hinder accurate interpretation.
Interpretation also remains subjective, as diagnostic accuracy depends on the examiner’s
experience and skills, unlike modalities offering objective, quantitative data [6].

Historically, cataract diagnosis using computer vision relied on manual feature en-
gineering, which was labor-intensive and lacked scalability [1]. Recently, convolutional
neural networks (CNNs) have overcome these limitations by learning hierarchical feature
representations directly from raw images, thereby enhancing classification accuracy and
generalizability [8]. CNNs, a subset of deep learning, have demonstrated remarkable
potential in medical image analysis by automatically extracting critical features from im-
ages [8-10]. Their architecture, composed of convolutional and pooling layers, enables
efficient feature extraction and pattern recognition [11,12]. However, despite these advan-
tages, CNNs are often criticized as “black-box” models due to their limited interpretability,
posing challenges for clinical adoption where transparency is crucial [8].

To address the interpretability challenge, techniques such as Gradient-weighted Class
Activation Mapping (Grad-CAM) have been developed [7,10,13]. Grad-CAM provides
visual explanations for model predictions by highlighting key areas in an image that
influence decision-making [13,14]. This technique offers partial insight into the reasoning
behind model outputs and has been widely adopted in CNN-based studies to enhance
interpretability and promote clinical acceptance [13].

Although there have been substantial advancements in Al applications for imaging in
veterinary clinics [9,10,15,16], research specifically focusing on Al-assisted analysis of ocu-
lar ultrasonography remains limited. Further development in this area could significantly
enhance diagnostic accuracy and clinical decision-making in veterinary ophthalmology.
Therefore, the aim of this study was to determine whether CNN models could accurately
classify canine cataracts into four maturation stages (No cataract, Cortical cataract, Mature
cataract, and Hypermature cataract) using B-mode ultrasound images, and to comprehen-
sively evaluate their diagnostic performance and clinical applicability.

2. Materials and Methods
2.1. Datasets

We employed ocular B-scan ultrasound images sourced from the publicly accessible
AI-HUB platform (www.aihub.or.kr, accessed on 2 January 2025). The dataset is publicly
available upon request via AI-HUB, subject to compliance with their usage terms and
conditions. A total of 3155 ultrasound images were collected and categorized into four
classes: No cataract, Cortical cataract, Mature cataract, and Hypermature cataract (Table 1).
The mean age of all dogs was 8.9 £ 3.1 years. The cohort included 1644 females (52%)
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and 1511 males (48%). The most common breeds were Maltese, Poodle, Shih Tzu, and
Yorkshire Terrier.

Table 1. Distribution of B-ultrasound images across training, validation, and test sets for each class.

Class Training Count  Validation Count Test Count Total Count
No cataract 930 199 200 1329
Cortical 429 92 93 614
Mature 723 154 156 1033
Hypermature 125 26 28 179

To enhance data quality and minimize redundancy, duplicate and visually similar
images were identified and eliminated using VisiPics V1.3 software (https:/ /visipics.info).
In addition, images where the lens or globe structures were not clearly captured were
excluded. Subsequently, all remaining images were manually reviewed and labeled by
a veterinary ophthalmologist with a PhD degree to ensure accurate classification. Intra-
observer and inter-observer reproducibility were evaluated by calculating agreement rates
between repeated and independent classifications. Inter-observer reproducibility was
assessed between the corresponding author and the first author (Sanghyeon Park, DVM,
MS, veterinary ophthalmologist). The intra-observer and inter-observer agreement rates
were 94.1% and 87.3%, respectively.

The dataset was stratified and randomly divided into training (80%), validation (10%),
and test (10%) subsets to ensure that class distribution was preserved across all sets.

To improve the robustness of the evaluation, external ocular ultrasound images ob-
tained from various veterinary clinics, including Gyeongsang National University Animal
Medical Center, Helix Animal Medical Center, Ilsan Animal Medical Center, and Nowon
N Animal Medical Center, were partially incorporated into the test subset (Table 1). The
model’s performance was also separately assessed using only the external dataset. Images
from the AI-HUB platform were designated as the internal dataset, while those collected
from external veterinary clinics were designated as the external test dataset.

The dataset used in this study exhibited inherent class imbalance due to patient
demographic characteristics, with certain cataract stages being more prevalent than others.
Specifically, the No cataract category contained the largest number of samples (1 = 1329),
followed by Mature (n = 1033), Cortical (n = 614), and Hypermature (n = 179). Such
imbalances may cause overfitting, leading the model to preferentially learn patterns from
dominant classes and underperform on minority classes.

2.2. Data Augmentation and Model Development

To address class imbalance, data augmentation techniques were employed to enhance
the representation of underrepresented classes and improve model generalization. Training
images were modified through random rotations, horizontal flips, resizing, color jittering,
Gaussian blurring, and random erasing to artificially expand the dataset and provide more
diverse examples for training [17-19]. Additionally, class weights were computed using a
balanced approach, assigning weights inversely proportional to class frequencies to ensure
that minority classes contributed proportionally during model optimization [20].

To classify canine cataracts, four state-of-the-art deep learning models were utilized:
AlexNet [21], EfficientNet-B3 [22], ResNet-50 [23], and DenseNet-161 [24]. AlexNet, one of
the earliest CNN architectures, employs a sequential arrangement of convolutional and
fully connected layers [1,21]. EfficientNet-B3 introduces a compound scaling method that
uniformly adjusts network depth, width, and input resolution to optimize both accuracy
and computational efficiency [22]. ResNet-50 incorporates residual connections that fa-
cilitate the training of deep networks by addressing the vanishing gradient problem [23].
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DenseNet-161 employs densely connected layers to enhance feature reuse and gradient
flow, improving learning efficiency and reducing the risk of overfitting [1,24].

A transfer learning approach was applied by initializing the models with pre-trained
weights from the ImageNet dataset [25-27]. All layers of the networks were fine-tuned
without freezing, allowing the models to fully adapt their feature representations to the
specific characteristics of canine cataract ultrasound images [25-27].

The training process was conducted using a batch size of 64 and an initial learning rate
of 1 x 1075, Optimization was performed using the Adam optimizer [28] with a weight
decay of 1 x 10~#, and a cosine annealing learning rate scheduler [29] dynamically adjusted
the learning rate over 100 epochs. Early stopping [20] with a patience of 10 epochs was
employed to prevent overfitting by halting training when validation performance plateaued.
Hyperparameters were determined empirically by evaluating multiple combinations and
selecting the configuration that provided the most stable validation performance.

The lens status was categorized into four groups according to a previously described
classification system [5]: No cataract, Cortical cataract, Mature cataract, and Hypermature
cataract. Cortical cataracts were characterized by echogenic anterior and posterior cortices
with clear visualization of the capsule. Mature cataracts exhibited enhanced echogenic-
ity with asymmetry and near-complete lens opacification. Hypermature cataracts were
identified by reduced axial thickness and wrinkling of the lens capsule (Figure 1).

Figure 1. Representative samples from the collected eye B-ultrasound image dataset, showing (a) an
eye without cataract, (b) an eye with cortical cataract, (c) an eye with mature cataract, and (d) an eye
with hypermature cataract.

2.3. Computational Environment

The model was implemented using PyTorch 2.5.1 with CUDA 11.8. Model training
and evaluation were performed on a workstation equipped with an Intel Core i7-13700
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CPU (Intel Corporation, Santa Clara, CA, USA) and an NVIDIA GeForce RTX 3060 GPU
(NVIDIA Corporation, Santa Clara, CA, USA).

2.4. Evaluation Metrics

The classification performance of each CNN model was comprehensively evaluated
using multiple metrics, including accuracy, Fl-score, sensitivity, and specificity. To quanti-
tatively compare diagnostic performance across different cataract stages, ROC curves were
generated, and AUC values were calculated. Furthermore, Grad-CAM visualization was
employed to highlight the discriminative anatomical regions utilized by each model during
classification, thereby enhancing interpretability.

3. Results
3.1. Classification Performance on the Combined Internal and External Test Dataset

The classification performance of four CNN models was evaluated on cataract ultra-
sound images. Among the models, DenseNet-161 demonstrated the highest performance,
achieving a test accuracy of 92.03% and an F1 score of 0.8744. In comparison, ResNet-50
achieved a test accuracy of 91.82% and an F1 score of 0.8553, EfficientNet-B3 achieved
89.52% and 0.8264, and AlexNet achieved 87.00% and 0.8086, respectively (Table 2).

Table 2. Classification accuracy and F1 score of four CNN models on the combined test dataset.

Model Test Accuracy (%) F1 Score
AlexNet 87.00 0.8086
EfficientNet-B3 89.52 0.8264
ResNet-50 91.82 0.8553
DenseNet-161 92.03 0.8744

3.2. External Validation Performance

The external validation performance of four CNN models was evaluated using an
independent external dataset. Among the models, DenseNet-161 demonstrated the highest
performance, achieving an external validation accuracy of 92.15% and a weighted F1 score
of 0.9231. In comparison, ResNet-50 achieved an accuracy of 91.74% and a weighted F1
score of 0.9181, EfficientNet-B3 achieved 90.08% and 0.9064, and AlexNet achieved 84.71%
and 0.8532, respectively (Table 3).

Table 3. External validation performance of four CNN models.

Model Test Accuracy (%) F1 Score
AlexNet 84.71 0.8532
EfficientNet-B3 90.08 0.9064
ResNet-50 91.74 0.9181
DenseNet-161 92.15 0.9231

3.3. Confusion Matrix Analysis

The confusion matrix of DenseNet-161 demonstrates the classification performance
across four cataract stages (Figure 2). Correct classifications appear along the diagonal,
while off-diagonal values represent misclassifications. The No cataract category exhib-
ited the highest classification accuracy, with 198 correctly classified instances out of 200
(99.0%), highlighting the model’s robustness in identifying eyes without cataracts. The
Cortical category followed with 84 correct classifications out of 93 instances (90.3%), while
the Mature category achieved 135 correct predictions out of 156 samples (86.5%). The
Hypermature category showed relatively lower accuracy, with 22 correct predictions out
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of 28 samples (78.6%). Additionally, the sensitivity and specificity for each cataract stage
were as follows: for No cataract, the sensitivity was 99.0% and the specificity was 99.4%;
for Cortical cataracts, the sensitivity was 90.3% and the specificity was 97.4%; for Mature
cataracts, the sensitivity was 86.5% and the specificity was 95.6%; and for Hypermature
cataracts, the sensitivity was 78.6% and the specificity was 98.1%. The most common
source of classification errors occurred between the Cortical and Mature stages, with 14 in-
stances of Mature cataracts misclassified as Cortical and three instances of Cortical cataracts
misclassified as Mature.

Confusion Matrix (DenseNetl61)
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Figure 2. Confusion matrix of DenseNet-161 for cataract classification using ocular ultrasound images.
The matrix illustrates the distribution of predictions across four categories: No cataract, Cortical,
Mature, and Hypermature. Correct classifications appear along the diagonal, while off-diagonal
values represent misclassifications. The No cataract category shows the highest accuracy, while some
confusion is observed between the Cortical and Mature categories.

3.4. ROC Curve and AUC Analysis

The ROC curves for the four models provide a comparative analysis of their classifica-
tion performance across cataract stages, with the AUC serving as a quantitative metric of
their discriminative ability (Figure 3). Among the models, DenseNet-161 and ResNet-50
both achieved the highest AUC of 0.99, indicating superior classification performance
and robustness in distinguishing between stages. EfficientNet-B3 and AlexNet followed
with AUC values of 0.98 each. Notably, the ROC curves of DenseNet-161 and ResNet-50
consistently lie above those of the other models, underscoring their effectiveness in this
classification task.



Animals 2025, 15, 1327

7 of 11

ROC Curve Comparison

1.0 A —
r”
-
-
ﬁ”
0.8 1 -~
i ’/,
’I
I”
l',’
L e
k] -
5 06 e
¢
% ’/’
£ o
w ',’
é 0.4 1 ’/r
l,’
-
I”
I”
0.2 A e
-
P — alexnet (AUC=0.98)
e —— efficientnet_b3 (AUC=0.98)
-
’a’ —— resnet50 (AUC=0.99)
0.0 4 d —— densenet161 (AUC=0.99)
T . . T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 3. ROC curve comparison of four CNN models (AlexNet, EfficientNet-B3, ResNet-50, and
DenseNet-161) on ultrasound images. The area under the curve (AUC) values indicated that
ResNet-50 and DenseNet-161 achieved the highest AUCs (0.99), followed by EfficientNet-B3 and
AlexNet (0.98).

3.5. Model Interpretation Using Grad-CAM

To evaluate the interpretability of DenseNet-161, the best-performing model in diag-
nosing cataracts using ocular ultrasound images, Grad-CAM was employed to visualize
the model’s focus during inference. The final convolutional layer was used for feature map
generation. These visualizations reveal that the model predominantly attended to the lens
region, as indicated by the red areas with high attention weights, while areas corresponding
to irrelevant background appeared blue (Figure 4). This consistent focus on the lens across
all categories underscores the model’s capacity to prioritize key anatomical features critical
for accurate cataract diagnosis.

No cataract Cortical Mature Hypermature

Figure 4. Grad-CAM visualizations illustrate the attention regions of DenseNet-161 for different
cataract classifications in ocular ultrasound images. The columns represent the four categories: No
cataract, Cortical cataract, Mature cataract, and Hypermature cataract. The red regions indicate
areas of highest activation, demonstrating where the DenseNet-161 model focuses when making
classifications. Across all categories, the model consistently prioritizes the lens region (red regions)
while suppressing irrelevant background areas (blue regions).

4. Discussion

In this study, DenseNet-161 demonstrated the highest classification performance
among the tested architectures, achieving a test accuracy of 92.03% and an F1 score of
0.8744. The external validation set showed comparable model performance, with DenseNet-
161 achieving an accuracy of 92.15% and a weighted F1 score of 0.9231. ROC curve
analysis further confirmed the excellent discriminative ability of the model, with DenseNet-
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161 achieving an AUC of 0.99 across all cataract stages. These results indicate strong
generalizability of the proposed approach across diverse clinical settings, despite potential
differences in imaging protocols between institutions.

Although direct comparison is limited due to differences in evaluation metrics, as in a
previous study, interobserver reproducibility among experienced investigators skilled in
ocular ultrasonography ranged from r = 0.83 to 0.97 when interpreting B-mode ultrasound
images in dogs [30]. This inherent variability highlights that interpretation inconsistencies
exist even among skilled operators. Given this context, the 92.03% accuracy achieved
by our model represents a promising level of consistency that could support objective
cataract staging.

The confusion matrix revealed that most misclassifications occurred between the
Cortical and Mature cataract categories. This pattern is likely due to their similar echogenic
patterns, as cortical cataracts gradually progress toward the mature stage [5], introducing
diagnostic ambiguity even among experienced observers [30]. These misclassifications
might reflect the inherent subjectivity of intermediate-stage classification and are unlikely
to substantially alter clinical management decisions.

Grad-CAM visualization demonstrated that the model consistently focused on the lens
region, which corresponds with key anatomical landmarks assessed by ophthalmologists
during cataract diagnosis using B-scan ultrasonography. By highlighting clinically mean-
ingful areas, Grad-CAM improves the interpretability of the CNN model and enhances its
diagnostic utility in veterinary ophthalmology.

In this study, we selected four CNN models based on their demonstrated effectiveness
in medical imaging tasks and their structural suitability for analyzing grayscale B-mode
ocular ultrasound images [8,31]. Although Vision Transformers (ViTs) have recently gained
attention for various image analysis tasks, CNN-based architectures were prioritized due
to their proven efficiency, robustness in limited-data settings, and practical suitability for
structured image classification without requiring large-scale datasets [32].

Previous research reported a higher accuracy (98.01%) using a YOLO-v3 and DenseNet-
161 combination for cataract detection [1]; however, YOLO-based methods require labor-
intensive manual labeling of bounding boxes [33,34]. In contrast, our approach requires
only single-label annotations for entire images, reducing workload while achieving a higher
DenseNet-161 classification accuracy (92.03%) compared to prior studies (84.12%) [1].

High-quality imaging modalities, such as slit lamp systems, offer superior diagnostic
capabilities but are often associated with high costs. In contrast, B-scan ocular ultrasonogra-
phy is more accessible and widely available [1,35]. However, traditional ultrasound devices
are limited by inherent subjectivity and low reproducibility, often resulting in diagnostic
inconsistencies [6]. In this study, our CNN-based approach effectively mitigated these
limitations, making early detection and treatment more feasible in resource-limited settings.
Moreover, the integration of computer-assisted diagnosis helps reduce clinician workload
and improve diagnostic efficiency, offering practical support, particularly in large-scale
screenings and settings involving less experienced veterinary practitioners [6,7,36].

Transfer learning was utilized to improve model performance, particularly given the
limited availability of veterinary ultrasound images compared to human datasets [34]. By
leveraging pre-trained models, transfer learning enhances accuracy and generalization
while reducing data and computational requirements [26,27]. This approach is particularly
valuable in veterinary informatics, where data scarcity and lack of standardization present
significant challenges [37].

Although the ultrasound acquisition protocols and transducer specifications were not
standardized across all images, reliable cataract staging was achieved when critical anatom-
ical structures, including the lens and globe, were clearly visualized. As demonstrated in
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our study, high classification accuracy could still be obtained despite minor variations in
imaging conditions, supporting its applicability across diverse clinical settings.

Despite the strong classification performance demonstrated by the deep learning
model, it cannot replace the final clinical diagnosis, which requires comprehensive inte-
gration of additional clinical information by a veterinarian [7]. Another limitation is the
class imbalance within the dataset, primarily due to the limited number of Hypermature
cataract cases, which may have biased the model’s performance [10,38,39]. Future research
could improve class balance by collecting additional samples or by generating synthetic
data using generative adversarial networks (GANSs) [40]. Additionally, research could be
expanded to classify a broader range of ocular conditions, including retinal detachment,
vitreous degeneration, glaucoma, and various retinal diseases [13,41,42].

5. Conclusions

This study introduced a CNN-based model to classify canine cataracts using B-mode
ocular ultrasound images, demonstrating substantial accuracy across four distinct cate-
gories: No cataract, Cortical, Mature, and Hypermature. The application of deep learning
for cataract detection in veterinary medicine appears feasible, serving as a robust tool to
enhance clinical decision-making. Additionally, these findings provide a foundation for
future research aimed at diagnosing other ocular conditions, including retinal detachment,
vitreous degeneration, glaucoma, and various retinal diseases.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

ROC Receiver Operating Characteristic

AUC Area Under the Curve

Grad-CAM  Gradient-weighted Class Activation Mapping
CNN Convolutional Neural Network

CPU Central Processing Unit

GPU Graphics Processing Unit

ViTs Vision Transformers

YOLO You Only Look Once

GANs Generative Adversarial Networks
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