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Abstract
We consider the approximation of an abstract evolution problem with inhomogeneous side

constraint using A-stable Runge–Kutta methods. We derive a priori estimates in norms

other than the underlying Banach space. Most notably, we derive estimates in the graph

norm of the generator. These results are used to study convolution quadrature based

discretizations of a wave scattering and a heat conduction problem.

1 Introduction

Many time dependent partial differential equations can be conveniently described in the

language of strongly continuous semigroups. In this language, these initial boundary value

problems resemble systems of ordinary differential equations, which suggests that they are

amendable to the standard discretization schemes of multistep or Runge–Kutta type.

Unlike the ODE case, one needs to pay special attention to the boundary conditions

imposed by the generator of the semigroup. This, in most cases, leads to a reduction of

order phenomenon, meaning that the convergence rates are (mainly) determined by the

stage order of the Runge–Kutta method instead of the classical order. The a priori con-

vergence of Runge–Kutta methods for semigroups has been extensively studied in the

literature. Starting with the early works [8, 9], it has been established that conditions of the

form uðtÞ 2 domðAlÞ, where A is the generator of the semigroup and dom denotes the

domain of an operator, determine the convergence rates. In [25], this has been generalized

to the case of non-integer l� 1 using the theory of interpolation spaces. Finally, in [1], the

This article is part of the topical collection‘‘Waves 2019 – invited papers’’ edited by Manfred Kaltenbacher
and Jens Markus Melenk.

& Jens Markus Melenk
melenk@tuwien.ac.at

Alexander Rieder
alexander.rieder@univie.ac.at

Extended author information available on the last page of the article

SN Partial Differential Equations and Applications

SN Partial Differ. Equ. Appl. (2020) 1:49
https://doi.org/10.1007/s42985-020-00051-x(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-9024-6028
http://crossmark.crossref.org/dialog/?doi=10.1007/s42985-020-00051-x&amp;domain=pdf
https://doi.org/10.1007/s42985-020-00051-x


case of l 2 ½0; 1� was adressed, which is the case needed for PDEs with inhomogeneous

boundary conditions. We point out that in the case of analytic semigroups, Lubich and

Ostermann [19] had already established convergence also for inhomogeneous boundary

conditions. All of these works focus on establishing convergence rates with respect to the

norm of the underlying Banach space. In many applications one needs to establish con-

vergence with respect to other norms, for example, in order to be able to bound boundary

traces of the solution. Most notably, one might be interested in convergence of AHu, where

AH is an extension of the generator that disregards boundary conditions. If u is assumed to

be in domðAÞ, we get AHu ¼ Au and the convergence result can be easily established by

using the fact that the time evolution commutes with the generator of the underlying

semigroup (both in the continuous and discrete settings). If the boundary conditions are

inhomogeneous, such a strategy cannot be pursued. It is the goal of this paper to establish

convergence results for AHu also for the case uðtÞ 2 domðAlÞ for l 2 ½0; 1�, again using the

theory of interpolation spaces.

Similarly it is sometimes useful to compute discrete integrals of the time evolution by

reusing the same Runge–Kutta method. Also in this case, we establish rigorous conver-

gence rates.

Our interest in such estimates originally arose from the study of time domain boundary

integral equations and their discretization using convolution quadrature (CQ). It has

already been noticed in the early works (see e.g. [19]) that such discretizations have a

strong relation to the Runge–Kutta approximation of the underlying semigroup. This

approach of studying TDBIEs in a strictly time-domain way has recently garnered a lot of

interest, see [3, 13, 15] and the monograph [31], as it potentially allows sharper bounds

than the more standard Laplace domain based approach. Similar techniques have even

been extended to the case of certain nonlinear problems in [4]. This paper can be seen as

our latest addition to this effort. While the convergence rates provided by the Laplace-

domain approach in [2] and the results in this current paper are essentially the same, the

present new approach provides better insight into the dependence on the end-time of the

computation (quadratic vs. general unknown polynomial behavior). This suggest that the

present approach might be better suited for analyzing long term computations. It also fits

more naturally with the time-domain analysis of the continuous problem and space dis-

cretization, as for example presented in [13].

The paper is structured as follows. Section 2 introduces the abstract setting and fixes

notation, most notably for working with Runge–Kutta methods. Section 3 then contains the

main estimates. Starting by summarizing known results from [1] in Sect. 3.1, we then

formulate the main new results of this article in Sect. 3.2. After proving some preparatory

lemmas related to Runge–Kutta methods in Sects. 4 and 5, we provide the proofs of the

main estimates in Sect. 6. In Sect. 7, we show how our setting simplifies if we restrict our

view to a subclass of admissible operators. In Sect. 8, to showcase how the theory

developed in this paper is useful for this class of problems, we consider a simple exterior

scattering problem in Sect. 8.3 and a heat transmission problem in Sect. 8.5. We note that

Sect. 8.3 showcases the need for the bound on the discrete integral of the result, whereas

Sect. 8.5 was chosen because, in order to bound the main quantity of interest on the

boundary, we need to apply a trace theorem. This necessitates the use of the graph norm

estimate.
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2 Problem setting

We start by fixing the general setting used for the rest of the paper, first with respect to the

equation to be solved and then with respect to its discretization.

2.1 Operator equation, functional calculus, and Sobolev towers

Assumption 2.I We are given:

(a) A closed linear operator AH : dom AHð Þ � X ! X in a Banach space X .

(b) A bounded linear operator B : dom AHð Þ ! M with another Banach space M.

We assume that A :¼ AHjkerB generates a C0-semigroup and that B admits a bounded right

inverse E such that rangeE � kerðI � AHÞ, where I : X ! X is the identity operator.

We are given u0 2 domðAÞ and data functions F 2 C1ð½0; T �;XÞ, N 2 C1ð½0; T �;MÞ, and

we consider the problem: find u 2 C1ð½0; T �;XÞ such that

_uðtÞ ¼ AHuðtÞ þ FðtÞ; t[ 0; ð2:1aÞ

BuðtÞ ¼ NðtÞ; t[ 0; ð2:1bÞ

uð0Þ ¼ u0: ð2:1cÞ

For conditions on the well-posedness of this problem, see [13]. We start by recalling the

following consequence of the Hille-Yosida theorem.

Proposition 2.1 ([26, Corollary 3.8]) If A is the generator of a C0-semigroup on a Banach
space X , then there exist constants x� 0 and M� 1 such that the spectrum rðAÞ of A
satisfies rðAÞ � fz 2 C : Re z�xg and the resolvent satisfies the estimates

A� zIð Þ�1
�
�

�
�
X!X � M

Re z� x
8z s.t. Re z[x: ð2:2Þ

When working with Runge–Kutta methods, it is useful to use a calculus that allows one to

apply rational functions to (unbounded) operators, as long as the poles of the function are

compatible with the spectrum of the operator.

Definition 2.2 (Rational functions of operators) Let q be a rational function that is
bounded at infinity. Let K be the set of poles of q, which we can write in the form (note that

we allow for some of the factors in the numerator to be constant)

qðzÞ ¼ c0

Yn

i¼1

ciz� 1

z� ki
¼ c0

Yn

i¼1

ci þ
ciki � 1

z� ki

� �

:

If A : domðAÞ � X ! X is a linear operator such that rðAÞ \ K ¼ ;, we define
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qðAÞ :¼ c0ðc1I þ ðc1k1 � 1ÞðA� k1IÞ�1Þ � � � ðcnI þ ðcnkn � 1ÞðA� knIÞ�1Þ: ð2:3Þ

It is easy to see that different reorderings of the factors in the numerator and denominator

of q produce the same result and that each factor in the definition of q(A) is a bounded

linear operator in X since ki 62 rðAÞ: The bounded linear operator qðAÞ : X ! X satisfies

kqðAÞkX!X �Cq

�

1 þ
�

max
k2K

kðA� kIÞ�1kX!X
�n
�

: ð2:4Þ

The error estimates of this paper use the theory of interpolation spaces. For Banach spaces

X1 � X0 with continuous embedding and l 2 ð0; 1Þ, we define the space ½X0;X1�l;1
using real interpolation with the following norm:

uk k½X0;X1�l;1 :¼ ess supt[ 0 t�l inf
v2X1

u� vk kX0
þt vk kX1

h i� �

: ð2:5Þ

We will not go into details of the definitions and instead refer to [35, 36] or [22,

Appendix B]. For simplicity of notation we often drop the second parameter 1 and just

write ½X0;X 1�l.

The most important property is the following: a bounded linear operator T : X0 ! Y0

and X 1 ! Y1 with X 1 � X 0 and Y1 � Y0 is also a bounded operator mapping

½X 0;X1�l ! ½Y0;Y1�l with the following norm bound

Tk k½X0;X1�l!½Y0;Y1�l � Tk k1�l
X0!Y0

Tk klX1!Y1
: ð2:6Þ

We also note that for l1 �l2, the spaces are nested, i.e., ½X 0;X1�l2
� ½X0;X 1�l1

with

continuous embedding. For notational convenience we write ½X 0;X1�0 :¼ X 0 and

½X 0;X1�1 :¼ X1. We will be interested in a collection of spaces defined by interpolating

the domains of the powers of the operator A. The details of this construction can be found,

for example in [11].

Definition 2.3 (Sobolev towers) Let A be a closed operator on a Banach space X . For

l 2 N0, we define the following spaces X0 :¼ dom A0ð Þ :¼ X and Xl :¼ dom Alð Þ,
equipped with the following norm

uk kXl
:¼
Xl

j¼0

Aju
�
�

�
�
X :

For l 2 ½0;1Þ, we define Xl :¼ Xblc;Xblcþ1

	 


l�blc by interpolation.

We sometimes consider domðAÞ as a Banach space. It is to be understood carrying the

graph norm, same as X1.

2.2 Runge–Kutta approximation and discrete stage derivative

An m-stage Runge–Kutta method is given by its Butcher tableau, characterized by Q 2
Rm	m and b, c 2 Rm. The Runge–Kutta approximation of the problem (2.1a–2.1c) starts at
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uk0 :¼ u0 and then computes for n� 0 the stage vector Uk
n 2 Xm and the step approximation

uknþ1 2 X by solving

Uk
n ¼ 1 ukn þ kðQ 
 AHÞUk

n þ kQFðtn þ k cÞ; ð2:7aÞ

ðI 
 BÞUk
n ¼ N tn þ k cð Þ; ð2:7bÞ

uknþ1 ¼ ukn þ kðb> 
 AHÞUk
n þ kb>Fðtn þ k cÞ: ð2:7cÞ

We have used the following notation (the spaces Y and Z are generic):

(a) For a function G : ½0; T� ! Y we write

Gðtn þ kcÞ :¼ Gðtn þ kc1Þ; . . . ;Gðtn þ kcmÞð Þ>2 Ym:

(b) For a matrix S 2 Rm	m and an operator C : Y ! Z we write

S 
 C :¼
S11C � � � S1mC

..

. ..
.

Sm1C � � � SmmC

2

6
6
4

3

7
7
5
: Ym ! Zm:

(c) For the vector b and an operator C : Y ! Z we write

b> 
 C :¼ b1C � � � bmC½ � : Ym ! Z:

(d) I is the m	 m identity matrix, and 1 ¼ ð1; � � � ; 1Þ>.

(e) We admit shortened expressions such as

QFðtn þ kcÞ :¼ ðQ 
 IÞFðtn þ kcÞ;
1 u :¼ ð1
 IÞu;

b>Fðtn þ kcÞ :¼ ðb> 
 IÞFðtn þ kcÞ:

The following lemma involving inversion of matrices of operators associated to an oper-

ator can be proved by taking the Jordan canonical form of the matrix S.

Lemma 2.4 If A : domðAÞ � X ! X is a linear operator on a Banach space X and
S 2 Cm	m satisfies rðAÞ \ rðSÞ ¼ ;, then

I 
 A� S 
 I : ðdomðAÞÞm ! Xm;

is invertible. Furthermore, there exists a constant CS , depending only on S, such that

kðI 
 A� S 
 IÞ�1kXm!Xm �CS 1 þ max
l2rðSÞ

kðA� l IÞ�1kX!X

� �m

:

Under Assumption 2.I, the internal stage computation in the RK method can be decom-

posed in the following form:
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Yk
n : ¼ ðI 
 EÞNðtn þ k cÞ; ð2:8aÞ

Zk
n � kðQ 
 AÞZk

n ¼ 1ukn � Yk
n þ kQðYk

n þ Fðtn þ k cÞÞ; ð2:8bÞ

Uk
n : ¼ Yk

n þ Zk
n : ð2:8cÞ

In (2.8b) we look for Zk
n 2 ðdomðAÞÞm.

The stability function of the Runge–Kutta method is the rational function

rðzÞ :¼ 1 þ zb>ðI � zQÞ�11. We will not consider the full class of Runge–Kutta methods,

but will restrict our considerations to those satisfying the following Assumptions:

Assumption 2.II

(i) The matrix Q is invertible.

(ii) The stability function r does not have poles in fz : Re z\0g, and rðitÞj j � 1 for all

t 2 R (i.e., the method is A-stable). Equivalently, jrðzÞj\1 for all z with negative

real part.

We note that Assumption 2.II (i) implies that the following limit exists

lim
z!1

rðzÞ ¼ 1 � b>Q�11 ¼: rð1Þ:

Assumption 2.II (ii) implies that

rðQÞ � Cþ :¼ fz 2 C : Re z[ 0g;

and that r is a rational function with poles only in Cþ and bounded at infinity.

The computation of the internal stages in the numerical approximation (2.7a–2.7c)

requires the inversion of

I 
 I � kðQ 
 AÞ ¼ ðQ 
 IÞðQ�1 
 I � I 
 ðk AÞÞ;

as can be seen from the equivalent form (2.8a–2.8c).

If A is the infinitesimal generator of a C0-semigroup and x and M are given by

Proposition 2.1 and if we choose (recall that rðQÞ � Cþ)

k0\x�1d0; d0 :¼ minfRe k : k 2 rðQ�1Þg; ð2:9Þ

then the RK method can be applied for any 0\k� k0. By Proposition 2.1 and Lemma 2.4,

it follows that

kðI 
 I � kðQ 
 AÞÞ�1kXm!Xm �CQ
M

d0 � k0x
; 8k� k0: ð2:10Þ

Using Definition 2.2, we can define rðk AÞ for an RK method satisfying Assumption 2.II

and k� k0 satisfying (2.9). We then define

qkðTÞ :¼ sup
0� nk�T

rðkAÞnk kX!X : ð2:11Þ

This quantity is relevant for the study of the error propagation in the Runge–Kutta method.

Given an RK method, we consider the following matrix-valued rational function
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dðzÞ :¼ Qþ z

1 � z
1b>

� ��1

¼ Q�1 � z

1 � rð1ÞzQ
�11b>Q�1: ð2:12Þ

(The verification that these two formulas correspond to the same matrix is simple by using

the Sherman–Morrison–Woodbury formula.) This matrix is related to the discrete differ-

entiation process associated to an RK method satisfying Assumption 2.II: on the one hand

k�1dðzÞ is the discrete symbol associated to the discrete operational calculus built with the

RK method [19]; on the other hand, a direct interpretation of this symbol is possible using

the Z-transformation (see [14, Sect. 6]). Given a sequence U :¼ fUng (tagged from n� 0)

on a space, its Z-transform Z is the formal series

bUðzÞ :¼
X1

n¼0

Unz
n:

For a detailed treatment on formal power series, see [12].

Definition 2.5 Let U :¼ fUng and V :¼ fVng be two sequences in Xm and let bU and bV be

their respective Z-transforms. If

k�1dðzÞ bUðzÞ ¼ bV ðzÞ;

we write

okU ¼ V ; U ¼ ðokÞ�1V:

The above definition is consistent with the RK discrete operational calculus of Lubich and

Ostermann, see Sect. 8.1 and [19]. We now show an explicit form of the computation of ok

and its inverse.

Lemma 2.6 If U ¼ fUng is a sequence in Xm, then X :¼ ðokÞ�1U can be computed with
the recurrence

x0 :¼ 0;
Xn :¼ 1xn þ kQUn;

xnþ1 :¼ xn þ kb>Un ¼ rð1Þxn þ b>Q�1Xn;
ð2:13Þ

and V :¼ okU can be computed with the inverse recurrence

u0 :¼ 0;
Vn :¼ k�1Q�1ðUn � 1unÞ;

unþ1 :¼ un þ kb>Vn ¼ rð1Þun þ b>Q�1Un:
ð2:14Þ

Proof The proof of (2.13) is a simple exercise in Z-transforms, while (2.14) follows from

(2.13) by writing Un in terms of Xn (and changing names to the sequences). h

The first result of Lemma 2.6 expresses the fact that if we apply the RK method to the

equation
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_xðtÞ ¼ uðtÞ; xð0Þ ¼ 0; i.e.; xðtÞ ¼
Z t

0

uðsÞds;

and X :¼ fXng is the sequence of vectors of internal stages, then X ¼ ðokÞ�1U, where

Un :¼ uðtn þ kcÞ.
Finally we note that we call a Runge–Kutta method stiffly accurate, if it satisfies

b>Q�1 ¼ e>m :¼ ð0; . . .; 0; 1Þ. Stiffly accurate methods satisfy [we use that Q1 ¼ c,

see (5.1)]

cm ¼ b>Q�1c ¼ b>Q�1Q1 ¼ b>1 ¼ 1; ð2:15Þ

and rð1Þ ¼ 0:
For stiffly accurate methods, taking the discrete derivative of a stage vector consisting

of samples taken from a continuous function is particularly simple:

Lemma 2.7 Let t 7!FðtÞ be a continuous function with Fð0Þ ¼ 0. For stiffly accurate RK

methods the sequence G :¼ okF with Fn ¼ Fðtn þ kcÞ satisfies

Gn ¼ k�1Q�1ðFðtn þ kcÞ � 1FðtnÞÞ:

Proof For stiffly accurate methods we have rð1Þ ¼ 0 and therefore

dðzÞ ¼ Q�1 � zQ�11b>Q�1 ¼ Q�1 � zQ�11e>m :

However, since cm ¼ 1, we have e>mFðtn�1 þ kcÞ ¼ Fðtn�1 þ kcmÞ ¼ FðtnÞ; which proves

the result. h

We also make the following optional assumption, which allows us to increase the con-

vergence order in some cases.

Assumption 2.III For all t 2 R; t 6¼ 0 the stability function satisfies rðitÞj j\1 and

rð1Þ\1.

3 Error estimates

We are now in a position to formulate the main results of this article and put them into

context with previous results, most notably from [1].

To simplify notation, we will write for v 2 Cð½0; T �;XlÞ with l� 0;

kvkT ;l :¼ max
s2½0;T �

kvðsÞkXl
:

For functions f : ½0; T � ! Y, we will write ðo�1f ÞðtÞ :¼
R t

0
f ðsÞds, where Y denotes a

generic Banach space.
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3.1 The estimates of Alonso-Mallo and Palencia

The following two propositions summarize the results of Alonso-Mallo and Palencia [1],

rewritten with the notation of the present paper. The ‘proofs’ which we provide clarify how

notation needs to be adapted and how the hypotheses of the main results of [1] are satisfied

in our context.

Proposition 3.1 ([1, Theorem 1]) Let Assumption 2.I hold and assume that the exact

solution u satisfies u 2 Cpþ1 0; T½ �;Xl
� �

for some l� 0. Let fukng denote the Runge–Kutta

approximation from (2.7a–2.7c). Then there exist constants k0 [ 0 and C[ 0 such that for
0\k� k0 and 0\nk�T the following estimate holds:

kuðtnÞ � uknkX �CTqkðTÞkminfqþl;pg
� Xp

‘¼qþ1

kuð‘ÞkT ;l þ kuðpþ1ÞkT ;0
�

: ð3:1Þ

The constant C depends on the Runge–Kutta method, l, and the constants M and x from
(2.2). The constant k0 depends only on x and the Runge–Kutta method.

Proof We only remark on the differences in notation. A different definition of interpo-

lation spaces is given in [1], but the proof only relies on estimates of the form (2.6). The

choice of k0 follows from the fact that it is only needed to ensure that ðI � kQ
 AÞ is

invertible, see (2.10). The assumption l� p� q in [1, Theorem 1] can be replaced by

using the rate minfp; qþ lg in (3.1) as the spaces Xl � X p�q are nested for l� p� q. We

also lowered the regularity requirements on the highest derivative compared to their stated

result. The fact that this holds true follows from inspection of the proof. See also

Lemma 5.9 for the key ingredient. h

For certain Runge–Kutta methods, these estimates can be improved:

Proposition 3.2 ([1, Theorem 2]) Let the assumptions of Proposition 3.1 hold and assume
that, in addition, the RK method satisfies Assumption 2.III. Then there exist constants
k0 [ 0, C[ 0 such that for 0\k� k0 and 0\nk�T the following improved estimate
holds:

kuðtnÞ � uknkX �Cð1 þ TÞqkðTÞkminfqþlþ1;pg
Xpþ1

‘¼qþ1

kuð‘ÞkT ;l: ð3:2Þ

The constant C depends on the Runge–Kutta method, l, and the constants M and x from
(2.2); k0 depends only on the constant x and the Runge–Kutta method.

Proof Again, this is just a reformulation of [1, Theorem 2]. We first note that, due to our

assumption on rð1Þ, we are always in the case m ¼ 0 of [1]. Since we assumed that on the

imaginary axis rðitÞj j\1 for 0 6¼ t 2 R, we directly note that for sufficiently small k0, all

the zeros of rðzÞ � 1 except z ¼ 0 satisfy Re z[ k0x. By the resolvent bound (2.2) we can

therefore estimate for k� k0
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ðzI � kAÞ�1
�
�

�
�
X!X � M

Re z� k0x
; if Re z � k0x;

i.e., we have a uniform resolvent bound in the set Za;d in [1]. We also note that we

reformulated the convergence rate such that we do not have the restriction l� p� q� 1,

since the exceptional cases are already covered by Proposition 3.1. h

Remark 3.3 The assumption rðzÞj j\1 for ReðzÞ� 0 and rð1Þ 6¼ 1 is satisfied by the

Radau IIA family of Runge–Kutta methods, but is violated by the Gauss methods, which

satisfy rðzÞj j ¼ 1 on the imaginary axis.

3.2 New results in this article

In this section we present some a priori estimates for the convergence of Runge–Kutta

methods when applied to the abstract problem (2.1a–2.1c). These can be seen as a con-

tinuation of [1] to the case where the boundary conditions are not given exactly but stem

from computing discrete integrals and differentials using the same Runge–Kutta method.

Theorem 3.4 (Integrated estimate) Let u solve (2.1a–2.1c) with u0 ¼ 0 and assume that for
some l� 0 we have

u 2 Cpð½0; T�;XlÞ; EN;F 2 Cp�1ð½0; T �;XlÞ \ Cpð½0; T �;X 0Þ:

Set x :¼ o�1u. Let Uk ¼ fUk
ng and let uk ¼ fukng be the discrete approximation given by

(2.7a–2.7c) for a method satisfying Assumption 2.II. If Xk :¼ ðokÞ�1Uk and we define

xk ¼ fxkng with the recurrence

xk0 :¼ 0; xknþ1 :¼ rð1Þxkn þ b>Q�1Xk
n;

then there exists a constant k0 [ 0 such that for all k\k0 and n 2 N with nk� T the
following estimate holds:

kxðtnÞ � xknkX �

CTqkðTÞkminfqþlþ1;pg

"
Xp�1

‘¼q

kuð‘ÞkT ;l þ kENð‘ÞkT ;l þ kFð‘ÞkT ;l
� �

þ kuðpÞkT ;l þ kENðpÞkT ;0 þ kFðpÞkT ;0
� �

#

þ C T2qkðTÞkp kENðpÞkT ;0 þ kFðpÞkT ;0
� �

:

If Assumption 2.III holds and if we assume the stronger regularities

u 2 Cpþ1ð½0; T �;XlÞ; F 2 Cpð½0; T �;XlÞ; EN 2 Cpð½0; T �;XlÞ;

then
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kxðtnÞ � xknkX �

Cð1 þ TÞqkðTÞkminfqþlþ2;pg

"
Xp

‘¼q

kuð‘ÞkT ;l þ kENð‘ÞkT ;l þ kFð‘ÞkT ;l þ kuðpþ1ÞkT ;l

#

þ C T2qkðTÞkp kENðpÞkT ;0 þ kFðpÞkT ;0
� �

:

The constant k0 depends only on x from (2.2) and the Runge–Kutta method. If x ¼ 0 then
k0 can be chosen arbitrarily large. C depends on x, M from (2.2), the Runge–Kutta
method, and l.

Theorem 3.5 (Differentiated estimate) Let u solve (2.1a–2.1c) with u0 ¼ 0 and assume
_uð0Þ ¼ 0. Assume that for some l� 0 we have

u 2 Cpþ1ð½0; T �;XlÞ \ Cpþ2ð½0; T �;X0Þ; EN;F 2 Cpð½0; T �;XlÞ \ Cpþ1ð½0; T �;X0Þ;

and let v :¼ _u. Let Uk ¼ fUk
ng and uk ¼ fukng be the discrete approximation given by

(2.7a–2.7c) for a stiffly accurate method satisfying Assumption 2.II.

If Vk :¼ okUk and vkn ¼ e>mV
k
n�1, then there exists a constant k0 [ 0 such that for all

k\k0 and n� 1 such that nk� T the following estimate holds:

kvðtnÞ � vknkX þ kAHðuðtnÞ � uknÞkX �CTqkðTÞkminfqþl;pg�1

 
Xp

‘¼qþ1

�

kuð‘þ1ÞkT;l þ kENð‘ÞkT ;l þ kFð‘ÞkT;l
�

þ kuðpþ2ÞkT ;0 þ kENðpþ1ÞkT;0 þ kFðpþ1ÞkT;0

!

:

If, in addition, the method satisfies Assumption 2.III and

u 2 Cpþ2ð½0; T�;XlÞ; EN;F 2 Cpþ1ð½0; T �;XlÞ \ Cpþ2ð½0; T �;X0Þ;

then

kvðtnÞ � vknkX þ kAHðuðtnÞ � uknÞkX

�Cð1 þ TÞqkðTÞkminfqþl;pg
� Xpþ1

‘¼qþ1

�

kuð‘ÞkT ;l þ kENð‘ÞkT ;l þ kFð‘ÞkT ;l
�

þ kuðpþ2ÞkT ;l þ kENðpþ2ÞkT ;0 þ kFðpþ2ÞkT ;0
�

:

The constant k0 depends only on x from (2.2) and the Runge–Kutta method. If x ¼ 0, then
k0 can be chosen arbitrarily large. C depends on x, M from (2.2), the Runge–Kutta
method, and l.

Remark 3.6 Most of the effort in proving the above theorem is done in order to obtain a

convergence rate higher than q, even though the constraint in the stages is approximated

only with order q. This is possible by exploiting the additional structure of the dis-

cretization error of the side constraint.

Remark 3.7 We formulated all our results for homogeneous initial conditions, since it is

sufficient for our purposes in time domain BEM and convolution quadrature. It should be

possible to generalize these results to the case of u0 2 domðAsÞ for sufficiently large s� 1
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by considering the evolution of the semigroup with inhomogeneous side constraint but

homogeneous initial condition and the semigroup of homogeneous constraint but inho-

mogeneous u0 separately.

Remark 3.8 The loss of order by 1 in Theorem 3.5 compared to Propositions 3.1 and 3.2

is to be expected. Indeed, if we look at the case u 2 domðAlÞ for l� 1, this means

AHu 2 domðAl�1Þ. Applying Proposition 3.2 to this semigroup then also gives a reduced

order of kminðqþl;pÞ.

4 Some computations related to the main theorems

We will collect the sampled data and the stage and step parts of the solutions in four formal

series

bF
kðzÞ :¼

X1

n¼0

Fðtn þ kcÞzn; bN
kðzÞ :¼

X1

n¼0

Nðtn þ kcÞzn; ð4:1aÞ

bU
kðzÞ :¼

X1

n¼0

Uk
nz

n; bukðzÞ :¼
X1

n¼0

uknz
n: ð4:1bÞ

If the data functions are polynomially bounded in time, the series in (4.1a) are convergent

(in Xm and Mm respectively) with at least unit radius of convergence. Because of the

equivalent formulation of the numerical method in the form (2.8a–2.8c), and using (2.10),

it follows that for k� k0 [with k0 chosen using (2.9)], the numerical solution is at least

bounded in the form Uk
n

�
�

�
�
X.Cn. Thus, the two series in (4.1b) also converge on a

sufficiently small disk.

Proposition 4.1 The sequences fUk
ng and fukng satisfy equations (2.7a–2.7c) if and only if

k�1dðzÞ bUkðzÞ ¼ ðI 
 AHÞ bU
kðzÞ þ bF

kðzÞ þ k�1

1 � rð1ÞzQ
�11u0; ð4:2aÞ

ðI 
 BÞ bUkðzÞ ¼ bN
kðzÞ; ð4:2bÞ

bukðzÞ ¼ z

1 � rð1Þz b
>Q�1 bU

kðzÞ þ 1

1 � rð1Þz u
k
0: ð4:2cÞ

Proof Let us start by proving a simple result: the discrete equations (2.7a) and (2.7c) hold
if and only if (2.7a) and

uknþ1 ¼ rð1Þukn þ b>Q�1Uk
n ð4:3Þ

hold. To see this, note that (2.7a) is equivalent to
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Q�1ðUk
n � 1uknÞ ¼ kððI 
 AHÞUk

n þ Fðtn þ kcÞÞ

and therefore (2.7a) and (2.7c) imply

b>Q�1ðUk
n � 1uknÞ ¼ kððb> 
 AHÞUk

n þ b>Fðtn þ kcÞÞ ¼ uknþ1 � ukn;

or equivalently (4.3). The reciprocal statement is proved similarly. The recurrence (4.3) is

equivalent to (4.2c). At the same time, the recurrence (2.7a) is equivalent to

k�1Q�1ð bUkðzÞ � 1bukðzÞÞ ¼ ðI 
 AHÞ bU
kðzÞ þ bF

kðzÞ: ð4:4Þ

After inserting (4.2c) into (4.4), the formula (4.2a) follows. h

Proposition 4.1 is a rephrasing of [28, Lemma 3.19], where the computation is also laid out

in more detail. Note how equations (4.2a)–(4.2b) relate strongly to (2.1a–2.1c), with the

discrete symbol k�1dðzÞ playing the role of the time derivative and

k�1

1 � rð1ÞzQ
�11

playing the role of a discrete Dirac delta at time t ¼ 0.

Lemma 4.2 ([2, Lemma 2.6]) If the matrix Q of the RK method is invertible, then for
zj j\1

rðdðzÞÞ � rðQ�1Þ [ fw 2 C : rðwÞz ¼ 1g:

In particular, if the Runge–Kutta method is A-stable (Assumption 2.II), then
rðdðzÞÞ � Cþ.

We need a corollary to the previous result:

Corollary 4.3 Let Assumption 2.II hold. Then, for all r0\1, there exists a constant d[ 0

such that for all zj j\r0 there holds

r
�

dðzÞ
�

�
n

w 2 Cþ : ReðwÞ[ d
o

:

Proof In view of of Lemma 4.2, since rðQÞ is finite, independent of z, and contained in

Cþ, we are mainly concerned with the set fw 2 C : rðwÞz ¼ 1g. We first note that
[

zj j � r0

fw 2 C : rðwÞz ¼ 1g � fw 2 C : rðwÞj j � 1=r0g:

Second, we observe that by taking d0 small enough, we can ensure that w7!rðwÞ is

continuous for ReðwÞ� d0 and thus

fw 2 C : rðwÞj j � 1=r0g \ fw 2 C : ReðwÞ� d0g ¼ rjfReðwÞ� d0g
�1
�

½1=r0;1Þ
�

is a closed set. Third, by considering the limit along the imaginary axis, we get
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rð1Þj j ¼ lim
n!1

rðinÞj j � 1:

Thus, for wj j sufficiently large, it holds that rðwÞj j � 1=r0.

Overall, we get that

fw 2 C : rðwÞj j � 1=r0g \ fw 2 C : ReðwÞ� d0g

is a compact set with empty intersection with the imaginary axis. Thus, it must have a

positive distance from it. These observations and Lemma 4.2 conclude the proof. h

Lemma 4.4 Let Assumptions 2.I and 2.II hold. For r0\1, there exists k0 ¼ k0ðx; r0Þ[ 0

such that for all k� k0 and jzj � r0 the problem

�k�1dðzÞ bU þ ðI 
 AHÞ bU ¼ bF ; ð4:5aÞ

ðI 
 BÞ bU ¼ bN ð4:5bÞ

has a unique solution for arbitrary bF 2 Xm and bN 2 Mm. If x ¼ 0 in Proposition 2.1,

then there are no restrictions on k, and the results holds for all jzj\1.

Proof Assume first that S 2 Cm	m is such that rðSÞ � fz : Re z[xg and consider the

problem

�ðS 
 IÞ bU þ ðI 
 AHÞ bU ¼ bF ; ð4:6aÞ

ðI 
 BÞ bU ¼ bN: ð4:6bÞ

Take first bV :¼ ðI 
 EÞbN (where E is the lifting operator of Assumption 2.I) and then

seek bW 2 ðdom ðAÞÞm satisfying

�ðS 
 IÞ bW þ ðI 
 AÞ bW ¼ bF þ ððS � IÞ 
 IÞ bV :

This problem is uniquely solvable by Lemma 2.4, since rðAÞ � fz : Re z�xg and

therefore rðAÞ \ rðSÞ ¼ ;: We then define bU :¼ bV þ bW , which solves (4.6a, 4.6b). To

see uniqueness, one observes that the difference of two solutions of (4.6a, 4.6b) solves the

homogeneous problem (bN ¼ 0 and bF ¼ 0) for which uniqueness was established in

Lemma 2.4.

By Corollary 4.3, the union of the spectra of dðzÞ for jzj � r0 has a positive distance

dðr0Þ[ 0 from the imaginary axis. If we take k0\dðr0Þ=x, then rðk�1dðzÞÞ � fs :
Re s[xg for all jzj � r0 and k� k0. When x ¼ 0, we can take any k0. By the previous

considerations this implies unique solvability. h

Proposition 4.5 Let Uk ¼ fUk
ng and uk ¼ fukng be sequences satisfying (2.7a–2.7c) with

uk0 ¼ 0. The sequence Vk ¼ fVk
ng ¼ okUk satisfies

Vk
n ¼ 1 vkn þ kðQ 
 AHÞVk

n þ kQGk
n; ð4:7aÞ
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ðI 
 BÞVk
n ¼ Hk

n; ð4:7bÞ

vknþ1 ¼ rð1Þvkn þ b>Q�1Vk
n ; ð4:7cÞ

for data vk0 ¼ 0, Gk ¼ fGk
ng :¼ okfFðtn þ kcÞg, and Hk ¼ fHk

ng :¼ okfNðtn þ kcÞg.
Moreover,

ðI 
 AHÞUk
n ¼ Vk

n � Fðtn þ kcÞ; ð4:8aÞ

Vk
n ¼ k�1Q�1ðUk

n � 1uknÞ: ð4:8bÞ

Proof Recall that Eqs. (2.7a) and (2.7c) are equivalent to (2.7a) and (4.3), as shown in the

proof of Proposition 4.1. Moreover, the latter equations are equivalent to (4.2a–4.2c) in the

Z-domain. In the present case we have u0 ¼ 0. For a given square matrix P 2 Cm	m and an

operator C, we have

ðP 
 IÞðI 
 CÞ ¼ P 
 C ¼ ðI 
 CÞðP 
 IÞ;

which proves that

k�1dðzÞ bVkðzÞ ¼ ðI 
 AHÞ bV
kðzÞ þ bG

kðzÞ; ð4:9aÞ

ðI 
 BÞ bVkðzÞ ¼ bH
kðzÞ; ð4:9bÞ

bvkðzÞ ¼ z

1 � rð1Þz b
>Q�1 bV

kðzÞ: ð4:9cÞ

By Proposition 4.1, Eq. (4.9a–4.9c) are equivalent to (4.7a–4.7c). Finally (4.8a) follows

from (4.2a), while (4.8b) follows from (4.4) and (4.8a). h

Proposition 4.6 Let Uk ¼ fUk
ng and uk ¼ fukng be sequences satisfying (2.7a–2.7c) with

uk0 ¼ 0. The sequence Xk ¼ fXk
ng ¼ ðokÞ�1Uk satisfies

Xk
n ¼ 1 xkn þ kðQ 
 AHÞXk

n þ kQHk
n ; ð4:10aÞ

ðI 
 BÞXk
n ¼ Ck

n; ð4:10bÞ

xknþ1 ¼ rð1Þxkn þ b>Q�1Xk
n ð4:10cÞ

¼ xkn þ kðb> 
 AHÞXk
n þ kb>Hk

n ; ð4:10dÞ

for data xk0 :¼ 0, Hk ¼ fHk
ng :¼ ðokÞ�1fFðtn þ kcÞg, Ck ¼ fCk

ng :¼ ðokÞ�1fNðtn þ kcÞg.

Proof Follow the proof of Proposition 4.5. h
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5 Some Lemmas regarding Runge–Kutta methods

In order to shorten the statements of the results of this section, in all of them we will

understand that:

(1) We have an RK method with coefficients Q; b; c satisfying Assumption 2.II
(invertibility of Q and A-stability). The method has classical order p and stage
order q.

(2) We have an operator A in X that is the generator of a C0-semigroup, characterized
by the quantities M and x of Proposition 2.1. The associated Sobolev tower fXlg,
obtained by interpolation of domðAlÞ for positive integer values of l, will also be
used.

The following lemma will be used at a key point in the arguments below.

Lemma 5.1 Let A be a linear operator in X and q be a rational function bounded at
infinity whose poles are outside rðAÞ. The following properties hold:

(a) The operator q(A) maps dom A‘
� �

to dom A‘
� �

for all ‘:

(b) If 0 62 rðAÞ, and we define pðzÞ :¼ z�‘qðzÞ, then qðAÞ ¼ pðAÞA‘ in dom A‘
� �

.

Proof To prove (a), show first by induction on ‘ that ðA� kIÞ�1
maps dom A‘

� �

into

dom A‘þ1
� �

. Using this result for each of the factors in the definition (2.3) the result

follows. To prove (b) note first that p is rational, bounded at infinity, and that rðAÞ does not

intersect the set of poles of p. Using Definition 2.2, we have pðAÞ ¼ A�‘qðAÞ ¼ qðAÞA�‘,

and the result follows. h

We start by recalling some simple facts about RK methods that we will need in the sequel.

Using the notation c‘ :¼ ðc‘1; . . .; c‘mÞ
>

, the following equalities (order conditions) hold (see

e.g. [1, 25]):

c‘ ¼ ‘Qc‘�1; 0� 1� ‘� q; ð5:1aÞ

b>Q jc‘ ¼ ‘!

ðjþ ‘þ 1Þ! ; 0� jþ ‘� p� 1: ð5:1bÞ

Therefore,

b>Qjðc‘ � ‘Qc‘�1Þ ¼ 0; 0� j� p� ‘� 1; 1� ‘� p ð5:2aÞ

‘b>c‘�1 ¼ 1; 1� ‘� p� 1: ð5:2bÞ

For a stiffly accurate method we have (2.15) and therefore

b>Q�1c‘ ¼ c‘m ¼ 1 8‘ 2 N0: ð5:3Þ

The following result is well-known. We just summarize it for ease of reference later on.

Lemma 5.2 (Discrete antiderivative and RK quadrature) Let f : ½0; T � ! X , g :¼ o�1f ,

Gk ¼ fGk
ng ¼ ðokÞ�1ff ðtn þ kcÞg and fgkng be given by the recursion
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gk0 :¼ 0; gknþ1 :¼ gkn þ kb>f ðtn þ kcÞ:

For the errors dkn :¼ gðtnÞ � gkn, and for n such that nk�T , we have the estimates

kdknkX �CTkpkf ðpÞkT ;0; ð5:4aÞ

kdkn � dkn�1kX �Ckpþ1 max
tn�1 � t� tn

kf ðpÞðtÞkX : ð5:4bÞ

Additionally, at the stage level we have

kkb>gðtn þ kcÞ � kb>Gk
nkX �Ckpþ1

�

kf ðp�1ÞkT ;0 þ Tkf ðpÞkT ;0
�

: ð5:4cÞ

Proof Follows from the fact that the Runge–Kutta method defines a quadrature formula of

order p. h

5.1 Estimates on rational functions of the operator

The following results in this section are adaptations from [1]. While they focus on the case

b ¼ 0, we present the necessary generalizations to b ¼ �1. We will use the rational

functions

r‘;bðzÞ :¼ zb>ðI � zQÞ�1Qbðc‘ � ‘Qc‘�1Þ; b 2 f�1; 0; 1g; ð5:5Þ

snðzÞ :¼
Xn

j¼0

rðzÞj: ð5:6Þ

Note that these rational functions are bounded at infinity and that r‘;bð0Þ ¼ 0. We will also

use the vector-valued rational function

gðzÞ> :¼ zb>ðI � zQÞ�1; ð5:7Þ

and note that gð0Þ ¼ 0 and rðzÞ ¼ 1 þ gðzÞ>1.

Lemma 5.3 The rational functions (5.5) satisfy

r‘;bðzÞ ¼ Oðjzjpþ1�‘�bÞ as jzj ! 0; ‘� p; b 2 f0; 1g: ð5:8Þ

The estimate (5.8) is also valid for b ¼ �1 if the method is stiffly accurate.

Proof For the case b ¼ 0, the proof is given in [1, Lemma 5]. For the case b ¼ �1, an

analogous proof can be brought to fruition. Namely, one can expand the inverse in the

definition of r‘;b into the Neumann series and apply the order conditions (5.2a, 5.2b). For

b ¼ �1, one has to use (5.3) for the leading term. h
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Lemma 5.4 If the RK method satisfies Assumption 2.III, then there exists a constant
k0 [ 0 depending on the RK method and on x such that for b 2 f0; 1g, ‘� p� b, and all
0\k� k0 and all n with 0� n k� T , we have the estimate

snðkAÞr‘;bðk AÞ
�
�

�
�
Xl!X �C qkðTÞkminfl;p�‘�bg ð5:9Þ

with qkðTÞ defined in (2.11). If ‘ ¼ p and b ¼ 1, the left-hand side of (5.9) is bounded by
CqkðTÞ. The constant C[ 0 in (5.9) depends only on the Runge–Kutta method, M and x,

k0, ‘, and l, but is independent of n and k. If the Runge–Kutta method is stiffly accurate,

then the estimate (5.9) also holds for b ¼ �1. If x ¼ 0, then k0 can be chosen arbitrarily.

Proof We adapt the proof of [1, Lemma 6], which only covers the case b ¼ 0. Consider

first the case p� ‘� b� 0 and take any integer l such that 0� l� p� ‘� b. Then

r‘;bðzÞ
Xn

j¼0

rðzÞj ¼ ðrðzÞnþ1 � 1Þq‘;b;lðzÞzl; q‘;b;lðzÞ :¼
r‘;bðzÞ

ðrðzÞ � 1Þzl :

By Lemma 5.3, the rational function r‘;b has a zero of order p� ‘� bþ 1 at z ¼ 0. The

rational function ðrðzÞ � 1Þzl has a zero of order lþ 1� p� ‘� bþ 1 at z ¼ 0, and all

other zeros are in Cþ by A-stability and Assumption 2.III. This implies that the rational

function q‘;b;l has its poles in

K :¼ fz 6¼ 0 : rðzÞ ¼ 1g [ rðQ�1Þ � Cþ: ð5:10Þ

Therefore, for k0 [ 0 sufficiently small we get using (2.4):

kq‘;b;lðkAÞkX!X �C 80\k� k0; ð5:11Þ

where C depends on M, x, k0, and the RK method. By Lemma 5.1 we have

r‘;bðkAÞ
Xn

j¼0

rðkAÞjx ¼ klðrðkAÞnþ1 � IÞq‘;b;lðkAÞAlx 8x 2 dom Alð Þ; k� k0:

This, (5.11), and applying (2.11) to control rðkAÞnþ1
by qkðTÞ, proves (5.9) for integer

l� p� ‘� b. For larger integer values of l, the result does not need to be proved as the

maximum rate is already attained. We just have to estimate the X p�‘�b norm by the

stronger Xl norm. For real values of l, we use interpolation.

We still need to prove the result when p� ‘� b ¼ �1; which can only happen when

‘ ¼ p and b ¼ 1: We note that rp;1ð0Þ ¼ 0 and we can therefore argue as in the previous

case for l ¼ 0. h

Lemma 5.5 If the RK method satisfies Assumption 2.III and k0 is the value given in
Lemma 5.4, then

ksnðk AÞgðk AÞ>kXm!X �C qkðTÞ; ð5:12Þ

for all k� k0 and n such that nk� T.

Proof Since gð0Þ ¼ 0, we can adapt the proof of Lemma 5.4 to each of the components of

the vector-valued function g. The key step is to show that hðzÞ> :¼ ðrðzÞ � 1Þ�1gðzÞ is

bounded at infinity and has all its poles in the set defined in (5.10) and therefore
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khðk AÞ>kXm!X �C 8k� k0:

Since the operator snðk AÞgðk AÞ> on the left-hand side of (5.12) can be rewritten as

ðrðkAÞnþ1 � IÞhðk AÞ>, the bound (5.12) follows readily. h

When dealing with Runge–Kutta methods that do not satisfy the additional Assump-

tion 2.III, we still have the following result:

Lemma 5.6 For k0 [ 0 taken as in Lemma 5.4, we can bound for all k� k0

kr‘;bðk AÞkXl!X �Ckminfl;pþ1�‘�bg ð5:13Þ

for ‘� p, b 2 f0; 1g, and l� 0. The constant C depends on M, x, k0, l, and the RK
method. The estimate (5.13) also holds for b ¼ �1 if the method is stiffly accurate.
Additionally

kgðkAÞ>kXm!X �C; 8k� k0: ð5:14Þ

Proof The argument to prove (5.13) is very similar to that of Lemma 5.4. By interpolation

it is clear that we just need to prove the result for any integer l satisfying

0� l� pþ 1 � ‘� b. Consider then the rational function q‘;b;lðzÞ :¼ z�lr‘;bðzÞ, which is

bounded at infinity and has all its poles in rðQ�1Þ [see (5.10)]. We can then use the same

argument to prove (5.11) for this redefined new function q‘;b;l. (Note that we do not use

Assumption 2.III in this argument.) Using that r‘;bðk AÞ ¼ klq‘;b;lðkAÞAl in dom Alð Þ, the

result follows. Stiff accuracy of the method is used in the case b ¼ �1 when we apply

Lemma 5.3, dealing with the zeros of r‘;�1.

The proof of (5.14) is a similar adaptation of the proof of Lemma 5.5. h

5.2 Estimates on discrete convolutions

The RK error will naturally induce several types of discrete convolutions that we will need

to estimate separately. In all of them we will have the structure

x0 ¼ 0; xnþ1 :¼ rðkAÞxn þ kgn; n� 0: ð5:15Þ

We first deal with the simplest cases.

Lemma 5.7 For nk�T , the sequence defined by (5.15) can be bounded by

kxnkX � nkqkðTÞmax
j� n

kgjkX �TqkðTÞmax
j� n

kgjkX :

If gn :¼ gðkAÞ>nn for nn 2 Xm, then

kxnkX �CTqkðTÞmax
j� n

knnkXm :
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Proof Follows by writing the recurrence (5.15) as a discrete convolution. h

The next estimate is related to the consistency error of the RK method in the sense of how

the RK method approximates derivatives at the stage level. We introduce the operator

Dkðy; tÞ :¼ yðt þ kcÞ � yðtÞ1� kQ _yðt þ kcÞ: ð5:16Þ

The following well-known result about Dkðy; tÞ underlies the proofs of [1, Theorem 1] and

[25, Theorem 2].

Lemma 5.8 If y 2 Cpþ1ð½0; T�;XÞ, then

Dkðy; tÞ ¼
Xp

j¼qþ1

kj

j!
ðcj � jQcj�1ÞyðjÞðtÞ þ RkðtÞ; ð5:17Þ

where

kRkðtÞkXm �Ckpþ1 max
t� s� tþk

kyðpþ1ÞðsÞkX : ð5:18Þ

Proof Follows easily from the Taylor expansion and the order conditions (5.1a, 5.1b). h

We are almost ready for the two main lemmas of this section, the first one without

Assumption 2.III and the second one with it. These results and their proofs follow [1,

Theorem 1 and 2], where only the case b ¼ 0 is covered.

Lemma 5.9 Let y 2 Cpþ1ð½0; T�;XÞ \ Cpð½0; T �;XlÞ for some l� 0. Let the sequence xn

be defined by (5.15) with gn :¼ k�1gðkAÞ>ðkQÞbDðy; tnÞ. Then there exists a constant
k0 [ 0 depending only on x from (2.2) and the RK method such that for k� k0, b 2 f0; 1g
and for nk�T

kxnkX �CTqkðTÞkminfqþlþb;pþb;pg
Xp

j¼qþ1

kyðjÞkT ;l þ kyðpþ1ÞkT ;0

 !

:

The estimate also holds for b ¼ �1 if the method is stiffly accurate. If x ¼ 0, then k0 can
be chosen arbitrarily.

Proof Introduce

ekbðtÞ :¼ gðkAÞ>ðkQÞbDkðy; tÞ; b 2 f�1; 0; 1g; ð5:19Þ

and note gn ¼ k�1ekbðtnÞ. Using Lemmas 5.6 and 5.8 [recall the definition of rj;b in (5.5)],

we can bound
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kekbðtÞkX �
Xp

j¼qþ1

kjþb

j!
rj;bðkAÞyðjÞðtÞ
�
�

�
�
XþkbkgðkAÞ>QbRkðtÞkX

.

Xp

j¼qþ1

kminflþjþb;pþ1gkyðjÞðtÞkXl
þ kbkRkðtÞkXm :

By (5.18), we then have

kekbðtÞkX.k1þminfqþlþb;pþb;pg
�Xp

j¼qþ1

kyðjÞðtÞkXl
þ max

t� s� tþk
kyðpþ1ÞðsÞkX

�

; ð5:20Þ

and the result then follows from Lemma 5.7. h

Lemma 5.10 Let y 2 Cpþ1ð½0; T �;XlÞ for some l� 0. Let the RK method satisfy

Assumption 2.III. Then there exists a constant k0 [ 0 depending only on x from (2.2) and
the RK method such that the sequence xn defined in Lemma 5.9 satisfies for b 2 f0; 1g and
k� k0

kxnkX �Cð1 þ TÞqkðTÞkminfqþlþbþ1;pg
Xpþ1

j¼qþ1

kyðjÞkT ;l

 !

:

If the method is stiffly accurate and y 2 Cpþ2ð½0; T �;XÞ \ Cpþ1ð½0; T �;XlÞ, then for b ¼ �1

kxnkX �Cð1 þ TÞqkðTÞkminfqþl;pg
Xpþ1

j¼qþ1

kyðjÞkT ;l þ kyðpþ2ÞkT ;0

 !

:

If x ¼ 0, then k0 can be chosen arbitrarily.

Proof We will use the function ekb defined in (5.19) and Abel’s summation by parts:

xn ¼
Xn

j¼0

rðkAÞn�jekbðtjÞ

¼ snðkAÞekbðt0Þ þ
Xn

j¼1

sn�jðkAÞðekbðtjÞ � ekbðtj�1ÞÞ þ ekbðtnÞ;
ð5:21Þ

an expression involving the rational functions sn defined in (5.6) (recall that s0 ¼ 1). We

first apply Lemmas 5.4, 5.5 and 5.8 to estimate
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ksnðkAÞekbðtÞkX �
Xp

j¼qþ1

kjþb

j!
ksnðkAÞrj;bðkAÞkXl!XkyðjÞðtÞkXl

þ CkbksnðkAÞgðkAÞ>kXm!XkRkðtÞkXm

.qkðTÞ
Xp

j¼qþ1

kminfjþlþb;pgkyðjÞðtÞkXl

þ qkðTÞkbþpþ1 max
t� s� tþk

kyðpþ1ÞðsÞkX

.qkðTÞk1þminfqþlþb;pþb;p�1g
�
Xp

j¼qþ1

kyðjÞðtÞkXl

þ max
t� s� tþk

kyðpþ1ÞðsÞkX
�

:

Since

ekbðtÞ � ekbðt � kÞ ¼ gðkAÞ>ðkQÞbDkðy� yð� � kÞ; tÞ;

and using that yðjÞðtÞ � yðjÞðt � kÞ
�
�

�
�
Xl

� kmaxt�k� s� tþk yðjþ1Þ�
�

�
�
Xl

, a computation anal-

ogous to the above bound, but using y� yð� � kÞ as data implies

ksnðkAÞðekbðtÞ � ekbðt � kÞkX.qkðTÞk1þminfqþ1þlþb;pg

"
Xpþ1

j¼qþ2

max
t�k� s� t

kyðjÞðsÞkXl
þ max

t�k� s� tþk
kyðpþ2ÞðsÞkX

#

;

and therefore

Xn

j¼1

ksn�jðkAÞðekbðtjÞ � ekbðtj�1ÞÞkX.qkðTÞtnkminfqþ1þlþb;pg
Xpþ1

j¼qþ2

kyðjÞktn;l þ kyðpþ2Þktnþ1;0

 !

:

Note that if b 2 f0; 1g we can make a simpler estimate for the term originating from Rk,

(i.e., the one containing the highest derivative) using less regularity for y by not taking

advantage of the difference between yðpþ1ÞðtjÞ and yðpþ1Þðtj�1Þ and thus end up requiring

less regularity. Using the estimate (5.20) for the last term in (5.21), we have thereby

already derived estimates for all three terms in (5.21). h

6 Proofs

The two different cases (with or without Assumption 2.III) will be collected by using the

parameter

a :¼
1; if Assumption 2:III holds ;

0; otherwise :




ð6:1Þ
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6.1 Proof of Theorem 3.4

Recall that u solves (2.1) with uð0Þ ¼ 0. The functions N and F are the given boundary and

volume data. If C :¼ o�1N and H :¼ o�1F, then x ¼ o�1u solves

_xðtÞ ¼ AHxðtÞ þ HðtÞ; t[ 0; BxðtÞ ¼ CðtÞ; xð0Þ ¼ 0: ð6:2Þ

On the other hand, fXk
ng ¼ ðokÞ�1fUk

ng solves by Proposition 4.6:

Xk
n ¼ 1xkn þ kðQ 
 AHÞXk

n þ kQHk
n ; ð6:3aÞ

ðI 
 BÞXk
n ¼ Ck

n; ð6:3bÞ

xknþ1 ¼ xkn þ kðb> 
 AHÞXk
n þ kb>Hk

n : ð6:3cÞ

Before we can estimate the difference between the functions x and xkn, we need one final

lemma.

Lemma 6.1 Let x solve

_xðtÞ ¼ AHxðtÞ þ HðtÞ; t[ 0; BxðtÞ ¼ CðtÞ; xð0Þ ¼ 0: ð6:4Þ

Assume that for some l� 0 we have

x 2 Cpþ1ð½0; T �;XlÞ; H 2 Cpð½0; T �;XlÞ; EC 2 Cpð½0; T �;XlÞ:

Then x� EC 2 Cpð½0; T �;Xlþ1Þ.

Proof We set y :¼ x� EC. By assumption we have y 2 Cpð½0; T �;XlÞ and

B x� ECð Þ ¼ 0. Since x 2 domðAHÞ and range E � domðAHÞ this implies yðtÞ 2 domðAÞ
for all t 2 ½0; T �. We further calculate using (6.4) and range E � kerðI � AÞ

H
:

Ay ¼ AHx� AHEC ¼ _x� H � EC:

Each of the terms is assumed in Cpð½0; T �;XlÞ, thus y 2 Cpð½0; T�;Xlþ1Þ. h

We will need the sequences fckng and fhkng with the scalar parts of the computations of

fCk
ng and fHk

ng respectively, namely (see Lemma 2.6),

ck0 :¼ 0; ckn ¼ ckn�1 þ kb>Nðtn þ kcÞ; ð6:5aÞ

hk0 :¼ 0; hkn ¼ hkn�1 þ kb>Fðtn þ kcÞ: ð6:5bÞ

We then consider

Dk
n :¼ ðI 
 EÞðCðtn þ kcÞ � Ck

nÞ; dkn :¼ EðCðtnÞ � cknÞ:

Using (6.5a), the definition Ck ¼ ðokÞ�1N, and (2.13), we can write
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Dk
n � 1dkn ¼ ðI 
 EÞCðtn þ kcÞ � 1ECðtnÞ � kQ
 E _Cðtn þ kcÞ

¼ DkðEC; tnÞ:
ð6:6Þ

Lemma 5.2 (take f ¼ EN for the first three inequalities and f ¼ F for the last one) proves

that

kdknkX �CTkpkENðpÞkT ;0; ð6:7aÞ

kdkn � dkn�1kX �Ckpþ1kENðpÞkT ;0; ð6:7bÞ

kkb>Dk
nkX �Ckpþ1ðkENðp�1ÞkT ;0 þ TkENðpÞkT ;0Þ; ð6:7cÞ

kHðtnÞ � hknkX �CTkpkFðpÞkT ;0: ð6:7dÞ

The error analysis is derived by tracking the evolution of the following differences

Ek
n :¼ xðtn þ kcÞ � Xk

n � Dk
n 2 ðdomðAÞÞm; ekn :¼ xðtnÞ � xkn � dkn;

(compare (6.2) and (6.3b) to see the vanishing boundary condition for Ek
n) and note that by

(6.7a)

kxðtnÞ � xknkX �keknkX þ CTkpkENðpÞkT ;0;

which shows that we only need to estimate ekn to prove Theorem 3.4.

We start with the observation that x solves the following equation, as can be easily

derived from Eq. (6.2):

xðtn þ kcÞ ¼ 1xðtnÞ þ kQ
 AHxðtn þ kcÞ
þ xðtn þ kcÞ � kQ _xðtn þ kcÞ þ kQHðtn þ kcÞ � 1xðtnÞ

¼ 1xðtnÞ þ kQ
 AHxðtn þ kcÞ þ kQHðtn þ kcÞ þ Dkðx; tnÞ:
ð6:8Þ

Recalling that Assumption 2.I included the hypothesis rangeE � kerðI � AHÞ, we have

ðQ 
 AHÞDk
n ¼ QDk

n. Combining (6.8) and (6.3a), we get

Ek
n ¼ 1ekn þ kðQ 
 AÞEk

n þ Dkðx; tnÞ � kQ
�

Hk
n � Hðtn þ kcÞ

�

þ 1dkn � Dk
n þ kQDk

n:

Naive estimation of the terms Dkðx; tnÞ and Dk
n � 1dkn would yield convergence rates similar

to Propositions 3.1 and 3.2. In order to get an increased rate, as stated in Theorem 3.4, we

combine these two terms using the function YðtÞ :¼ xðtÞ � ECðtÞ. Lemma 6.1 and the

assumptions of Theorem 3.4 ensure Y 2 Cpþað½0; T �;Xlþ1Þ \ Cpþ1ð½0; T �;XÞ.
We can thus further simplify

Ek
n ¼ 1ekn þ kðQ 
 AÞEk

n þ Dkðx; tnÞ � DkðEC; tnÞ
þ kQDkðH; tnÞ � kQ1

�

hkh � HðtnÞ
�

þ kQDk
n

¼ 1ekn þ kðQ 
 AÞEk
n þ DkðY ; tnÞ

þ kQDkðH; tnÞ � kQ1
�

hkh � HðtnÞ
�

þ kQDk
n:

ð6:9Þ
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This then immediately gives (recall (5.7) for the definition of g)

kðb> 
 AÞEk
n ¼

gðkAÞ> 1ekn þ DkðY ; tÞ þ kQDkðH; tnÞ � kQ1
�

hkh � HðtnÞ
�

þ kQDk
n

	 


:
ð6:10Þ

It is easy to see from (6.2) that x satisfies

xðtnþ1Þ ¼ xðtnÞ þ kb> 
 AHxðtn þ k cÞ
þ xðtnþ1Þ � xðtnÞ � kb> _xðtn þ kcÞ þ kb>Hðtn þ kcÞ
	 


:

Subtracting (6.3c) from this, inserting (6.10), using that ðb> 
 AHÞDk
n ¼ b>Dk

n, and setting

uk
n :¼ xðtnþ1Þ � xðtnÞ � kb> _xðtn þ kcÞ

	 


þ kb>ðHðtn þ kcÞ � Hk
nÞ;

we have

eknþ1 ¼ ekn þ kðb> 
 AÞEk
n þ kðb> 
 AHÞDk

n þ dkn � dknþ1 þ uk
n

¼ rðkAÞekn þ gðkAÞ>ðkQÞDk
n þ gðkAÞ>DkðY ; tnÞ

þ gðkAÞ>ðkQÞDkðH; tnÞ � gðkAÞ>ðkQÞ1
�

hkh � HðtnÞ
�

þ kb>Dk
n þ dkn � dknþ1 þ uk

n:

What is left is the careful combination of terms so that we can bound everything using

Lemmas 5.7, 5.9, and 5.10 by writing

eknþ1 � rðkAÞekn ¼ gðkAÞ>ðDkðY; tnÞÞ þ gðkAÞ>ðkQÞðDkðECþ H; tnÞÞ
þ gðkAÞ>Q1 k

�

dkn �
�

hkh � HðtnÞ
��

þ kb>Dk
n þ ðdkn � dknþ1Þ þ uk

n:

Since the above recurrence defining fekng is linear as a function of the right-hand side, we

can estimate its norm by adding the effects of each of the terms. In the order in which they

appear in the last expression, we use: Lemmas 5.9–5.10 with b ¼ 0, but noting that

YðtÞ 2 domðAlþ1Þ; Lemmas 5.9–5.10 with b ¼ 1; Lemma 5.7 combined with (6.7a) and

(6.7d); Lemma 5.7 combined with (6.7c) and (6.7b); for the first term of uk
h we use

Lemma 5.7 combined with Lemma 5.2 with f :¼ _x. Finally, for the second contribution to

uk
h, we use (5.4c).

Combined, these results give
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keknkX �CðT þ aÞqkðTÞkminfqþlþ1þa;pg
� Xp

j¼qþ1

kY ðjÞkT ;lþ1 þ kY ðpþ1ÞkT ;aðlþ1Þ

�

þ CðT þ aÞqkðTÞkminfqþlþ1þa;pg
� Xp

j¼qþ1

kðECÞðjÞkT ;l þ kðECÞðpþ1ÞkT ;al
�

þ CðT þ aÞqkðTÞkminfqþlþ1þa;pg
� Xp

j¼qþ1

kHðjÞkT ;l þ kHðpþ1ÞkT ;al
�

þ CT2qkðTÞkpþ1kENðpÞkT ;0 þ CT2qkðTÞkpþ1kFðpÞkT ;0
þ CTqkðTÞkpþ1

�

kENðp�1ÞkT ;0 þ TkENðpÞkT ;0
�

þ CTqkðTÞkpþ1
�

kHðp�1ÞkT ;0 þ TkHðpÞkT ;0
�

:

If we apply Lemma 6.1 to bound the Xlþ1-norm, we arrive at the stated estimate.

6.2 Proof of Theorem 3.5

This proof is very similar to the one of Theorem 3.4 but slightly simpler. We will point out

the main steps of the proof. We first focus on showing the estimate for v� vk. Note that we

use the simple form of ok for stiffly accurate RK methods given in Lemma 2.7. We define

G :¼ _F and H :¼ _N so that v ¼ _u satisfies

_vðtÞ ¼ AHvðtÞ þ GðtÞ; t[ 0; BvðtÞ ¼ HðtÞ; vð0Þ ¼ 0:

Its RK approximation

eV
k

n ¼ 1evkn þ kðQ 
 AHÞ eV
k

n þ kQGðtn þ kcÞ; ð6:11aÞ

ðI 
 BÞ eVk

n ¼Hðtn þ kcÞ; ð6:11bÞ

evknþ1 ¼ evkn þ kðb> 
 AHÞ eV
k

n þ kb>Gðtn þ kcÞ; ð6:11cÞ

and fVk
ng ¼ okfUk

ng satisfies (see Proposition 4.5 and Lemma 2.7, where we use stiff

accuracy of the RK scheme, and recall that fGk
ng ¼ okfFðtn þ kcÞg and

fHk
ng ¼ okfNðtn þ kcÞg)

Vk
n ¼ 1vkn þ kðQ 
 AHÞVk

n þ kQGk
n; ð6:12aÞ

ðI 
 BÞVk
n ¼Hk

n ¼ k�1Q�1ðNðtn þ kcÞ � 1NðtnÞÞ; ð6:12bÞ

vknþ1 ¼ vkn þ kðb> 
 AHÞVk
n þ kb>Gk

n: ð6:12cÞ

Let then

Dk
n :¼ ðI 
 EÞðHk

n �Hðtn þ kcÞÞ ¼ k�1Q�1DkðEN; tnÞ

and [note (6.11b) and (6.11c)]
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Ek
n :¼ Vk

n � eV
k

n � Dk
n 2 ðdomðAÞÞm; ekn :¼ vkn � ev

k
n:

By (6.11a) and (6.12a), using that ðQ 
 AHÞDk
n ¼ QDk

n (assumption on the lifting) and

Lemma 2.7 to represent Gk
n, we have

kðb> 
 AÞEk
n ¼ gðkAÞ>ð1ekn � Dk

n þ kQDk
n þ DkðF; tnÞÞ

and therefore, from (6.11c) and (6.12c)

eknþ1 ¼ rðkAÞekn � gðkAÞ>ðkQÞ�1DkðEN; tnÞ þ gðkAÞ>DkðENþ F; tnÞ
þ kb>Q�1DkðENþ F; tnÞ:

ð6:13Þ

The final term can be shown to be of order Oðkpþ1Þ by combining (5.17) with (5.2b)

and (5.3). We then use Lemmas 5.9 and 5.10 with b ¼ �1 and b ¼ 0 as well as

Lemma 5.7 to bound

keknkX �CðT þ aÞqkðTÞka�1þminfqþl;pg
Xpþa

j¼qþ1

kENðjÞkT ;l þ kENðpþ1þaÞkT ;0

 !

þ CðT þ aÞqkðTÞka�1þminfqþl;pg
Xpþa

j¼qþ1

kFðjÞkT ;l þ kFðpþ1þaÞkT ;0

 !

:

Finally Propositions 3.1 and 3.2 are used to bound

kvðtnÞ � evknkX �CðT þ aÞqkðTÞkminfqþlþa;pg
� Xpþ1þa

‘¼qþ2

kuð‘ÞkT ;l þ kuðpþ2ÞkT ;0
�

: ð6:14Þ

The estimate involving AHu can be proved as an easy corollary of the estimate on v. Since

the last stage of a stiffly accurate method is the step, we have that (4.8a) implies that

AHu
k
n ¼ vkn � FðtnÞ

and therefore

AHuðtnÞ � AHu
k
n ¼ vðtnÞ � vkn:

7 Maximal dissipative operators in Hilbert space

In this short section we summarize some results that show that the hypotheses on the

abstract equation and its discretization are simpler for maximal dissipative operators on

Hilbert spaces. These results are well-known and will be needed when applying the theory

developed in the previous sections to some model problems in Sect. 8.

If A is maximal dissipative in the Hilbert space X , i.e.,

RehAx; xiX � 0 8x 2 domðAÞ;

and if A� I : domðAÞ ! X is invertible with bounded inverse, then the constants in

Proposition 2.1 can be chosen as M ¼ 1 and x ¼ 0. In this case A generates a contraction

semigroup in H. See [26, Sect. 1.4].

In particular, if the RK method satisfies Assumption 2.II and
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rðAÞ � fz : Re z� 0g; ð7:1Þ

then the Eq. (2.7a–2.7c) [or equivalently (2.8a–2.8c)], defining the RK approximation of

(2.1a–2.1c) are uniquely solvable for any k[ 0 (apply Lemma 2.4 with S ¼ k�1Q�1). The

following lemma gives a bound for qkðTÞ in this specific setting.

Lemma 7.1 (Discrete stability) Let A be a linear, maximal dissipative operator on a
Hilbert space H. For A-stable Runge–Kutta methods and arbitrary k[ 0, we can bound

rðk AÞk kH!H � 1; ð7:2Þ

and therefore qkðTÞ� 1 for all k and T [ 0.

Proof Let cðzÞ :¼ ðzþ 1Þ=ðz� 1Þ, and note that cðAÞ ¼ ðAþ IÞðA� IÞ�1
is well defined

and since

kðAþ IÞxk2 � kðA� IÞxk2 ¼ 4Re hAx; xi� 0 8x 2 domðAÞ;

it is clear that kcðAÞkH!H � 1: Consider now the rational function q :¼ r � c. Since c maps

B(0; 1) bijectively into fz : Re z\0g and r maps the latter set to B(0; 1) (this is A-

stability), it follows that q : Bð0; 1Þ ! Bð0; 1Þ. Since rðcðAÞÞ � Bð0; 1Þ and c(A) is

bounded, we can define q(c(A)) and show (use a classical result of von Neumann [37,

Section 4] or [30, Chapter XI, Section 154]) that kqðcðAÞÞkH!H � 1.

Finally, using that cðcðzÞÞ ¼ z for all z, it follows that r ¼ q � c. It is then an easy

computation to prove that rðAÞ ¼ qðcðAÞÞ. (We remark that this equality can also be

proved using functional calculus.) h

In Propositions 3.1 and 3.2, if A is maximal dissipative, k0 can be chosen arbitrarily. In

Lemma 5.4, if A is maximal dissipative, k0 can be chosen arbitrarily.

8 Applications

In this section X is a bounded Lipschitz open set in Rd (d ¼ 2 or 3) with boundary C.

We use the usual (fractional) Sobolev spaces HsðXÞ for s� 0 and introduce the space

H1
DðXÞ :¼ fu 2 H1ðXÞ : Du 2 L2ðXÞg. On the boundary C, we also consider Sobolev

spaces HsðCÞ and their duals H�sðCÞ. Details can, for example be found in [22].

For the trace operators, we make the convention that the index þ relates to exterior and

- means the trace is taken from the interior of X. For example, the two bounded surjective

trace operators c� : H1ðRd n CÞ ! H1=2ðCÞ denote the trace from Rd n X and X, respec-

tively. and we will denote H�1=2ðCÞ for the dual of the trace space. The angled bracket

h � ; � iC will be used for the H�1=2ðCÞ 	 H1=2ðCÞ duality pairing and ð�; �ÞRd will be used for

the inner product in L2ðRdÞ and
	

L2ðRdÞ

d

. We will also use the normal traces c�m :

Hðdiv;Rd n CÞ ! H�1=2ðCÞ and the normal derivative operators o�m . Here we make the

convention that the normal derivative points out of X for both interior and exterior trace.

We note that the applications in this section are chosen for their simplicity. More

complicated applications, also involving full discretizations by convolution quadrature and

boundary elements of systems of time domain boundary integral equations can be found in

[29] and [27].
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8.1 Boundary integral equations and convolution quadrature

In this section, we give a very brief introduction to boundary integral equations and their

discretization using convolution quadrature. In that way, we can later easily state our

methods for both the heat and wave equations in a concise and unified language. We

present the result mostly formally, but note that they can be made rigorous under mild

assumptions on the appearing functions. This theory can be found in most monographs on

boundary element methods, see e.g. [22, 32, 33] or [31].

For s 2 Cþ, we consider solutions u 2 H1ðRd n CÞ to the Helmholtz equation

�Duþ s2u ¼ 0 in Rd n C:

For this problem, the fundamental solution is given by

Uðz; sÞ :¼

i

4
H

ð1Þ
0 is zj jð Þ; for d ¼ 2;

e�s zj j

4p zj j ; for d ¼ 3;

8

>><

>>:

where H
ð1Þ
0 denotes the first kind Hankel function of order 0. Using the representation

formula, u can be rewritten using only its boundary data:

uðxÞ ¼ SðsÞsomut� DðsÞscut; ð8:1Þ

where the single layer and double layer potentials are given by

SðsÞuð Þ xð Þ :¼
Z

C
Uðx� y; sÞuðyÞ dy;

DðsÞwð Þ xð Þ :¼
Z

C
omðyÞUðx� y; sÞwðyÞ dy;

and the expressions scut :¼ c�u� cþu and somut :¼ o�m u� oþm u denote the jump of the

trace of v and normal derivative across C.

We note that both SðsÞk and DðsÞw solve the Helmholtz equation for any given densities

k 2 H�1=2ðCÞ and w 2 H1=2ðCÞ.
We will need the following four boundary integral operators:

VðsÞ :¼ c�SðsÞ; KðsÞ :¼ 1

2
ðcþSðsÞ þ c�SðsÞÞ; ð8:2Þ

KtðsÞ :¼ 1

2
ðoþm DðsÞ þ o�m DðsÞÞ; WðsÞ :¼ �o�m DðsÞ: ð8:3Þ

When solving problems in the time domain, we can leverage our knowledge of the

Helmholtz equation using the Laplace transform L. For an operator valued analytic

function F with domðFÞ 
 Cþ, we can then define the convolution operator

FðoÞ :¼ L�1 � F �L, where L is the Laplace transform in the sense of causal distribu-

tions. (Precise definitions can be found in [31, Chapter 3] and [21]).

Given a Runge–Kutta method, it is then easy to define the convolution quadrature

approximation to such operators, as was introduced in [19]. We just replace the Laplace

transform by the Z-transform Z and s with the function d=k, i.e., we define:
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FðokÞg :¼ Z�1 F

�
dð�Þ
k

�

Z g½ �
� �

;

where g denotes a sequence in the shared domain of F(s) and k[ 0 denotes the step size.

The matrix-valued function z7!FðdðzÞk Þ is defined using the Riesz-Dunford calculus, but can

be computed in practice by diagonalizing the argument.

Remark 8.1 We note that our use of the notation ok and ðokÞ�1
is consistent with this

definition by using the functions FðsÞ :¼ s and FðsÞ :¼ s�1.

8.2 An exotic transmission problem

In this section we show how to apply Theorems 3.4 and 3.5 to a transmission problem in

free space associated to the infinitesimal generator of a group of isometries (both �A are

maximal dissipative) with some exotic transmission conditions which impose partial

observation of a trace. In Sect. 8.3 we will explain how this problem is related to a

boundary integral representation of a scattering problem and how the current results yield

the analysis of a fully discrete method for that integral representation. We keep the pre-

sentation brief. For more details and exemplary applications we refer to [13].

Let Yh be a closed subspace of H1=2ðCÞ (in practice it will be finite-dimensional) and

consider the spaces

Hðdiv;Rd n CÞ :¼fw 2 L2ðRd n CÞd : r � w 2 L2ðRd n CÞg; ð8:4aÞ

Vh :¼fv 2 H1ðRd n CÞ : scvt 2 Yhg; ð8:4bÞ

Wh :¼fw 2 Hðdiv;Rd n CÞ : hc�m w; lhiC ¼ 0 8lh 2 Yhg; ð8:4cÞ

W0
h :¼Wh \Hðdiv;RdÞ ð8:4dÞ

¼fw 2 Hðdiv;RdÞ : hc�m w; lhiC ¼ 0 8lh 2 Yhg: ð8:4eÞ

The condition scvt 2 Yh is equivalent to

ðr � w; vÞRdnC þ ðw;rvÞRd ¼ 0 8w 2 W0
h: ð8:5Þ

We then set

X :¼ L2ðRd n CÞ 	 L2ðRd n CÞd; V :¼ Vh 	Wh; M :¼ H�1=2ðCÞ:

In X we use the natural inner product, in V we use the norm of

H1ðRd n CÞ 	Hðdiv;Rd n CÞ, and in M we use the usual norm. We will define AH :
dom AHð Þ ¼ V ! X and B : V ! M by

AHðv;wÞ :¼ ðr � w;rvÞ; Bðv;wÞ :¼ c�m w� cþm w;

understanding that AH can also be extended to H1ðRd n CÞ 	Hðdiv;Rd n CÞ. As we did in
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Assumption 2.I, we consider domðAÞ ¼ kerB ¼ Vh 	W0
h and define A as the restriction of

AH to this subset.

Proposition 8.2 The operators �A are maximal dissipative.

Proof The identity (8.5) shows that hAðv;wÞ; ðv;wÞiX ¼ 0 for all ðv;wÞ 2 Vh 	W0
h:

Given ðf ; fÞ 2 X , solving the coercive problem

find v 2 Vh : ðrv;rsÞRd þ ðv; sÞRd ¼ ðf ; sÞRd � ðf;rsÞRd 8s 2 Vh;

and defining w ¼ rvþ f, we have a pair ðv;wÞ 2 Vh 	W0
h such that ðv;wÞ � Aðv;wÞ ¼

ðf ; fÞ and thus A is maximal dissipative. The proof that �A is maximal dissipative is

similar. (Note that this is a particular case of what appears in [13].) h

We consider the standard problem (2.1a–2.1c) with vanishing initial conditions and data

F ¼ 0 and N ¼ g : ½0;1Þ ! L2ðCÞ, namely, we look for ðvh;whÞ : ½0;1Þ ! dom AHð Þ
such that

ð _vhðtÞ; _whðtÞÞ ¼ ðr � whðtÞ;rvhðtÞÞ 8t[ 0; ð8:6aÞ

�

cþm whðtÞ � c�m w
hðtÞ; l

�

C ¼ hgðtÞ; liC 8l 2 Yh; 8t[ 0; ð8:6bÞ

ðvhð0Þ;whð0ÞÞ ¼ ð0; 0Þ: ð8:6cÞ

Uniqueness of the solution to (8.6a–8.6c) follows from Proposition 8.2. We will handle

existence of a solution below. The quantities of interest are uh :¼ o�1vh and its Dirichlet

trace wh :¼ scuht : ½0;1Þ ! Yh.

Proposition 8.3 There exists a linear bounded right inverse E : M ! dom AHð Þ of B such
that rangeE � kerðI � AHÞ. The norm of E is independent of the space Yh.

Proof Given n 2 M ¼ H�1=2ðCÞ, we solve the coercive problem

find v 2 Vh : ðrv;rsÞRdnC þ ðv; sÞRdnC ¼ hn; cþsiC 8s 2 Vh; ð8:7Þ

and we set w :¼ rv.

This problem is equivalent to (note (8.5))

ðv;wÞ 2 dom AHð Þ; ðv;wÞ ¼ AHðv;wÞ; Bðv;wÞ ¼ n: ð8:8Þ

Since hn; cþwiC
�
�

�
�. nk kH�1=2ðCÞ wk kH1ðRdnCÞ it follows that the norm of the solution operator

for (8.7) is independent of the space Yh. h

Proposition 8.4 The lifting E from Proposition 8.3 is a bounded linear map L2ðCÞ !
X1=2 :¼ ½X ; domðAÞ�1=2 with Ekk kX1=2

�C kk kL2ðCÞ: The constant C depends only of X.

Proof We will need spaces encoding homogeneous normal traces:
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H0ðdiv;XÞ :¼
�

w 2 Hðdiv;XÞ : c�m w ¼ 0
�

;

H0ðdiv;Rd n XÞÞ :¼
�

w 2 Hðdiv;Rd n XÞÞ : cþm w ¼ 0
�

:

Let k 2 L2ðCÞ be given. By applying Theorem A.4 to the exterior and setting ew ¼ 0

inside, we can construct a function ew 2 Hðdiv;Rd n CÞ satisfying scm ewt ¼ k and

ewk kHðdiv;RdnCÞþ ewk k½L2ðXÞ;H0ðdiv;RdnXÞ�1=2
. kk kL2ðCÞ: ð8:9Þ

Upon identifying the product of function spaces on X and Rd n X with a function space on

Rd n C, we have

H0ðdiv;XÞ 	H0ðdiv;Rd n XÞ � W0
h:

The product of interpolation spaces equals the interpolation of product spaces (cf. Lemma

A.5); we can therefore also estimate:

ð0; ewÞk kX1=2
. ewk k½L2ðXÞ;W0

h�1=2
. kk kL2ðCÞ:

If we consider ðv;wÞ :¼ Ek, then ðv;w� ewÞ 2 domðAÞ by construction of the lifting. Thus

we have

ðv;wÞk kX1=2
� ðv;w� ewÞk kX1=2

þ ð0; ewÞk kX1=2

� vk kH1ðRdnCÞþ w� ewk kHðdiv;RdnCÞ

� �

þ ð0; ewÞk kX1=2
:

The continuity of E from Proposition 8.3 and (8.9) conclude the proof. h

Proposition 8.5 If g 2 C2ð½0;1Þ;H�1=2ðCÞÞ satisfies gð0Þ ¼ _gð0Þ ¼ 0, then (8.6a–8.6c)

has a unique strong solution.

Proof Thanks to Propositions 8.2 and 8.3, this problem fits in the abstract framework

described in [13], which proves existence and uniqueness of solution to (8.6a–8.6c). h

Propositions 8.2 and 8.3 have some consequences. First of all, Assumption 2.I holds.

Secondly, assuming gðtÞ 2 L2ðCÞ, any solution to (2.1a–2.1c) with the above data (F ¼ 0,

N ¼ g) is in X1=2, and therefore, solutions to (8.6a–8.6c) take values in X 1=2 as well.

Finally, if g 2 Csð½0;1�; L2ðCÞÞ then Eg 2 Csð½0;1�;X1=2Þ.
We also need a regularity result that allows us to bound time derivatives of the solution

in terms of the data. The continuity condition for the ðsþ 2Þ-nd derivative of g in

Proposition 8.6 can be relaxed to local integrability, but then the norms on the right-hand

side of (8.10) have to be modified.

Proposition 8.6 If g 2 Csþ2ð½0;1Þ; L2ðCÞÞ satisfies gð‘Þð0Þ ¼ 0 for ‘� sþ 1, then the
unique solution to (8.6a–8.6c) satisfies

(a) ðvh;whÞ 2 Csþ1ð½0;1Þ;XÞ,
(b) ðvh;whÞ 2 Csð½0;1Þ;VÞ and ðvh;whÞ 2 Csð½0;1Þ;X 1=2Þ,
(c) For all ‘� s, there exists C, independent of the choice of Yh, such that for all t� 0
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kðvð‘Þh ðtÞ;wð‘Þ
h ðtÞÞkX1=2

�C t
X‘þ2

j¼‘

max
s� t

kgðjÞðsÞkL2ðCÞ: ð8:10Þ

Proof This result follows from [13, Theorem 3.1]. To see item (b), we note that ðvh;whÞ is

constructed by writing

ðvhðtÞ;whðtÞÞ ¼ ðv0
hðtÞ;w0

hðtÞÞ þ EgðtÞ;

with ðv0
hðtÞ;w0

hðtÞÞ 2 domðAÞ. The statement then follows from Proposition 8.4. h

We now consider the RK approximation of (8.6a–8.6c) in a finite time interval [0, T],

which provides pairs of stage values ðVk
h;n;W

k
h;nÞ 2 Xm and step approximations

ðvkh;n;wk
h;nÞ 2 X . We then define

fUk
h;ng ¼ ðokÞ�1fVk

h;ng; ukh;n ¼ rð1Þukh;n þ b>Q�1Uk
h;n; n� 0 ð8:11Þ

with ukh;0 ¼ 0 (see Lemma 2.6) and wk
h;n :¼ scukh;nt .

Proposition 8.7 For sufficiently smooth g, with RK approximations using a method sat-
isfying Assumption 2.II, and with a given by (6.1), for nk�T we have the estimates

kuhðtnÞ � ukh;nkL2ðRdnCÞ �C T2 þ a
� �

kminfqþ3=2þa;pg
Xpþ3

‘¼q

max
t� T

kgð‘ÞðtÞkL2ðCÞ; ð8:12Þ

and

kuhðtnÞ � ukh;nkH1ðRdnCÞ þ kwhðtnÞ � wk
h;nkH1=2ðCÞ �C T2 þ a

� �

kminfqþ1=2þa;pg
Xpþ3

‘¼q

max
t� T

kgð‘ÞðtÞkL2ðCÞ:

ð8:13Þ

The constants depend on C and the Runge–Kutta method, but do not depend on T or on the
choice of Yh.

Proof We will use Theorems 3.4 as well as Propositions 3.1 and 3.2. We note that

qkðTÞ� 1 by Lemma 7.1 and Proposition 8.2. Also, with the E operator of Proposition 8.3,

we have

kENð‘ÞkX1=2
�Ckgð‘ÞkL2ðCÞ; ð8:14Þ

with C independent of Yh. The bound (8.12) follows from Theorem 3.4, using (8.10) and

(8.14) to estimate the right-hand side. The bound
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kruhðtnÞ � rukh;nkL2ðRdnCÞ ¼ kwhðtnÞ � wk
h;nkL2ðRdnCÞ

�CT2kminfqþ1=2þa;pg
Xpþ3

‘¼qþ1

max
t� T

kgð‘ÞkH1=2ðCÞ
ð8:15Þ

follows from Propositions 3.1 and 3.2, using (8.10) for the estimate in terms of the data.

The H1ðRd n CÞ estimate (8.13) is then a direct consequence of (8.12) and (8.15). The

estimate for wh � wk
h follows from the standard trace theorem. h

8.3 Scattering

As it does not incur much difficulty, we cover both the exterior scattering problem, which

is an exterior Neumann problem, as well as the interior Neumann problem. In order to do

so, we define the domain Xþ :¼ Rd n X and X� :¼ X and distinguish the problems by

adding the superscripts þ or - to the functions involved. We stay in the geometric setting

of the previous section. Assume that d 2 Rd is a unit vector (direction of propagation) and

that c 2 R is such that X � fx 2 Rd : x � d[ cg. Let / : R ! R be a function such that

/ðrÞ ¼ 0 for all r� c: The incident wave uincðx; tÞ :¼ /ðx � d� tÞ propagates in the

direction d at unit speed and has not reached the scatterer given by X at time t ¼ 0. The

data for our problem will be the function g : ½0; T � ! L2ðCÞ given by gðtÞ :¼ �o�m u
incð�; tÞ.

The problems under consideration are: Find u� : ½0; T � ! H1ðX�Þ satisfying

€u�ðtÞ ¼ Du�ðtÞ; u�ð0Þ ¼ _u�ð0Þ ¼ 0; o�m u
�ðtÞ ¼ gðtÞ;

so that o�m ðu� þ uincÞ ¼ 0. (Note that we can take the trace of the normal derivative of the

incident wave, since it is locally smooth.) The exterior problem (posed on Xþ) is the

classical sound soft scattering problem of the incident wave uinc.

A direct formulation for solving this problem is obtained by extended the function by

zero to the complement of the domain of interest. That is, we solve:

€u�ðtÞ ¼ Du�ðtÞ in X�; somu
�ðtÞt ¼ gðtÞ; o�m u

�ðtÞ ¼ 0 ð8:16Þ

with u�ð0Þ ¼ _u�ð0Þ ¼ 0: By imposing some additional hypotheses on the growth of g
(which is needed to have a well-defined distributional Laplace transform), we can represent

the solution to (8.16) as u� ¼ �SðoÞg� DðoÞw�, where w� :¼ scu�t. Note that, to be

precise with the use of weak distributional definitions, all functions have to be extended by

zero to t\0 (we say that they are causal) and the time interval is extended to infinity.

Taking the trace in this representation formula, the solution of (8.16) can be found by

solving an equation for w� and then postprocessing with the potential operators:

WðoÞw� ¼ ð1=2 � KtðoÞÞg; u� ¼ �SðoÞg� DðoÞw�; ð8:17Þ

and we still have that w� ¼ scu�t.
For simplicity of notation, we will skip the indices ± for the different functions from

now on. We can equivalently write (8.16) and the equivalent (8.17) by using the variables

v :¼ _u and w :¼ ru. We note that u ¼ o�1v and w ¼ o�1scvt. Here, ðv;wÞ solve (we

restrict t to the interval [0, T] again)

SN Partial Differential Equations and Applications

49 Page 34 of 47 SN Partial Differ. Equ. Appl. (2020) 1:49



_vðtÞ ¼ r � wðtÞ; _wðtÞ ¼ rvðtÞ; scmwðtÞt ¼ gðtÞ; vð0Þ ¼ 0; wð0Þ ¼ 0;

that is, (8.6a–8.6c) with Yh ¼ H1=2ðCÞ.
For the discretization, we consider a finite dimensional space Yh and the Galerkin

approximation to (8.17), so that we look for wh : R ! Xh causal such that

hWðoÞwh; liC ¼ hð1=2 � KtðoÞÞg; liC 8l 2 Yh;

uh :¼ �SðoÞg� DðoÞwh:
ð8:18Þ

The functions vh :¼ _uh and wh :¼ ruh satisfy (8.6a–8.6c). The difference between the

solutions of (8.16) and (8.18) can be studied by comparing the solutions to (8.6a–8.6c)

when Yh ¼ H1=2ðCÞ and when Yh is a finite dimensional space, see [13] for details. For our

purposes, it is sufficient to note that we get quasi-optimal estimates for the discretization in

space.

Discretization in time is performed by applying convolution quadrature to (8.18). The

fully discrete solution reads

hWðokÞWh; liC ¼ hð1=2 � KtðokÞÞg; liC 8l 2 Yh;

Uh : ¼ �S0ðokÞg� DðokÞWh:
ð8:19Þ

The approximations wk
h and ukh are then computed by the usual post-processing, i.e.,

wk
h;0 :¼ 0; wk

h;nþ1 ¼ rð1Þwk
h;n þ bTQ�1Wk

h;n;

ukh;0 :¼ 0; ukh;nþ1 ¼ rð1Þukh;n þ bTQ�1Uk
h;n:

Lemma 8.8 The sequences ukh and wk
h computed via (8.19) coincide with the Runge–Kutta

approximations to (8.6a–8.6c) and their traces respectively.

Proof The details of the computation can be found in the appendix of [23]. The basic idea

is to take the Z-transform and show that both approaches solve the matrix-valued Helm-

holtz problem (4.2a–4.2c). h

This gives the following immediate corollary, representing an a priori bound for the fully

discrete method:

Corollary 8.9 Let the assumptions of Proposition 8.7 hold. Then for uh and wh, approxi-
mated using convolution quadrature, we can estimate:

kuhðtnÞ � ukh;nkH1ðRdnCÞ þ kwhðtnÞ � wk
h;nkH1=2ðCÞ

�Cð1 þ T2Þkminfqþ1=2þa;pg
Xpþ3

‘¼q

max
t� T

kgð‘ÞðtÞkL2ðCÞ:
ð8:20Þ

The constants depend on C and the Runge–Kutta method, but do not depend on T or on the
choice of Yh.

Remark 8.10 There is another approach for analyzing convolution quadrature methods,

which is based on estimates in the Laplace domain. It can be shown that the Neumann-to-

Dirichlet map, realized by the boundary integral Eq. (8.19), satisfies a bound of the form
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WðsÞ�1ð1=2 � KtðsÞÞbg
�
�

�
�
H1=2ðCÞ.

sj j
ReðsÞ bgk kH�1=2ðCÞ; 8bg 2 H�1=2ðCÞ;

see [20, Appendix 2]. Applying the abstract theory of [2] then implies convergence rate

minðqþ 1; pÞ for the boundary data wh. Modifying their proof, one can also get for

bg 2 L2ðCÞ that

WðsÞ�1ð1=2 � KtðsÞÞbg
�
�

�
�
H1=2ðCÞ.

sj j1=2

ReðsÞ bgk kL2ðCÞ;

which would yield the same convergence rate as Corollary 8.20, but without insight into

the dependence on the end-time T. �

8.4 Numerical example

We solve (8.19) on a ‘‘hollow square’’, as depicted in Fig. 1, and focus on the interior

Neumann problem, i.e. computing w� ¼: w. The geometry was chosen to be non-convex

and not simply connected, in order to test if the rate observed is a general result, or if our

estimates might prove sharp in some situation.

We prescribe the exact solution as a traveling wave, given by

Fig. 1 Snapshots of the simulation at t ¼ 0, t ¼ 2:85, t ¼ 4:45, t ¼ 5:0, t ¼ 5:6, t ¼ 12
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uðx; tÞ :¼ /ðx � d� tÞ;
/ðsÞ :¼ cosðp s=2Þ expð�4ðs0 � sÞ2Þ:

s0 :¼ 4 is chosen so that /ð0Þ is sufficiently small in the domain. We set d :¼ ½
ffiffi
2

p

2
;
ffiffi
2

p

2
�> and

solve up to an end time of T ¼ 12. An approximation of the H1=2-error is computed via

Wð1Þ wk
h;n �PL2wðtnÞ

� �

;wk
h;n �PL2wðtnÞ

D E

C
;

i.e., we compare to the L2-projection of the exact solution. Since we are interested in the

convergence rate with respect to the timestep size k, we consider a fixed, but sufficiently

fine mesh.

We used 3 and 5 stage Radau IIA methods, with orders (q, p) of (3, 5) and (5, 9),

respectively (see [16] for their definition). While their strong damping properties are not

advantageous for wave propagation problems, they nevertheless are the standard method

used with convolution quadrature. This is in part due to the fact that the standard theory

(see, e.g., [2]) makes some assumptions not satisfied by the Gauss methods. A more

detailed analysis of the dissipation and dispersion of the Radau methods was performed in

[7, Sect. 4.3], showing that higher order Runge–Kutta methods posess favorable properties

compared to their low order brethren.

Our theory predicts convergence rates of 4.5 and 6.5. In Fig. 2, we observe a rate that is

closer to 5 and 8. This means that (just like the standard Laplace-domain estimates) our

estimates do not appear to be sharp in this case. Further investigations into the cause of this

phenomenon are required. Results trying to explain this phenomenon, initially prompted by

the work on this article, can be found in [24] but with a different model problem.

8.5 The heat equation

In this section, as an example where our estimates turn out to be sharp, we consider a heat

conduction problem and will apply Theorem 3.5 to get convergence of the boundary trace.

The physical situation is a body X � Rd that is held at a given temperature distribution and

radiates heat into a medium Xþ :¼ Rd n X. We make the simplifying assumption that at

t ¼ 0 the temperature is 0. Since the problem is posed on an unbounded domain, it is a

Fig. 2 Performance of Radau IIA methods for the wave equation, cf. Sect. 8.4
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good candidate for boundary integral equations, while being simple enough to showcase

our more general results. We only briefly give the mathematical setting. More details and a

more involved physical example can be found in [27]. The setting is as follows: find

u : Rþ ! H1
DðXþÞ such that

_u ¼ Du in Rd n X; ð8:21aÞ

uðtÞjC ¼ gðtÞ on C :¼ oX; ð8:21bÞ

uð0Þ ¼ 0 in Rd n X: ð8:21cÞ

It is well-known that D with homogeneous Dirichlet boundary conditions generates an

analytic semigroup (see e.g. [26, Sect. 7.2]) on L2ðRd n XÞ. The rest of our assumptions are

also easily checked. We summarize:

(i) domðAHÞ ¼ fu 2 H1ðRd n XÞ : Du 2 L2ðRd n XÞg,

(ii) B : H1ðRd n XÞ ! H1=2ðCÞ ¼: M; Bv :¼ cþv (using the standard trace operator).

In order to derive the boundary integral formulation, we take the Laplace transform

of (8.21a), giving for j :¼
ffiffi
s

p
:

�DbuðsÞ þ j2
buðsÞ ¼ 0;

which is Helmholtz’s equation for a complex wave number j. We make an ansatz of the

form bu ¼ SðjÞbk for some unknown density bk, which can be determined by applying the

trace operator, giving the equation VðjÞbk ¼ LðgÞ.
Transforming back, and using the definition VjðsÞ :¼ Vð ffiffi

s
p Þ, we get the formulation:

VjðoÞk½ �ðtÞ ¼ gðtÞ 8t[ 0:

The solution u can then be recovered by computing u ¼ SjðoÞ, where SjðsÞ :¼ Sð ffiffi
s

p Þ.
The discrete version of this is then given by solving

VjðokÞKk ¼ g: ð8:22Þ

It can be shown that plugging the discrete solution into the representation formula Uk :¼
SjðokÞKk gives back the Runge–Kutta approximation of (8.21a–8.21c). The approxima-

tions at the endpoints tn ¼ n k, denoted by kk and uk respectively can be computed by the

usual post-processing. We refer to the appendix of [23] for an analogous computation in

the context of the Schrödinger equation, which easily transfers to our situation. For sim-

plicity, we do not consider any discretization in space. A Galerkin approach could easily be

included into the analysis, analogously to Sect. 8.2.

From the definition A :¼ AHjkerðBÞ we get domðAÞ :¼
�

u 2 H1ðRd n XÞ : Du 2 L2ðRd n
XÞ; cþu ¼ 0

�

: We need the following analog of Proposition 8.4:

Proposition 8.11 domðAHÞ � ½L2ðRd n XÞ; domðAÞ�l;1 for l 2 ½0; 1=4�.

Proof It is easy to see that H2
0ðRd n XÞ � domðAÞ.

Using the Besov spaces introduced in Appendix A, we can write, if l� 1=4:
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H1ðRd n XÞ � B2l
2;1ðRd n XÞ �

Thm A:1
eB2l

2;1ðRd n XÞ
¼ ½L2ðRd n XÞ;H1

0ðRd n XÞ�2l;1 ¼ ½L2ðRd n XÞ;H2
0ðRd n XÞ�l;1;

where in the last step, we used [22, Theorem B.9]. h

The convergence of our numerical method can then be analyzed quite easily using

Proposition 3.2 and Theorem 3.5.

Theorem 8.12 Let p and q denote the classical and stage order of the Runge–Kutta

method used. Let g 2 Cpþ3ð½0; T �;H1=2ðCÞÞ with gðjÞð0Þ ¼ 0 for j ¼ 0; . . .; pþ 2. Set a :¼ 1

if the Runge–Kutta method satisfies Assumption 2.III and a :¼ 0 otherwise. Then the fol-
lowing estimate holds for the post-processed approximation:

ukðtnÞ � uðtnÞ
�
�

�
�
L2ðRdnXÞ �Cð1 þ T2Þkminðqþaþ1=4;pÞ

Xpþ2

‘¼qþ1

max
s� tn

gð‘Þs
�
�

�
�
H1=2ðCÞ: ð8:23Þ

Assume that the Runge–Kutta method used for discretization is stiffly accurate. Then the

following estimates hold for the H1-norm:

ukðtnÞ � uðtnÞ
�
�

�
�
H1ðRdnXÞ �Cð1 þ T2Þkr1

Xpþ3

‘¼qþ1

max
s� tn

gð‘Þs
�
�

�
�
H1=2ðCÞ; ð8:24Þ

with

r1 :¼

qþ a� 1=4 for q\p� 1;

q� 1=4 for q ¼ p� 1 and a ¼ 0;

qþ 5=8 for q ¼ p� 1 and a ¼ 1;

qþ a� 1

2
for q ¼ p:

8

>>>>><

>>>>>:

For the density, we get:

kkðtnÞ � kðtnÞ
�
�

�
�
H�1=2ðCÞ �Cð1 þ T2Þ krk

Xpþ1

‘¼q

max
s� tn

gð‘Þs
�
�

�
�
H1=2ðCÞ; ð8:25Þ

where the rate rk is given by:

rk :¼

qþ a� 1=2 for q\p� 1;

q� 1=2 for q ¼ p� 1 and a ¼ 0;

qþ 7

16
for q ¼ p� 1 and a ¼ 1;

qþ 3

4
ða� 1Þ for q ¼ p:

8

>>>>>><

>>>>>>:

Proof We first note that we can control the derivatives uð‘Þ by the data. This can be done

completely analogous to Proposition 8.6 by the techniques of [13]. The estimates read:
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kuð‘ÞðtÞkL2ðRdnXÞ �Ct
X‘þ1

j¼‘

max
s� t

kgðjÞðsÞkH1=2ðCÞ:

For simplicity of notation, we only consider the case q\p� 1. All the other cases follow

analogously but giving different rates when applying the abstract theory. By Proposi-

tion 8.11, we can apply Propositions 3.1 or 3.2 with l ¼ 1=4, depending on whether we

are in the setting a ¼ 0 or a ¼ 1. This gives estimate (8.23).

Applying Theorem 3.5, we get the following convergence in the graph norm of AH:

kDukðtnÞ � DuðtnÞkL2ðRdnXÞ �Cð1 þ T2Þkqþa�1þ1=4
Xpþ3

‘¼q

max
s� tn

gð‘Þs
�
�

�
�
H1=2ðCÞ: ð8:26Þ

Since for stiffly accurate RK-methods, uk also satisfies the boundary conditions (it is the

just last entry of the stage vector) we get from the Dirichlet-boundary conditions that

cþuðtnÞ ¼ gðtnÞ ¼ cþukðtnÞ. Therefore, integration by parts and the Cauchy-Schwarz

inequality give:

krukðtnÞ � ruðtnÞk2

L2ðRdnXÞ ¼ �
�

DukðtnÞ � DuðtnÞ; ukðtnÞ � uðtnÞ
�

L2ðRdnXÞ

� kDukðtnÞ � DuðtnÞkL2ðRdnXÞku
kðtnÞ � uðtnÞkL2ðRdnXÞ:

Estimate (8.24) then follows from (8.23) and (8.26). For the estimate (8.25) of the density,

we fix n 2 H1=2ðCÞ, and let v denote a lifting to H1ðRdÞ. We calculate

k� kk; n
� �

C ¼
�

� Duþ Duk; v
�

L2ðXÞ þ
�

ru�ruk;rv
�

L2ðRdnXÞ

�
�

k1=2 kDu� DukkL2ðXÞ þ kru�rukkL2ðRdnXÞ
�

	
�

k�1=2kvkL2ðXÞ þ krvkL2ðRdnXÞ
�

:

We are still free to choose the precise lifting v. Doing so as in [31, Proposition 2.5.1], we

get

inffk�1=2kvkL2ðRdÞ þ krvkL2ðRdÞ : v 2 H1ðRdÞ; cv ¼ ng.maxf1; k�1=4gknkH1=2ðCÞ:

The result then follows from the previous estimates. h

Remark 8.13 Note that in the cases q ¼ p� 1 with a ¼ 1 and q ¼ p with a ¼ 0, the rates

r1 and rk in Theorem 8.12 are sharp from what can be extracted from Theorem 3.5 and

Propositions 3.1 and 3.2. Nevertheless, we expect it to be possible to extract better rates

from a more explicit investigation of these limiting cases.

8.5.1 Numerical example

In order to demonstrate that the estimate (8.25) is sharp, we consider a simple model

problem. Following [34], we take X to be the unit sphere and consider a right-hand side

g(x, t) of the form
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gðx; tÞ :¼ wðtÞYm
n ðxÞ;

where Ym
n is the spherical harmonic of degree n and order m. It is well-known that the

spherical harmonics are eigenfunctions of the pertinent boundary integral operators. Most

notably for us, we have

VðsÞYm
n ¼ lnðsÞYm

n with lnðsÞ :¼ �s jnði sÞ hð1Þn ði sÞ;

where jn denotes the spherical Bessel functions and hð1Þn is the spherical Hankel function of

the first kind. Due to this relation, solving (8.22) becomes a purely one dimensional

problem, i.e., we can write kðx; tÞ ¼ ekðtÞYm
n ðxÞ and the solution can be easily computed to

very high accuracy. For our experiments we chose n ¼ 2.

We compare the 3-stage and 5-stage Radau IIA methods (see [16] for their definitions).

These methods have stage orders 3 and 5 respectively and both are stiffly accurate and

satisfy Assumption 2.III. We therefore expect convergence rates for the density k of order

3.5 and 5.5. Since the exact solution is not available, we compute the difference to an

approximation with step size k/4 and use this as an approximation to the discretization

error. The results can be seen in Fig. 3. We observe that the results are in good agreement

with our predictions.
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A Interpolation of Sobolev spaces

In this appendix we prove that in Lipschitz domains and for certain parameters l, the

spaces ½L2ðXÞ;H1
0ðXÞ�l contain functions with non-vanishing boundary conditions. Such

estimates are the main ingredient when determining the convergence rate of Runge–Kutta

methods using the theory developed in the previous sections. For l\1=2, it is well-known

that the fractional Sobolev spaces HlðXÞ ¼ ½L2ðXÞ;H1ðXÞ�l;2 and eHlðXÞ ¼
½L2ðXÞ;H1

0ðXÞ�l;2 coincide (see e.g. [22, Theorem 3.40] together with the results in [22,

Appendix B] to identify the Sobolev spaces with the interpolation space). We prove that

when interpolating using the index 1, the critical value l ¼ 1=2 is also admissible,

provided that some further regularity is provided.

In order to state our result, we need additional notation, notably we define interpolation

spaces for q 2 ½1;1Þ as

uk kq½X0;X1�l;q
:¼
Z 1

0

t�l inf
v2X 1

u� vk kX0
þt vk kX1

� �qdt

t
; ðA:1Þ

and introduce the following Besov spaces:

Bl
2;qðXÞ :¼ L2ðXÞ;H1ðXÞ

	 


l;q and eBl
2;qðXÞ :¼ L2ðXÞ;H1

0ðXÞ
	 


l;q: ðA:2Þ

For t[ 0, we define the strip

Xt :¼
�

x 2 X : distðx; oXÞ\t
�

; ðA:3Þ

which will play an important role in the following proofs.

Theorem A.1 Let X be either a bounded Lipschitz domain or the complement of a bounded
Lipschitz domain. Fix l 2 ð0; 1=2�. Then

Bl
2;1ðXÞ � eBl

2;1ðXÞ

with equivalent norms. The implied constant depends on X and l.

Proof For simplicity, assume that X is bounded. We focus on the case l ¼ 1=2, since the

case 0�l\1=2 follows from HlðXÞ ¼ eH
lðXÞ (see [22, Theorem 3.40(i) and Theo-

rem 3.33]) combined with the embeddings

Bl
2;1ðXÞ � Bl

2;2ðXÞ ¼ HlðXÞ � eH
lðXÞ � eBl

2;1ðXÞ:

Consider u 2 B
1=2
2;1 ðXÞ. For each t[ 0, we select vðtÞ 2 H1ðXÞ almost realizing the infi-

mum appearing in the interpolation norm, i.e.,

u� vðtÞk kL2ðXÞþt vðtÞk kH1ðXÞ � 2 inf
w2H1ðXÞ

u� wk kL2ðXÞþt wk kH1ðXÞ

� �

:

By [6, Lemma], the following estimate holds for all t[ 0:
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vðtÞk kBl
2;1
ðXÞ � 3 uk k

B
1=2

2;1 ðXÞ
:

We also note that

ku� vðtÞkL2ðXÞ þ tkvðtÞkH1ðXÞ.t1=2kuk½L2ðXÞ;H1ðXÞ�1=2;1
.t1=2kuk

B
1=2

2;1ðXÞ.t1=2kuk
B

1=2

2;1
ðXÞ:

We consider a smooth cutoff function vt : X ! ½0; 1� satisfying:

vtðxÞ � 0 on Xt; vtðxÞ � 1 on X n X2t and rvtk kL1.t�1: ðA:4Þ

We then define evðtÞ :¼ vtvðtÞ 2 H1
0ðXÞ and calculate:

u� evðtÞk kL2ðXÞ � u� vðtÞk kL2ðXÞþ ð1 � vtÞvðtÞk kL2ðX2tÞ

. u� vðtÞk kL2ðXÞþt1=2 vðtÞk k
B

1=2

2;1
ðXÞ

where we used the fact that 1 � vt vanishes on X n X2t and applied [18, Lemma 2.1] to

estimate the L2-norm there.

Similarly,

t evðtÞk kH1ðXÞ.t vk kH1ðXÞþt ðrvtÞvðtÞk kL2ðXÞ.t vðtÞk kH1ðXÞþ vðtÞk kL2ðX2tÞ

.t vðtÞk kH1ðXÞþt1=2 vðtÞk k
B

1=2

2;1
ðXÞ:

For the interpolation norm, we therefore get

uk k
eB

1=2

2;1ðXÞ
. ess supt[ 0

h

t�1=2
�

u� vðtÞk kL2ðXÞþt vðtÞk kH1ðXÞþt1=2 vðtÞk k
B

1=2

2;1
ðXÞ
�i

. vðtÞk k
B

1=2

2;1
ðXÞþ uk k L2ðXÞ;H1ðXÞ½ �l;1. uk k

B
1=2

2;1
ðXÞþ uk k

B
1=2

2;1ðXÞ

. uk k
B

1=2

2;1
ðXÞ:

If X is the exterior of a bounded Lipschitz domain, the proof applies almost verbatim as all

important steps can be localized to a neighborhood of the boundary. h

Remark A.2 The use of the second parameter 1 in the interpolation norm is crucial for

Theorem A.1 to hold in the case l ¼ 1=2. For L2-based interpolation it is well-known that

the interpolation space L2ðXÞ;H1
0ðXÞ

	 


1=2;2
is the Lions-Magenes space H

1=2
00 ðXÞ, see [35,

Chapter 33], which is distinct from H1=2ðXÞ.

When considering the Neumann problem in Sect. 8.3, we need to devise a lifting to a

vector field with a given normal jump in L2. In general, such liftings do not have B
1=2
2;1 -

regularity. Thus Theorem A.1 is not applicable. Instead, we have a modified construction.

Lemma A.3 Let X be a bounded Lipschitz domain or the exterior of a bounded Lipschitz
domain with boundary C :¼ oX. For C[ 0, c[ 0 fixed with c sufficiently small, define the
non-tangential maximal function

NðruÞðxÞ :¼ sup
y2HðxÞ

ruðyÞj j; where HðxÞ :¼ fy 2 X : x� yj j � maxðc;Cdistðy;CÞÞg:
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Let u 2 H1ðXÞ be harmonic and satisfy NðruÞ 2 L2ðCÞ.
Then for t[ 0 we can bound the L2 norm on strips Xt by

ruk kL2ðXtÞ.t1=2 NðruÞk kL2ðCÞ: ðA:5Þ

Proof We focus on a single chart in the parametrization of (a vicinity of) C. Let O � X and

D � Rd�1 be open, r 2 Rn, u : D ! R, y0 : D ! R such that we can write

Xt \ O ¼
�

ðx;uðxÞ þ yrÞ : x 2 D; and y 2 ð0; y0ðxÞÞ
�

:

By the Lipschitz assumption, we note that y0ðxÞ.Ct. Following the considerations in [10,

Appendix A.4], one can see that as long as C in the definition of H is taken sufficiently

large, we have that for all x 2 D

fðx;uðxÞ þ yrÞ : y 2 ð0; y0ðxÞÞg � H
�

ðx;uðxÞÞ
�

:

We calculate

uk k2
L2ðXt\OÞ ¼

Z

x2D

Z y0ðxÞ

y¼0

ruðx;uðxÞ þ yrÞj j2 dy dx

.

Z

x2D

Z y0ðxÞ

y¼0

�

NðruÞðxÞ
�2

dy dx

� t

Z

x2D

�

NðruÞðxÞ
�2

dx� t NðruÞk k2
L2ðCÞ:

ðA:6Þ

Repeating the same calculation for all boxes needed to parametrize a neighborhood of C
then concludes the proof. h

Theorem A.4 Let X � Rd be a bounded Lipschitz domain or the exterior of a bounded
Lipschitz domain and write H0ðdiv;XÞ :¼ fw 2 Hðdiv;XÞ : cmw ¼ 0g.

For every g 2 L2ðXÞ, there exists a function w 2 Hðdiv;XÞ such that

cmw ¼ g and r � wk kH1ðXÞþ wk k½L2ðXÞ;H0ðdiv;XÞ�1=2;1
. gk kL2ðXÞ ðA:7Þ

with an implied constant depending only on X.

Proof For simplicity, assume that X is bounded. By performing an appropriate cutoff away

from oX, all arguments can be localized.

Step 1: Consider the case
R

C g ¼ 0. Let u be the solution of the Neumann problem

Du ¼ 0 in X; omu ¼ g on oX;
Z

X
u ¼ 0:

In addition to u 2 H1ðXÞ, by [17] (see also [10, Theorem A.6]), this harmonic function u
also satisfies
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NðruÞk kL2ðCÞ � gk kL2ðCÞ:

For fixed t[ 0 we again select a smooth cutoff function vt satisfying (A.4). We set

w :¼ ru and calculate using Lemma A.3:

wk k½L2ðXÞ;H0ðdiv;XÞ�1=2;1
. esssupt� 0

�

t�1=2
	

ð1 � vtÞwk kL2ðXÞþt vtwk kHðdiv;XÞ

�

. esssupt� 0t
�1=2krukL2ðX2tÞ. NðruÞk kL2ðCÞ. gk kL2ðCÞ:

Step 2: In the case
R

C g 6¼ 0, the harmonic Neumann problem does not have a solution.

Instead, we define u as the solution to

�Duþ u ¼ 0 in X; omu ¼ g on oX;

and again set w :¼ ru. By construction we have r � w ¼ �u 2 H1ðXÞ.
We decompose u ¼ u0 þ u1, where u0 solves the full-space problem

�Du0 ¼ �u in Rd

where u was extended by 0 outside of X. As u 2 L2ðRdÞ, standard regularity theory gives

u0 2 H2ðBÞ on any ball B and in particular u0 2 H2ðXÞ. In turn this yields omu0 2 L2ðoXÞ.
By construction u1 then solves

�Du1 ¼ 0 in X; omu1 ¼ g� omu0 on oX:

As g, omu0 2 L2ðoXÞ and
R

C g� omu0 ¼ 0, we can apply Step 1 to get

ru1 2
	

L2ðXÞ;H0ðdiv;XÞ



1=2;1:

Since ru0 2 ðH1ðXÞÞd � ðB1=2
2;1 ðXÞÞ

d
we can apply Theorem A.1 to get

u0 2 ½ðL2ðXÞÞd; ðH1
0ðXÞÞ

d�1=2;1 �
	

L2ðXÞ;H0ðdiv;XÞ



1=2;1

to conclude the proof of (A.7). h

The following lemma appears to be known in the community, see e.g. [5, Section 3.13,

Exercise 4], but in order to be able to rigorously cite, we provide a short proof.

Lemma A.5 Let X :¼ ðX1; . . .;XNÞ and Y :¼ ðY1; . . .; YNÞ, where Xj; Yj are Banach spaces

with continuous embedding Yj � Xj, and the product space carries any lp-norm. Fix q 2
½1;1� and h 2 ð0; 1Þ: Then, the product of the interpolation spaces coincides with the

interpolation of the product spaces. Namely, the following estimate holds for all

x :¼ ðx1; . . .; xNÞ 2 ½X; Y �h;q:

N�1
XN

j¼1

xj
�
�
�
�
½Xj;Yj�h;q

� xk k½X;Y �h;q �
XN

j¼1

xj
�
�
�
�
½Xj;Yj �h;q

:

Proof For j 2 f1; . . .;Ng, consider the operators Sj and Tj defined as
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Tj : X ! Xj

ðx1; . . .; xNÞ7!xj
and

Sj : Xj ! X

xj 7!ð0; . . .; xj; . . .0Þ:

It is easy to see using the interpolation estimate (2.6) that

Tjx
�
�

�
�
½Xj;Yj �h;q

� xk k½X;Y �h;q and Sjxj
�
�

�
�
½X;Y �h;q

� xj
�
�
�
�
½Xj ;Yj�h;q

:

We therefore calculate:

XN

j¼1

xj
�
�
�
�
½Xj;Yj�h;q

¼
XN

j¼1

Tjx
�
�

�
�
½Xj;Yj�h;q

�
XN

j¼1

xk k½X;Y �h;q �N xk k½X;Y �h;q :

For the opposite direction, we observe that

xk k½X;Y �h;q ¼
�
�
XN

j¼1

Sjxj
�
�
½X;Y �h;q

�
XN

j¼1

Sjxj
�
�

�
�
½X;Y �h;q

�
XN

j¼1

xj
�
�
�
�
½Xj;Yj�h;q

: h
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