

Association Between Baseline, Achieved, and Reduction of CRP and Cardiovascular Outcomes After LDL Cholesterol Lowering with Statins or Ezetimibe: A Systematic Review and Meta-Analysis

Xin-Lin Zhang, MD;* Rong-Fang Lan, MD;* Xiao-Wen Zhang, MD; Wei Xu, MD; Lian Wang, MD; Li-Na Kang, MD; Biao Xu, MD, PhD

Background—Several lipid-lowering therapies reduce CRP (C-reactive protein) independently of LDL-C (low-density lipoprotein cholesterol) reduction, but the association between CRP parameters and benefits from more-intensive LDL-C lowering is inconclusive. We aimed to determine whether the benefits of more- versus less-intensive LDL-C lowering on cardiovascular events related to baseline, achieved, or magnitude of reduction in CRP concentrations.

Methods and Results—PubMed, EMBASE, and Cochrane were searched through July 2, 2018. We included randomized controlled cardiovascular outcome trials of LDL-C lowering with statins or ezetimibe. Two reviewers independently extracted study data and rated study quality. Data were analyzed using meta-analysis and metaregression analysis. Rate ratios of mortality and cardiovascular outcomes associated with baseline, achieved, and magnitude reduction of CRP concentration were calculated. Twenty-four trials were included, with 171 250 patients randomly assigned to more- or less-intensive LDL-C- lowering treatments. Median follow-up duration was 4.2 years. More-intensive LDL-C lowering resulted in a significant reduction in incidences of all outcomes. Compared with less-intensive LDL-C lowering, more-intensive LDL-C lowering was associated with less reductions in myocardial infarction with a higher baseline CRP concentration (change in rate ratios per 1-mg/L increase in log-transformed CRP, 1.12 [95% CI, 1.04–1.22; *P*=0.007]), but not other outcomes. Similar risk reductions occurred for more- versus less-intensive LDL-C–lowering therapy regardless of the magnitude of CRP reduction or the achieved CRP level for all outcomes.

Conclusions—Baseline CRP concentrations might be associated with the benefits of LDL-C lowering on myocardial infarction, but no other outcomes, whereas the achieved and magnitude of reduction in CRP did not seem to have an important association. (*J Am Heart Assoc.* 2019;8:e012428. DOI: 10.1161/JAHA.119.012428.)

Key Words: cardiovascular outcomes • C-reactive protein • LDL-cholesterol • lipid lowering • meta-analysis • randomized controlled trials

L-C (Low-density lipoprotein cholesterol) and inflammation are important risk factors for cardiovascular disease. Lowering LDL-C with statins or ezetimibe and inhibiting inflammation with canakinumab significantly reduce major cardiovascular events.¹⁻⁴ hsCRP (high-sensitivity C-reactive protein) is a predictor of cardiovascular disease and cardiovascular mortality as well as total cholesterol and blood pressure.⁵ Several lipid-lowering therapies (ie, stains and ezetimibe) prove to reduce hsCRP independently of LDL-C reduction.⁶ However, it is inconclusive whether benefits from LDL-C lowering are associated with baseline CRP concentrations. Larger cardio-vascular benefits were observed after statin therapy among patients with elevated baseline CRP concentrations in some trials,⁷ but not others.^{8,9} Similarly, whether achieved and reduction of CRP concentrations would affect benefits from more-intensive LDL-C lowering is unknown. We sought to

Received March 9, 2019; accepted June 26, 2019.

From the Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China (X.-L.Z., R.-F.L., W.X., L.W., L.-N.K., B.X.); Department of Endocrinology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China (X.-W.Z.).

Accompanying Data S1, Tables S1 through S11, and Figure S1 through S27 are available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.119.012428 *Dr Zhang and Dr Lan contributed equally to this work.

Correspondence to: Biao Xu and Wei Xu, Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, 321 Zhongshan Rd, 210008 Nanjing, China. E-mails: xubiao62@nju.edu.cn, 13390900868@163.com

^{© 2019} The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Clinical Perspective

What Is New?

- Baseline CRP (C-reactive protein) concentrations might be associated with the benefits of LDL-C (low-density lipoprotein cholesterol) lowering on myocardial infarction, but no other outcomes.
- There appears to be similar risk reductions for more- versus less-intensive LDL-C-lowering therapy regardless of the magnitude of CRP reduction or the achieved CRP level for all outcomes, but with limited number of trials.

What Are the Clinical Implications?

- More-intensive LDL-C lowering appeared to reduce the risk of myocardial infarction (but not other outcomes) to a lesser extent when baseline CRP levels were higher.
- More-intensive LDL-C lowering was associated with similar risk reduction for mortality and other cardiovascular outcomes across baseline CRP concentrations.
- The achieved and magnitude of reduction in CRP did not seem to have an important association with the benefits of LDL-C lowering on all outcomes.

determine whether the benefits of LDL-C–lowering therapy on cardiovascular events related to baseline, achieved, or magnitude of reduction in CRP concentrations.

Methods

The data that support the findings of this study are available from Dr Xin-Lin Zhang upon reasonable request (xinlzhang0807@gmail.com). We conducted the meta-analysis in accord with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline.

Data Sources and Searches

We searched PubMed, EMBASE, and the Cochrane Library from their inception through July 2, 2018. The following keywords were used: lipid lowering, statin, ezetimibe, lowdensity lipoprotein cholesterol, randomized controlled trial, and individual drug names of statins. The search strategy is provided in Data S1. One reviewer (X.Z.) identified potential relevant citations from reference lists of the identified reports and relevant reviews.

Study Selection

Two reviewers (X.Z. and R.L.) independently evaluated the eligibility of studies. Discrepancies were resolved by discussion (W.X.). The main inclusion criteria were: (1) randomized

controlled cardiovascular outcome trials involving human subjects; (2) evaluated any comparison of the following strategies: statins, ezetimibe, or placebo (therapy to lower LDL-C versus no therapy or more- versus less-intensive intervention); and (3) included a minimum of 500 patients and 40 clinical events and reported outcomes of interest with at least 6 months of follow-up. We excluded trials investigating LDL-C-lowering drugs other than statins and ezetimibe. Trials with PCSk9 (proprotein convertase subtilisin/kexin type 9) monoclonal antibodies were excluded because they do not affect CRP concentrations. We did not impose limitations on language, sex, or age.

Outcomes of Interest

Outcomes of interest were all-cause and cardiovascular mortality, myocardial infarction, stroke, coronary revascularization, and major adverse cardiovascular events (MACEs).

Data Extraction and Assessment of Study Quality

Three investigators (X.Z., R.L., and W.X.) independently extracted data using a prespecified form. Median CRP and mean LDL-C values were abstracted from each trial. Two reviewers (X.Z and W.X.) independently assessed risk of bias of each trial by using the Cochrane Collaboration's tool,¹⁰ which assessing random sequence generation (selection bias), allocation concealment (selection bias), blinding of participants and personnel (performance bias), blinding of outcome assessment (detection bias), incomplete outcome data (attrition bias), selective reporting (reporting bias), and other sources of bias. Consensus was achieved through referral to a third investigator (L.W.) in case of disagreement.

Data Synthesis and Statistical Analysis

To investigate the association between baseline CRP concentrations and risks of mortality and cardiovascular outcomes with more-intensive LDL-C lowering, random-effects metaregression analysis was performed, with log-transformed baseline CRP concentration as the covariate for the main model. Several other variables were added in the adjusted analyses, which included age, absolute magnitude of reduction in CRP concentrations (difference between achieved CRP concentrations in the more- and less-intensive study arms), baseline LDL-C, and absolute magnitude of reduction in LDL-C concentrations. Baseline CRP concentrations were logtransformed because their distributions were markedly skewed. Similar analyses were carried out for achieved and magnitude of reduction in CRP concentrations. Given that statins and ezetimibe differ in their effects on CRP concentrations, we performed sensitivity analyses restricted to statin trials. We also performed sensitivity analyses based on different study populations (primary or secondary prevention trials). To account for the variability in the length of follow-up for each of these trials, we used rate ratios (RRs) with their corresponding 95% CIs adjusted for patient-years as the statistic estimate.

Prespecified subgroup analyses were performed for all outcomes (see Data S1). A test for subgroup differences was performed across the examined subgroups with a χ^2 test of interaction. Heterogeneity was assessed by the Cochran Q test and the I² statistic. We examined potential publication bias by visually inspecting the asymmetry of the funnel plot and Begg's test. For the summary treatment effect estimate, a 2-tailed *P* value <0.05 was considered statistically significant. Analyses were conducted with Stata software (version 12.0; StataCorp LP, College Station, TX) and Review Manager (version 5.3; Cochrane Collaboration).

Results

Study Selection and Characteristics

The flow diagram of the study selection is shown in Figure S1. Twenty-four trials were included in the meta-analysis and metaregression analysis.^{3,11–33} Twelve trials that were otherwise eligible were not included because CRP concentrations were not reported. All trials except 1 were multicenter studies. Statin monotherapy was used in 20 trials and statin and ezetimibe in 4 trials. Overall, 171 250 patients were randomly assigned to more- or less-intensive LDL-C–lowering treatments. Median follow-up duration was 4.2 years (range, 1–11.5). Mean age of patients were 62.7 years, and 73.0% were men. The median baseline CRP concentration was 3.1 mg/L and ranged from 0.57 to 21.2 mg/L. Detailed characteristics of each trial are presented in Tables S1 through S3.

Risk of Bias in the Included Trials

Risk of bias for each trial is shown in Table S4. Most trials had blinded outcome adjudication and blinding of participants and personnel. Risk for attrition bias and reporting bias were generally low. Publication bias was detected for a number of outcomes, as revealed by visual inspection of the funnel plots and Begg's test (Figure S2).

All-Cause Mortality

There were 8355 deaths among 83 209 patients randomly assigned to receive more-intensive LDL-C–lowering treatment and 8989 deaths among 83 018 patients assigned to less-intensive LDL-C–lowering treatment. Metaregression analysis

showed that all-cause mortality risk was not significantly different for each 1-mg/L higher log-transformed baseline CRP concentration between more- versus less-intensive LDL-C-lowering treatments (RR, 0.98; 95% Cl, 0.91–1.05; P=0.512; Figure 1), with or without multivariable adjustment (Table). A similar observation was found for magnitude of reduction in CRP concentrations (RR, 0.98; 95% Cl, 0.91–1.06; P=0.590; Figure S3). The overall risk reduction in all-cause mortality with more- versus less-intensive therapy across all trials was 0.91 (95% Cl, 0.87–0.96) and were consistent across the range of baseline (Figure 2) and magnitude of reduction in CRP concentrations (Figure S4).

Cardiovascular Mortality

Metaregression analysis showed that cardiovascular mortality risk was not significantly different for each 1-mg/L higher logtransformed baseline CRP concentration between more- versus less-intensive LDL-C–lowering treatments (RR, 1.01; 95% Cl, 0.91-1.12; *P*=0.803; Figure 3), with or without multivariable adjustment (Table). A similar observation was found for magnitude of reduction in CRP concentrations (RR, 0.97; 95% Cl, 0.87-1.08; *P*=0.542; Figure S5). The overall risk reduction in cardiovascular mortality with more- versus less-intensive therapy across all trials was 0.84 (95% Cl, 0.79-0.90) and was consistent across the range of baseline (Figure 4) and magnitude of reduction in CRP concentrations (Figure S6).

Myocardial Infarction

Overall, 3745 of 85 723 patients receiving the more-intensive LDL-C-lowering strategy versus 4825 of 85 527 receiving the less-intensive strategy experienced myocardial infarction. Metaregression showed that more-versus less-intensive LDL-C lowering was associated with a significant change in RR for myocardial infarction (RR, 1.12; 95% Cl, 1.04–1.22; P=0.007) for each 1-mg/L higher log-transformed baseline CRP concentration (Figure 5), with or without multivariable adjustment (Table). The overall risk reduction in myocardial infarction associated with more- versus less-intensive therapy across all trials was 0.75 (95% Cl, 0.70-0.81), but varied by baseline CRP concentration (Figure 6). The RR was 0.79 (95% CI, 0.72-0.87) in trials with baseline CRP concentrations ≥2.7 mg/L (median) and 0.70 (95% Cl, 0.65–0.76) in trials with baseline CRP concentrations <2.7 mg/L (P=0.060 for interaction). Metaregression analysis did not show a significant correlation between magnitude of reduction in CRP concentrations and risk of myocardial infarction (RR, 0.93; 95% CI, 0.84–1.04; P=0.19; Figure S7). The overall risk reduction in myocardial infarction with more- versus lessintensive therapy was consistent across the range of magnitude of reduction in CRP concentrations (Figure S8).

Figure 1. Meta-regression analysis of all-cause mortality rate ratios plotted against log-transformed baseline CRP concentrations in the more-intensive group. The size of the data marker is proportional to the weight in the metaregression. CRP indicates C-reactive protein; RR, rate ratio.

Stroke

Metaregression analysis showed that stroke risk was not significantly different for each 1-mg/L higher log-transformed baseline CRP concentration between more- versus less-intensive LDL-C-lowering treatments (RR, 0.94; 95% Cl, 0.84–1.05; P=0.253; Figure S9), with or without multivariable

adjustment (Table). A similar observation was found for magnitude of reduction in CRP concentrations (RR, 0.90; 95% CI, 0.80-1.01; *P*=0.084; Figure S10). The overall risk reduction in stroke with more- versus less-intensive therapy across all trials was consistent across the range of baseline (Figure S11) and magnitude of reduction in CRP concentrations (Figure S12).

Table.Multivariable Metaregression Models for the Association of Each 1-mg/L Increase in log(Baseline CRP Concentration),Magnitude of Reduction in CRP Concentration, Achieved CRP, and Mortality and Cardiovascular Outcomes

			Rate Ratio (95% CI)			
Outcomes	No. of Trials	log(Baseline CRP)	log(Baseline CRP) Adjusted for Magnitude of Reduction in CRP	log(Baseline CRP) Adjusted for Magnitude of Reduction in CRP, Baseline LDL-C, Magnitude of Reduction in LDL-C and Age	Magnitude of Reduction in CRP	Achieved CRP
All-cause mortality	22	0.98 (0.91, 1.05)	1.00 (0.92, 1.10)	1.01 (0.90, 1.13)	0.98 (0.91, 1.06)	1.00 (0.96, 1.03)
Cardiovascular mortality	22	1.01 (0.91, 1.12)	1.02 (0.89, 1.16)	1.03 (0.89, 1.19)	0.97 (0.87, 1.08)	1.00 (0.94, 1.05)
Myocardial infarction	24	1.12 (1.04, 1.22)	1.16 (1.05, 1.27)	1.16 (1.02, 1.33)	0.93 (0.84, 1.04)	0.98 (0.93, 1.04)
Stroke	24	0.94 (0.84, 1.05)	0.96 (0.84, 1.09)	0.96 (0.81, 1.13)	0.90 (0.80, 1.01)	0.97 (0.91, 1.03)
Coronary revascularization	22	1.06 (1.00, 1.13)	1.07 (0.99, 1.15)	1.05 (0.96, 1.14)	0.94 (0.84, 1.04)	0.99 (0.94, 1.04)
MACE	24	1.04 (0.98, 1.11)	1.05 (0.96, 1.15)	1.08 (0.97, 1.19)	0.96 (0.89, 1.03)	0.99 (0.95, 1.03)

CRP indicates C-reactive protein; LDL-C, low-density lipoprotein cholesterol; MACE, major adverse cardiovascular event.

		No. of Patients Wi	ith Event/Total No.	
	Rate Ratio	More Intensive	Less Intensive	Weight
Study and Subgroup	(95% CI)	LDL-C Lowering	LDL-C Lowering	%
Baseline CRP ≥ median				
4D (2005) ¹¹	0.95 (0.85, 1.06)	559/636	573/619	7.02
A to Z (2004) ¹²	0.79 (0.61, 1.02)	104/2265	130/2232	2.46
AURORA (2009) ¹⁶	0.96 (0.87, 1.06)	636/1389	660/1384	7.59
CARDS (2004) ¹⁷	0.74 (0.53, 1.02)	61/1429	82/1412	1.60
CORONA (2007) ¹⁹	0.95 (0.87, 1.05)	728/2514	759/2497	7.95
HIJ-PROPER (2017) ²⁰	0.69 (0.47, 1.03)	42/864	60/857	1.17
HPS (2002) ²²	0.88 (0.82, 0.95)	1328/10269	1507/10267	9.43
IMPROVE-IT (2015) ³	0.99 (0.91, 1.07)	1215/9067	1231/9077	9.06
JUPITER (2008) ²³	0.80 (0.67, 0.97)	198/8901	247/8901	3.95
Liu, et al (2016) ²⁵	0.62 (0.21, 1.88)	5/400	8/398	0.16
PROSPER (2002) ²⁷	0.98 (0.84, 1.15)	298/2891	306/2913	4.91
PROVE IT-TIMI 22 (2004) ²⁸	0.69 (0.47, 1.00)	46/2099	66/2063	1.27
SHARP (2011) ³¹	1.02 (0.94, 1.10)	1142/4650	1115/4620	8.93
Subtotal (I-squared = 43.6%, <i>P</i> = 0.046)	0.93 (0.88, 0.98)	6362/47374	6744/47240	65.51
Subtotal effect: $z = 2.93$, $P = 0.003$				
Baseline CRP < median				
AFCAPS_TEXCAPS (1998) ¹³	1.04 (0.76, 1.42)	80/3304	77/3301	1.75
ALERT (2003) ¹⁴	1.03 (0.84, 1.25)	194/1050	189/1052	3.62
ASCOT-LLA (2003) ¹⁵	0.87 (0.71, 1.06)	185/5168	212/5137	3.66
HOPE-3 (2016) ²¹	0.93 (0.80, 1.08)	334/6361	357/6344	5.25
LIPID (1998) ²⁴	0.78 (0.70, 0.88)	498/4512	633/4502	6.78
REAL-CAD (2018) ²⁹	0.80 (0.67, 0.96)	207/6199	260/6214	4.07
SEAS (2008) ³⁰	1.03 (0.79, 1.35)	105/944	100/929	2.23
TNT (2005) ³²	1.01 (0.86, 1.19)	284/4995	282/5006	4.66
WOSCOPS (1995) ³³	0.78 (0.61, 1.01)	106/3302	135/3293	2.48
Subtotal (I-squared = 41.6%, <i>p</i> = 0.090)	0.90 (0.83, 0.98)	1993/35835	2245/35778	34.49
Subtotal effect: $z = 2.53$, $P = 0.011$				
Overall (I-squared = 44.5%, <i>P</i> = 0.014)	0.91 (0.87, 0.96)	8355/83209	8989/83018	100.00
Overall effect: z = 3.96, <i>P</i> < 0.001				
$P = 0.60$ for interaction (\geq median vs. < median)				
U.2 1 2 Favors More Intensive I DL-C Lowering Favors L	2 ess Intensive I DI -	Clowering		
		C Lowering		

Figure 2. Meta-analysis of all-cause mortality stratified by baseline CRP concentrations between more- and less-intensive lipid-lowering group. CRP indicates C-reactive protein; LDL-C, low-density lipoprotein cholesterol.

Coronary Revascularization

For each 1-mg/L higher log-transformed baseline CRP concentration, more- versus less-intensive LDL-C lowering was associated with a modest change in RRs for coronary revascularization (RR, 1.06; 95% CI, 1.00–1.13; P=0.062; Figure S13), which became nonsignificant after multivariable adjustment (Table). Metaregression analysis did not show a significant correlation between magnitude of reduction in CRP concentrations and risk of revascularization (RR, 0.94; 95% CI, 0.84–1.04; P=0.181; Figure S14). The overall risk reduction in coronary revascularization with more- versus less-intensive therapy across all trials was consistent across the range of

baseline (Figure S15) and magnitude of reduction in CRP concentrations (Figure S16).

Major Adverse Cardiovascular Events

Metaregression analysis showed that MACE risk was not significantly different for each 1-mg/L higher log-transformed baseline CRP concentration between more- versus less-intensive LDL-C-lowering treatments (RR, 1.04; 95% Cl, 0.98–1.11; P=0.182; Figure S17), with or without multivariable adjustment (Table). A similar observation was found for magnitude of reduction in CRP concentrations (RR, 0.96; 95% Cl, 0.89–1.03; P=0.252; Figure S18). The overall risk

Figure 3. Meta-regression analysis of cardiovascular mortality rate ratios plotted against log-transformed baseline CRP concentrations in the more-intensive group. The size of the data marker is proportional to the weight in the metaregression. CRP indicates C-reactive protein; RR, rate ratio.

reduction in MACE with more- versus less-intensive therapy across all trials was consistent across the range of baseline (Figure S19) and magnitude of reduction in CRP concentrations (Figure S20).

primary prevention trials (Table S11). Metaregression and meta-analysis of mortality and cardiovascular outcomes found no association with achieved CRP concentrations (Table; Figures S22 through S27).

Additional Analyses

Analyses excluding trials with heart failure or chronic kidney disease requiring hemodialysis, trials with less than 1000 patients, or trials published before 2000 yielded similar results (Table S5), as were analyses stratified by types of intervention in the more-intensive LDL-C–lowering treatment (Table S6), types of treatment in the less-intensive LDL-C– lowering treatment (Table S7), and type of population (Table S8). Consistent with previous studies, a lack of significant reduction in all-cause and cardiovascular mortality was observed in statin with ezetimibe trials (Table S6).

Metaregression analysis restricted to statin trials confirmed that more- versus less-intensive LDL-C lowering was associated with a significant change in RRs for myocardial infarction, but no other outcomes of interest (Table S9). For each 1-mg/L higher log-transformed baseline CRP concentration, more- versus less-intensive LDL-C lowering was associated with a significant change in RRs for myocardial infarction (RR, 1.12; 95% Cl, 1.03–1.21; P=0.011) in secondary prevention trials (Table S10; Figure S21), but not in

Discussion

In this meta-analysis and metaregression analysis of 24 trials involving >170 000 patients and \approx 24 000 clinical events, more-intensive LDL-C lowering appeared to reduce the risk of myocardial infarction to a lesser extent when baseline CRP levels were higher, but was associated with similar risk reduction for mortality and other cardiovascular outcomes across baseline CRP concentrations. Similar risk reductions occurred for more- versus less-intensive LDL-C-lowering therapy regardless of the magnitude of CRP reduction or the achieved CRP level for all outcomes.

Plasma CRP concentrations is a predictor of cardiovascular risk independent of other risk factors.¹ Although a causal role of CRP for atherosclerosis and ischemic vascular disease is not supported by previous studies,³⁴ there is potential in using CRP concentration as a marker for benefit from LDL-C–lowering therapy. In the AFCAPS/TexCAPS (Air Force/Texas Coronary Atherosclerosis Prevention) trial, patients with an elevated baseline CRP concentration benefited markedly from lovastatin, whereas those with a low baseline CRP level had no

		No. of Patients Wi	ith Event/Total No.	
	Rate Ratio	More Intensive	Less Intensive	Weight
Study and Subgroup	(95% CI)	LDL-C Lowering	LDL-C Lowering	%
Baseline CRP ≥ median				
4D (2005) ¹¹	0.82 (0.68, 0.98)	202/636	241/619	6.11
A to Z (2004) ¹²	0.75 (0.57, 1.00)	83/2265	109/2232	3.66
AURORA (2009) ¹⁶	1.00 (0.86, 1.16)	324/1389	324/1384	7.35
CARDS (2004) ¹⁷	0.67 (0.40, 1.11)	25/1429	37/1412	1.44
CARE (1996) ¹⁸	0.81 (0.62, 1.05)	96/2081	119/2078	3.94
CORONA (2007) ¹⁹	1.00 (0.88, 1.12)	488/2514	487/2497	8.49
HPS (2002) ²²	0.83 (0.76, 0.92)	781/10269	937/10267	9.62
IMPROVE-IT (2015) ³	1.00 (0.89, 1.13)	537/9067	538/9077	8.58
JUPITER (2008) ²³	0.53 (0.41, 0.69)	83/8901	157/8901	3.99
PROSPER (2002) ²⁷	0.78 (0.59, 1.01)	94/2891	122/2913	3.94
PROVE IT-TIMI 22 (2004) ²⁸	0.78 (0.45, 1.35)	23/2099	29/2063	1.26
SHARP (2011) ³¹	0.92 (0.80, 1.07)	361/4650	388/4620	7.63
Subtotal (I-squared = 64.9%, <i>P</i> = 0.001)	0.85 (0.78, 0.93)	3097/48191	3488/48063	66.00
Subtotal effect: z = 3.46, P = 0.001				
Baseline CRP < median				
AFCAPS_TEXCAPS (1998) ¹³	0.68 (0.37, 1.26)	17/3304	25/3301	1.01
ALERT (2003) ¹⁴	0.94 (0.71, 1.25)	93/1050	99/1052	3.68
ASCOT-LLA (2003) ¹⁵	0.90 (0.66, 1.23)	74/5168	82/5137	3.15
HOPE-3 (2016) ²¹	0.90 (0.72, 1.12)	154/6361	171/6344	5.11
LIPID (1998) ²⁴	0.76 (0.66, 0.88)	331/4512	433/4502	7.63
PREVEND-IT (2004) ²⁶	1.00 (0.25, 3.97)		4/431	0.21
REAL-CAD (2018) ²⁹	0.77 (0.58, 1.02)	86/6199	112/6214	3.69
SEAS (2008) 30	0.83 (0.56, 1.21)		56/929	2.28
TNT (2005) ³²	0.81 (0.64, 1.03)	126/4995	155/5006	4.67
WOSCOPS (1995) ³³	0.68 (0.48, 0.98)	50/3302	73/3293	2.56
Subtotal (I-squared = 0.0%, <i>P</i> = 0.879)	0.81 (0.75, 0.88)	982/36268	1210/36209	34.00
Subtotal effect: $z = 4.91$, $P < 0.001$				
Overall (I-squared = 46.3%, <i>P</i> = 0.009)	0.84 (0.79, 0.90)	4079/84459	4698/84272	100.00
Overall effect: z = 5.13, P < 0.001				
$P = 0.54$ for interaction (\geq median vs. < median)				
	· · · · · ·			
Favors More Intensive LDL-C Lowering Favors L	- ess Intensive LDL-	-C Lowering		
		-		

Figure 4. Meta-analysis of cardiovascular mortality stratified by baseline CRP concentrations between more- and less-intensive lipid-lowering group. CRP indicates C-reactive protein; LDL-C, low-density lipoprotein cholesterol.

cardiovascular benefit.⁷ However, others have not shown such an association both in primary and secondary prevention trials.⁸ Our present metaregression analyses demonstrated no association between baseline CRP concentrations with mortality outcomes following LDL-C lowering, which, to the best of our knowledge, has not been evaluated in randomized trials because of the rarity of mortality outcomes. It is worth noting that a significant association between baseline CRP concentrations and risks for myocardial infarction was evident, with a less-robust benefit for more-intensive LDL-C lowering in patients who had higher baseline CRP concentrations. In line with our finding, post-hoc analyses of the JUPITER (the JUPITER trial from the US Food and Drug Administration) trial from the US Food and Drug Administration revealed an inverse relationship between baseline hsCRP concentrations and clinical response to statin therapy.³⁵ Subjects with baseline hsCRP above the median cut point of 4.2 mg/L had lower relative risk reduction with statin therapy than those with hsCRP <4.2 mg/L (relative risk reduction, 29% versus 58%).³⁵ The very recently published St. Francis Heart Study also reported a trend toward less benefit in patients with higher baseline hsCRP.³⁶

Several trials suggest that achieving lower CRP concentrations might be associated with better outcomes for patients being treated with statins.^{37–41} In the PROVE IT-TIMI 22 (Pravastatin or Atorvastatin Evaluation and Infection Therapy–Thrombolysis In Myocardial Infarction 22) trial, patients who achieved CRP concentrations of <2 mg/L after

Figure 5. Meta-regression analysis of myocardial infarction rate ratios plotted against log-transformed baseline CRP concentrations in the more-intensive group. The size of the data marker is proportional to the weight in the metaregression. CRP indicates C-reactive protein; RR, rate ratio.

statin therapy had a lower rate of cardiovascular events than those who did not.³⁸ A similarly negative association was detected in the REVERSAL (Reversal of Atherosclerosis with Aggressive Lipid Lowering),³⁹ A-to-Z (Aggrastat-to-Zocor),⁴⁰ and the JUPITER⁴¹ trials. Fueling this debate, trials including the ASCOT-LLA (Anglo-Scandinavian Cardiac Outcome Trial– Lipid Lowering Arm),⁴² the CARDS (Collaborative Atorvastatin Diabetes Study),⁴³ and TNT (Treating New Targets)⁴⁴ studies showed no association between achieved hsCRP concentrations and magnitude of statin efficacy in the prevention of cardiovascular events. Our meta-analysis and metaregression analysis do not lend support to the hypotheses that the beneficial effects of LDL-C–lowering therapy are affected by achieved CRP concentrations, in contrast with those found with achieved LDL-C concentrations.^{45,46}

The REVERSAL trial demonstrates that magnitude of reduction in CRP concentrations is significantly correlated with rate of progression of atherosclerosis (determined with intravascular ultrasonography).³⁹ The JUPITER trial also shows an association with magnitude of cardiovascular benefit of statin therapy.⁴¹ However, evidence remains scare given that the vast majority of trials did not report these relationship data. Our metaregression analysis revealed no significant correlation between magnitude of reduction in CRP concentrations and benefit from LDL-C–lowering therapy,

which needs to be confirmed in large, prospective trials in the future.

Although previous LDL-C-lowering trials with stains or ezetimibe reduce CRP concentrations, the concomitant reduction of LDL-C makes it difficult to conclude a causal role of inflammation in atherothrombotic events. The recently published CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcomes Study) trial, which enrolled 10 061 patients with previous myocardial infarction and an hsCRP level of ≥ 2 mg/L, is a proof-of-concept trial directly testing the inflammatory hypothesis of atherothrombosis.⁴ Canakinumab confers a significant 15% reduction in MACEs without altering the lipid profile, supporting that reducing inflammation per se could reduce vascular risk.⁴ Of note, a CRP concentration < 2 mg/dL after the first dose of cankinumab was associated with greater relative reduction in MACE risk.⁴⁷ Canakinumab's reduction in atherothrombotic events involves inhibition of interleukin-6, indicating that treatments targeting downstream from interleukin-1 β merit evaluation for cardiovascular benefits.⁴⁸ However, whether the cardiovascular benefits of canakinumab will translate to other targeted anti-inflammatory treatments that reduce CRP remains to be determined. If confirmed, whether these benefits relate to baseline, achieved, or reduction of CRP concentrations also requires investigation.

		No. of Patients Wi	th Event/Total No.	
	Rate Ratio	More Intensive	Less Intensive	Weight
Study and Subgroup	(95% CI)	LDL-C Lowering	LDL-C Lowering	%
Baseline CRP ≥ median				
4D (2005) ¹¹	0.84 (0.67, 1.07)	124/636	143/619	4.71
A to Z (2004) ¹²	0.96 (0.77, 1.20)	151/2265	155/2232	5.09
AURORA (2009) ¹⁶	0.85 (0.64, 1.12)	91/1389	107/1384	4.00
CARDS (2004) ¹⁷	0.53 (0.35, 0.82)	33/1429	61/1412	2.26
CARE (1996) ¹⁸	0.76 (0.62, 0.93)	157/2081	207/2078	5.41
CORONA (2007) ¹⁹	0.81 (0.63, 1.03)	115/2514	141/2497	4.60
HIJ-PROPER (2017) ²⁰ →	1.09 (0.46, 2.57)	11/864	10/857	0.67
HPS (2002) ²²	0.62 (0.55, 0.71)	357/10269	574/10267	7.29
IMPROVE-IT (2015) ³	0.87 (0.80, 0.95)	977/9067	1118/9077	8.47
JUPITER (2008) 23	0.46 (0.30, 0.70)	31/8901	68/8901	2.24
Liu, et al (2016) ²⁵	0.70 (0.36, 1.36)	14/400	20/398	1.05
PROSPER (2002) 27	0.83 (0.71, 0.96)	292/2891	356/2913	6.74
PROVE IT-TIMI 22 (2004) ²⁸	0.89 (0.71, 1.12)	139/2099	153/2063	4.97
SHARP (2011) 31	0.92 (0.76, 1.11)	213/4650	230/4620	5.89
Subtotal (I-squared = 63.5% , $P = 0.001$)	0.79 (0.72, 0.87)	2705/49455	3343/49318	63.40
Baseline CRP < median				
AFCAPS TEXCAPS $(1998)^{13}$	0.60 (0.43, 0.83)	57/3304	95/3301	3 24
$AI ERT (2003)^{14}$	0.70 (0.48, 1.02)	46/1050	66/1052	2.69
ASCOT-LLA (2003) ¹⁵	0.65 (0.50, 0.83)	100/5168	154/5137	4 47
HOPE-3 (2016) 21	0.65 (0.45, 0.95)	45/6361	69/6344	2 69
LIPID (1998) ²⁴	0.72 (0.63, 0.83)	336/4512	463/4502	7.08
PREVEND-IT (2004) ²⁶	0.53 (0.23, 1.25)	8/433	15/431	0.67
REAL-CAD (2018) ²⁹	0.56 (0.38, 0.82)	40/6199	72/6214	2.58
SEAS (2008) ³⁰	0.60 (0.35, 1.02)	22/944	36/929	1.57
TNT (2005) ³²	0.79 (0.67, 0.93)	243/4995	308/5006	6.35
WOSCOPS (1995) ³³	0.70 (0.57, 0.86)	143/3302	204/3293	5.26
Subtotal (I-squared = 0.0%, $P = 0.766$)	0.70 (0.65, 0.76)	1040/36268	1482/36209	36.60
Subtotal effect: $z = 8.80$, $P < 0.001$				
Overall (I-squared = 54.3%, <i>P</i> = 0.001)	0.75 (0.70, 0.81)	3745/85723	4825/85527	100.00
Overall effect: z = 7.75, P < 0.001				
P = 0.06 for interaction (≥ median vs. < median)				
	,			
Favors More Intensive LDL-C Lowering Favors Le	ess Intensive LDL-	C Lowering		

Figure 6. Meta-analysis of myocardial infarction stratified by baseline CRP concentrations between more- and less-intensive lipid-lowering group. CRP indicates C-reactive protein; LDL-C, low-density lipoprotein cholesterol.

Limitations

Our study has several limitations. First, our analysis was based on trial-level data rather than patient-level data. Metaregression analyses might be subject to risk of aggregation bias because they attempt to make inferences about individuals using study-level information.⁴⁹ Second, a number of LDL-C-lowering cardiovascular trials did not report CRP data (especially achieved CRP concentrations), which might contribute to the publication bias detected in several analyses. The inclusion of these trials, if CRP data are reported, might erase the publication bias and considerably improve the statistical power and improve strength of evidence of our

analysis. Third, considerable heterogeneity was detected in several analyses, which may be attributed to the differences in patient characteristics not evaluated in our study given that no characteristics tested appeared to affect the results. Fourth, the inclusion criteria in these trials varied; these differences in selection will play out in the baseline risk and the magnitude of absolute risk reduction achieved. Fifth, the definitions of some outcomes, such as MACE and myocardial infarction, were not completely consistent across trials, and a considerable part of trials did not report outcome definition; it is unclear whether this variation could affect our results. Finally, the study enrollment included in the analysis extended from 1995 to 2018, during which

background therapy and cardiovascular event rates have changed.

Conclusions

In this metaregression and meta-analysis, more-intensive LDL-C lowering might have reduced the risk of myocardial infarction to a lesser extent when baseline CRP levels were higher, but was associated with similar risk reduction for mortality and other cardiovascular outcomes across baseline CRP concentrations. Similar risk reductions occurred for more- versus less-intensive LDL-C-lowering therapy regardless of the magnitude of CRP reduction or the achieved CRP level for all outcomes.

Sources of Funding

This study was supported by the National Natural Science Foundation of China (No. 81600312) and Fund for Distinguished Young Scholars of Nanjing (JOX15002). The funders had no role in the study design, data collection and analysis, writing of the report, and decision to submit the article for publication.

Disclosures

None.

References

- Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, Peto R, Barnes EH, Keech A, Simes J, Collins R. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. *Lancet*. 2010;376:1670–1681.
- Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, Sever PS, Pedersen TR. Evolocumab and clinical outcomes in patients with cardiovascular disease. *N Engl J Med*. 2017;18:1713–1722.
- Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, Darius H, Lewis BS, Ophuis TO, Jukema JW, De Ferrari GM, Ruzyllo W, De Lucca P, Im K, Bohula EA, Reist C, Wiviott SD, Tershakovec AM, Musliner TA, Braunwald E, Califf RM. Ezetimibe added to statin therapy after acute coronary syndromes. *N Engl J Med.* 2015;372:2387–2397.
- Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein J, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi P, Troquay R, Libby P, Glynn RJ. Antiinflammatory therapy with canakinumab for atherosclerotic disease. *N Engl J Med.* 2017;377:1119–1131.
- Kaptoge S, Di Angelantonio E, Lowe G, Pepys MB, Thompson SG, Collins R, Danesh J. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. *Lancet.* 2010;375: 132–140.
- Jialal I, Stein D, Balis D, Grundy SM, Adams-Huet B, Devaraj S. Effect of hydroxymethyl glutaryl coenzyme a reductase inhibitor therapy on high sensitive C-reactive protein levels. *Circulation*. 2001;103:1933–1935.
- Ridker PM, Rifai N, Clearfield M, Downs JR, Weis SE, Miles JS, Gotto AJ. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. *N Engl J Med.* 2001;344:1959– 1965.
- Sattar N, Murray HM, McConnachie A, Blauw GJ, Bollen EL, Buckley BM, Cobbe SM, Ford I, Gaw A, Hyland M, Jukema JW, Kamper AM, Macfarlane PW, Murphy

MB, Packard CJ, Perry IJ, Stott DJ, Sweeney BJ, Twomey C, Westendorp RG, Shepherd J. C-reactive protein and prediction of coronary heart disease and global vascular events in the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER). *Circulation*. 2007;115:981–989.

- Jonathan E, Derrick B, Emma L, Sarah P, John D, Jane A, Rory C. C-reactive protein concentration and the vascular benefits of statin therapy: an analysis of 20,536 patients in the Heart Protection Study. *Lancet*. 2011;377:469–476.
- Higgins JPT, Altman DG, Sterne JAC. Assessing risk of bias in included studies. In: Higgins JPT, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 [updated March 2011]. The Cochrane Collaboration; 2011. Accessed at: http://handbook-5-1.cochrane.org/.
- Wanner C, Krane V, Marz W, Olschewski M, Mann JF, Ruf G, Ritz E. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med. 2005;353:238–248.
- de Lemos JA, Blazing MA, Wiviott SD, Lewis EF, Fox KA, White HD, Rouleau JL, Pedersen TR, Gardner LH, Mukherjee R, Ramsey KE, Palmisano J, Bilheimer DW, Pfeffer MA, Califf RM, Braunwald E. Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes: phase Z of the A to Z trial. *JAMA*. 2004;292:1307–1316.
- Downs JR, Clearfield M, Weis S, Whitney E, Shapiro DR, Beere PA, Langendorfer A, Stein EA, Kruyer W, Gotto AJ. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA. 1998;279:1615–1622.
- Holdaas H, Fellström B, Jardine AG, Holme I, Nyberg G, Fauchald P, Grönhagen-Riska C, Madsen S, Neumayer HH, Cole E, Maes B, Ambühl P, Olsson AG, Hartmann A, Solbu DO, Pedersen TR. Effect of fluvastatin on cardiac outcomes in renal transplant recipients: a multicentre, randomised, placebo-controlled trial. *Lancet*. 2003;361:2024–2031.
- 15. Sever PS, Dahlöf B, Poulter NR, Wedel H, Beevers G, Caulfield M, Collins R, Kjeldsen SE, Kristinsson A, McInnes GT, Mehlsen J, Nieminen M, O'Brien E, Ostergren J. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial–Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. *Lancet.* 2003;361:1149–1158.
- 16. Fellström BC, Jardine AG, Schmieder RE, Holdaas H, Bannister K, Beutler J, Chae DW, Chevaile A, Cobbe SM, Grönhagen-Riska C, De Lima JJ, Lins R, Mayer G, McMahon AW, Parving HH, Remuzzi G, Samuelsson O, Sonkodi S, Sci D, Süleymanlar G, Tsakiris D, Tesar V, Todorov V, Wiecek A, Wüthrich RP, Gottlow M, Johnsson E, Zannad F. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. *N Engl J Med*. 2009;360:1395–1407.
- Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Livingstone SJ, Thomason MJ, Mackness MI, Charlton-Menys V, Fuller JH. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. *Lancet*. 2004;364:685–696.
- Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, Brown L, Warnica JW, Arnold JM, Wun CC, Davis BR, Braunwald E. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med. 1996;335:1001–1009.
- Kjekshus J, Apetrei E, Barrios V, Böhm M, Cleland JG, Cornel JH, Dunselman P, Fonseca C, Goudev A, Grande P, Gullestad L, Hjalmarson A, Hradec J, Jánosi A, Kamenský G, Komajda M, Korewicki J, Kuusi T, Mach F, Mareev V, McMurray JJ, Ranjith N, Schaufelberger M, Vanhaecke J, van Veldhuisen DJ, Waagstein F, Wedel H, Wikstrand J. Rosuvastatin in older patients with systolic heart failure. *N Engl J Med.* 2007;357:2248–2261.
- Hagiwara N, Kawada-Watanabe E, Koyanagi R, Arashi H, Yamaguchi J, Nakao K, Tobaru T, Tanaka H, Oka T, Endoh Y, Saito K, Uchida T, Matsui K, Ogawa H. Low-density lipoprotein cholesterol targeting with pitavastatin + ezetimibe for patients with acute coronary syndrome and dyslipidaemia: the HIJ-PROPER study, a prospective, open-label, randomized trial. *Eur Heart J*. 2017;38:2264– 2276.
- 21. Yusuf S, Bosch J, Dagenais G, Zhu J, Xavier D, Liu L, Pais P, López-Jaramillo P, Leiter LA, Dans A, Avezum A, Piegas LS, Parkhomenko A, Keltai K, Keltai M, Sliwa K, Peters RJ, Held C, Chazova I, Yusoff K, Lewis BS, Jansky P, Khunti K, Toff WD, Reid CM, Varigos J, Sanchez-Vallejo G, McKelvie R, Pogue J, Jung H, Gao P, Diaz R, Lonn E. Cholesterol lowering in intermediate-risk persons without cardiovascular disease. N Engl J Med. 2016;374:2021–2031.
- Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. *Lancet*. 2002;360:7–22.
- Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AJ, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. *N Engl J Med.* 2008;359:2195–2207.

- Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med. 1998;339:1349–1357.
- Liu Z, Joerg H, Hao H, Xu J, Hu S, Li B, Sang C, Xia J, Chu Y, Xu D. Efficacy of high-intensity atorvastatin for Asian patients undergoing percutaneous coronary intervention. *Ann Pharmacother*. 2016;50:725–733.
- Asselbergs FW, Diercks GF, Hillege HL, van Boven AJ, Janssen WM, Voors AA, de Zeeuw D, de Jong PE, van Veldhuisen DJ, van Gilst WH. Effects of fosinopril and pravastatin on cardiovascular events in subjects with microalbuminuria. *Circulation*. 2004;110:2809–2816.
- 27. Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM, Ford I, Gaw A, Hyland M, Jukema JW, Kamper AM, Macfarlane PW, Meinders AE, Norrie J, Packard CJ, Perry IJ, Stott DJ, Sweeney BJ, Twomey C, Westendorp RG. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. *Lancet.* 2002;360:1623–1630.
- Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, Joyal SV, Hill KA, Pfeffer MA, Skene AM. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. *N Engl J Med*. 2004;350:1495–1504.
- 29. Taguchi I, limuro S, Iwata H, Takashima H, Abe M, Amiya E, Ogawa T, Ozaki Y, Sakuma I, Nakagawa Y, Hibi K, Hiro T, Fukumoto Y, Hokimoto S, Miyauchi K, Yamazaki T, Ito H, Otsuji Y, Kimura K, Takahashi J, Hirayama A, Yokoi H, Kitagawa K, Urabe T, Okada Y, Terayama Y, Toyoda K, Nagao T, Matsumoto M, Ohashi Y, Kaneko T, Fujita R, Ohtsu H, Ogawa H, Daida H, Shimokawa H, Saito Y, Kimura T, Inoue T, Matsuzaki M, Nagai R. High-dose versus low-dose pitavastatin in japanese patients with stable coronary artery disease (REAL-CAD): a randomized superiority trial. *Circulation*. 2018;137:1997–2009.
- Rossebo AB, Pedersen TR, Boman K, Brudi P, Chambers JB, Egstrup K, Gerdts E, Gohlke-Barwolf C, Holme I, Kesaniemi YA, Malbecq W, Nienaber CA, Ray S, Skjaerpe T, Wachtell K, Willenheimer R. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. *N Engl J Med*. 2008;359:1343–1356.
- 31. Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C, Wanner C, Krane V, Cass A, Craig J, Neal B, Jiang L, Hooi LS, Levin A, Agodoa L, Gaziano M, Kasiske B, Walker R, Massy ZA, Feldt-Rasmussen B, Krairittichai U, Ophascharoensuk V, Fellstrom B, Holdaas H, Tesar V, Wiecek A, Grobbee D, de Zeeuw D, Gronhagen-Riska C, Dasgupta T, Lewis D, Herrington W, Mafham M, Majoni W, Wallendszus K, Grimm R, Pedersen T, Tobert J, Armitage J, Baxter A, Bray C, Chen Y, Chen Z, Hill M, Knott C, Parish S, Simpson D, Sleight P, Young A, Collins R. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. *Lancet*. 2011;377:2181–2192.
- LaRosa JC, Grundy SM, Waters DD, Shear C, Barter P, Fruchart JC, Gotto AM, Greten H, Kastelein JJ, Shepherd J, Wenger NK. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med. 2005;352:1425–1435.
- Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane PW, McKillop JH, Packard CJ. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med. 1995;333:1301–1307.
- Lane T, Wassef N, Poole S, Mistry Y, Lachmann HJ, Gillmore JD, Hawkins PN, Pepys MB. Infusion of pharmaceutical-grade natural human C-reactive protein is not proinflammatory in healthy adult human volunteers. *Circ Res.* 2014;114:672–676.
- Kaul S, Morrissey RP, Diamond GA. By Jove! What is a clinician to make of JUPITER? Arch Intern Med. 2010;170:1073–1077.

- Blaha MJ, Nasir K, Budoff MJ, Dardari ZA, Blumenthal RS, Pollack S, Reichek N, Guerci AD. Impact of C-reactive protein and coronary artery calcium on benefit observed with atorvastatin. J Am Coll Cardiol. 2018;71:2487–2488.
- Braunwald E. Creating controversy where none exists: the important role of Creactive protein in the CARE, AFCAPS/TexCAPS, PROVE IT, REVERSAL, A to Z, JUPITER, HEART PROTECTION, and ASCOT trials. *Eur Heart J.* 2012;33:430–432.
- Ridker PM, Cannon CP, Morrow D, Rifai N, Rose LM, McCabe CH, Pfeffer MA, Braunwald E. C-reactive protein levels and outcomes after statin therapy. N Engl J Med. 2005;352:20–28.
- Nissen SE, Tuzcu EM, Schoenhagen P, Crowe T, Sasiela WJ, Tsai J, Orazem J, Magorien RD, O'Shaughnessy C, Ganz P. Statin therapy, LDL cholesterol, Creactive protein, and coronary artery disease. N Engl J Med. 2005;352:29–38.
- Morrow DA, de Lemos JA, Sabatine MS, Wiviott SD, Blazing MA, Shui A, Rifai N, Califf RM, Braunwald E. Clinical relevance of C-reactive protein during followup of patients with acute coronary syndromes in the Aggrastat-to-Zocor Trial. *Circulation*. 2006;114:281–288.
- 41. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AJ, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, Macfadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. *Lancet*. 2009;373:1175–1182.
- 42. Sever PS, Poulter NR, Chang CL, Thom SA, Hughes AD, Welsh P, Sattar N. Evaluation of C-reactive protein before and on-treatment as a predictor of benefit of atorvastatin: a cohort analysis from the Anglo-Scandinavian Cardiac Outcomes Trial lipid-lowering arm. J Am Coll Cardiol. 2013;62:717–729.
- 43. Soedamah-Muthu SS, Livingstone SJ, Charlton-Menys V, Betteridge DJ, Hitman GA, Neil HA, Bao W, DeMicco DA, Preston GM, Fuller JH, Stehouwer CD, Schalkwijk CG, Durrington PN, Colhoun HM. Effect of atorvastatin on C-reactive protein and benefits for cardiovascular disease in patients with type 2 diabetes: analyses from the Collaborative Atorvastatin Diabetes Trial. *Diabetologia*. 2015;58:1494–1502.
- 44. Arsenault BJ, Barter P, DeMicco DA, Bao W, Preston GM, LaRosa JC, Grundy SM, Deedwania P, Greten H, Wenger NK, Shepherd J, Waters DD, Kastelein JJ. Prediction of cardiovascular events in statin-treated stable coronary patients of the treating to new targets randomized controlled trial by lipid and non-lipid biomarkers. *PLoS One.* 2014;9:e114519.
- 45. Navarese EP, Robinson JG, Kowalewski M, Kolodziejczak M, Andreotti F, Bliden K, Tantry U, Kubica J, Raggi P, Gurbel PA. Association between baseline LDL-C level and total and cardiovascular mortality after LDL-C lowering: a systematic review and meta-analysis. *JAMA*. 2018;319:1566–1579.
- 46. Silverman MG, Ference BA, Im K, Wiviott SD, Giugliano RP, Grundy SM, Braunwald E, Sabatine MS. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA. 2016;316:1289–1297.
- 47. Ridker PM, MacFadyen JG, Everett BM, Libby P, Thuren T, Glynn RJ. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. *Lancet.* 2018;391:319–328.
- Ridker PM, Libby P, MacFadyen JG, Thuren T, Ballantyne C, Fonseca F, Koenig W, Shimokawa H, Everett BM, Glynn RJ. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). *Eur Heart J.* 2018;39:3499–3507.
- Thompson SG, Higgins JP. How should meta-regression analyses be undertaken and interpreted? Stat Med. 2002;21:1559–1573.

Supplemental Material

Supplemental Methods

We conducted the meta-analysis in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline.

Data Sources and Searches

We searched PubMed, EMBASE, and the Cochrane Library from their inception through July 2, 2018. The following search terms was used: (Statin OR "Hydroxymethylglutaryl-CoA Reductase Inhibitor" OR "Pravastatin" OR "Lovastatin" OR "Simvastatin" OR "Rosuvastatin" OR "Atorvastatin" OR "Pitavastatin" OR "Mevastatin" OR "Fluvastatin" OR ezetimibe OR "LDL-C lowering") AND Random* AND Trial. One reviewer (X.L.Z.) identified potential relevant citations from reference lists of the identified reports and relevant reviews.

Study Selection

Two reviewers (X.L.Z. and R.F.L.) independently evaluated the eligibility of studies. Discrepancies were resolved by discussion (W.X.). The main inclusion criteria were: (1) randomized controlled, cardiovascular outcome trials involving human subjects; (2) evaluated any comparison of the following strategies: statins, ezetimibe, or placebo (therapy to lower LDL-C vs. no therapy or more-intensive vs. less-intensive intervention); (3) included >500 patients and >40 clinical events and reported cardiovascular or mortality outcomes with at least 6 months of follow-up. We excluded trials investigating LDL-C lowering drugs other than statins and ezetimibe. Trials with proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies were not included because PCSK9 antibodies do not have an effect on CRP. We did not impose limitations on language, sex, or age.

Outcome Measures

The outcomes of interest were all-cause and cardiovascular mortality, myocardial infarction, stroke, coronary revascularization, and major adverse cardiovascular events (MACEs).

Data Extraction and Assessment of Study Quality

Three investigators (X.L.Z., R.F.L. and W.X.) independently extracted data using a prespecified form which included trial name, year of publication, number of patients, duration of follow-up, intervention and comparison treatments, baseline, achieved and the magnitude of reduction in CRP and LDL-C concentrations in each treatment group, and absolute event rates of mortality and cardiovascular outcomes in both treatment groups. Median CRP and mean LDL-C values were abstracted from each trial. Consensus was achieved through referral to a third investigator (L.W.) in case of disagreement. Two reviewers (X.L.Z and W.X.) independently assessed risk of bias of each trial by using the Cochrane Collaboration's tool.

Data Synthesis and Statistical Analysis

To investigate the association between baseline CRP concentrations and risks of mortality and cardiovascular outcomes with more-intensive LDL-C lowering, random-effects meta-regression analysis was performed, with log-transformed baseline CRP concentration as the covariate for the main model. Additional co-variates including age, absolute magnitude of reduction in CRP concentrations (difference between achieved CRP concentrations in the more intensive and less intensive study arms), baseline LDL-C and absolute magnitude of reduction in LDL-C concentrations were added in the adjusted analyses. Baseline CRP concentrations were log-transformed because their distributions were markedly skewed. The association between achieved and magnitude of reduction in CRP concentrations was also assessed by meta-regression analysis. Because

statins and ezetimibe differ in their effects on CRP concentrations, we performed sensitivity analyses in statin trials. We also performed sensitivity analyses according to study population (primary or secondary prevention trials). To account for the variability in the length of follow-up for each of these trials, we used rate ratios (RRs) with their corresponding 95% CIs adjusted for patient-years as the statistic estimate.

Prespecified subgroup analyses were performed for all outcomes of interest on a trial level by (1) baseline CRP concentrations (using the median value across trials as cut-point); (2) magnitude of reduction in CRP concentrations (using the median value across trials as cut-point); (3) type of intervention in the more intensive treatment (statin, statin with ezetimibe); and (4) treatment in the less intensive group (active vs placebo). In addition, trials were stratified by achieved CRP concentrations. Sensitivity analyses excluding trials with heart failure or chronic kidney disease requiring hemodialysis, trials with less than 1000 patients, and trials published before year 2000 were performed to evaluate the robustness of our findings. To compare treatment associations in subgroups, a χ 2 test of interaction was performed.

Heterogeneity was assessed by the Cochran Q test and the I2 statistic. A P value < 0.10 or an I2 statistic > 50% indicates substantial heterogeneity. We examined potential publication bias by visually inspecting the asymmetry of the funnel plot and Begg's test. For the summary treatment effect estimate, a 2-tailed P value less than 0.05 was considered statistically significant. Analyses were conducted with the Stata software, version 12.0 (STATA Corporation) and Review Manager, version 5.3 (Cochrane Collaboration).

PRISMA Checklist.

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2,3
INTRODUCTION	-		
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
METHODS	-		
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	NA
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6

Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	6,7

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	8
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	8
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	8-12
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	8-12
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	8-12
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	12,13
DISCUSSION			

Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).					
Limitations	25	cuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of intified research, reporting bias).					
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	17				
FUNDING							
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	3				

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097

Table S1. Study and Patient Baseline Characteristics.

												More intensive LDL-C lowering				Less inten	sive LDL·				
Trial	Yea	Total	Age	Men	СН	Other	DM,	HB	Sm	BMI	Medi	Treatment	No.	Baseli	Baselin	Treatmen	No. of	Baseli	Baseline	Magnitud	Magnitude
	r	No. of	, yrs	, %	D,	vascula	%	Ρ,	oker	(kg/	an		of	ne	е	t	patien	ne	LDL-C	e of	of
		patients			%	r		%	, %	m2)	FU,		patie	CRP	LDL-C		ts	CRP	(mg/dL)	reduction	reduction
						disease					ys		nts	(mg/L	(mg/dL)			(mg/L		in CRP	in LDL-C
						, %))		(mg/L)	(mg/dL)
4D	200	1255	65.7	54	50	53	100	NA	41	27.5	11.5	Atorvastati	636	5	125	Placebo	619	5	127	1.6	40
	5											n (20 mg)									
A to Z	200	4497	61	76	100	11	24	50	41	NA	2	Simvastatin	2265	20.1	112	Simvasta	2232	20.4	111	0.3	15.7
	4											(80 mg)				tin (20					
																mg)					
AFCAPS	199	6605	58	85	<1	<1	15	22	12	NA	5.2	Lovastatin	3304	1.6	150	Placebo	3301	1.5	153	0.3	40.5
_TEXCA	8											(20-40 mg)									
PS																					
ALERT	200	2102	50	66	19	11	19	75	18.5	25.8	6.7	Fluvastatin	1050	1.62	159	Placebo	1052	1.6	159	NA	38.2
	3											(40 mg)									
ASCOT-L	200	10305	63.2	81	<1	14	25	NA	32.7	28.7	3.3	Atorvastati	5168	2.72	133	Placebo	5137	2.7	133	NA	37.2
LA	3											n (10 mg)									
AURORA	200	2773	64.1	62	24	27	26.4	NA	15	25.4	3.8	Rosuvastat	1389	4.8	100	Placebo	1384	5.2	99	1.6	39
	9											in (10 mg)									
CARDS	200	2841	61.5	68	<1	3	18	NA	46	28.7	3.9	Atorvastati	1429	12.6	117	Placebo	1412	14.5	117	5.3	39.8
	4											n (10 mg)									
CARE	199	4159	59	86	100	0	14	43	21	28	5	Pravastatin	2081	3.8	139	Placebo	2078	3.6	139	1.2	40.3
	6											(40 mg)									
CORONA	200	5011	73	76	73	13	30	63	9	27	2.7	Rosuvastat	2514	3.1	137	Placebo	2497	3	136	1.2	34
	7											in (10 mg)									
HIJ-PRO	201	1721	65.7	75.6	100	7	30	68	59	24.3	3.9	Pitavastatin	864	21.2	135	Pitavasta	857	21	135	NA	20
PER	7											(1-4mg) +				tin					
												ezetimibe				(1-4mg)					
												(10 mg)									

HOPE-3	201 6	12705	65.8	53.7	0	0	6	38	28	27.1	5.6	Rosuvastat	6361	2	128	Placebo	6344	2	128	1.2	28.2
НРС	200	20536	64	75	65	13	20	ΝΔ	ΝΔ	ΝΔ	5	Simvastatin	1026	31	131.5	Placebo	1026	3.1	131	1.38	26.3
111 0	200	20000	04	15	00	-10	23	INA	INA	INA	0	(40 mg)	9	0.1	101.0	T IACEDO	7	0.1	101	1.00	20.0
IMPROV	201	18144	63.6	75 7	100	55	27	61 5	33	28.3	6	Simvastatin	9067	9.6	94	Simvasta	, 9077	95	94	0.3	16
E-IT	5		00.0			010		0110		20.0	Ū	(40 mg) +			-	tin (40		0.0	0.		
	•											ezetimibe				ma)					
												(10 mg)				5/					
JUPITER	200	17802	66	62	0	0	<1	NA	16	28.3	1.9	Rosuvastat	8901	4.2	108	Placebo	8901	4.3	108	1.5	54
	8											in (20 mg)									
LIPID	199	9014	62	83	100	10	9	41	74	NA	6.1	Pravastatin	4512	2.5	150	Placebo	4502	2.4	150	0.4	39.8
	8											(40 mg)									
Liu, et al	201	798	62	72	100	0	32.5	64.6	20.6	NA	1	Atorvastati	400	4.3	131	Atorvasta	398	4.5	131	NA	NA
	6											n (40-80				tin (20					
												mg)				mg)					
PREVEN	200	864	52	65	<1	1.5	NA	NA	74	26	3.8	Pravastatin	433	1.3	158	Placebo	431	1.3	154	0.28	35
D-IT	4											(40 mg)									
PROSPE	200	5804	75	48	32	18	11	NA	27	NA	3.2	Pravastatin	2891	3.1	147	Placebo	2913	3.1	147	NA	50
R	2											(40 mg)									
PROVE	200	4162	58	78	100	8	18	50	36.8	NA	2	Atorvastati	2099	12.3	106	Pravastat	2063	12.3	106	0.8	34
IT-TIMI	4											n (80 mg)				in (40					
22																mg)					
REAL-CA	201	12413	68	83	100	14	40	75.7	16.4	24.6	3.9	Pitavastatin	6199	0.57	88	Pitavasta	6214	0.59	88	0.1	14
D	8											(4mg)				tin (1mg)					
SEAS	200	1873	68	71	0	0	0	51.5	55	27	4.4	Simvastatin	944	2.1	140	Placebo	929	2.2	139	0.6	70
	8											(40 mg) +									
												ezetimibe									
												(10 mg)		0	407			-		0.7	00
SHARP	201	9270	62	62	0	15	23		13	27	4.9	Simvastatin	4650	3	107	Placebo	4620	3	107	0.7	29
	1											(20 mg) +									
												ezetimibe									
												(10 mg)									

TNT	200	10001	61	81	100	15	15	54	76	28.4	4.9	Atorvastati	4995	1.7	97	Atorvasta	5006	1.7	98	NA	23.3
	5											n (80 mg)				tin (10					
																mg)					
WOSCO	199	6595	55	100	5	3	1	16	78		4.9	Pravastatin	3302	2	192	Placebo	3293	2	192	NA	41.3
PS	5											(40 mg)									

BMI, body mass index; CRP, C-reactive protein; CHD, coronary heart disease; DM, diabetes mellitus; FU, follow-up; HBP, high blood pressure; LDL-C, low-density lipoprotein cholesterol; NA, not available

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; ALERT, Assessment of LEscol in Renal Transplantation Study; ASCOT-LLA, Anglo-Scandinavian Cardiac Outcomes Trial–Lipid Lowering Arm; AURORA, An Assessment of Survival and Cardiovascular Events; CARDS, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; HIJ-PROPER, the Heart Institute of Japan PRoper level of lipid IOwering with Pitavastatin and Ezetimibe in acute coRonary syndrome trial; HOPE-3, Heart Outcomes Prevention Evaluation; HPS, Heart Protection Study; IMPROVE-IT, Improved Reduction of Outcomes: Vytorin Efficacy International Trial; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPID, Long–term Intervention with Pravastatin in Ischaemic Disease; PREVEND IT, the Prevention of REnal and Vascular ENdstage Disease Intervention Trial; PROSPER, PROspective Study of Pravastatin in the Elderly at Risk; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection; TNT, Treating to New Targets; WOSCOPS, West of Scotland Coronary Prevention Study.

Trial	Year	Selected composite	Reported primary	Definition of myocardial infarction
		endpoint (major adverse	endpoint in original trial	
		cardiovascular events)		
4D	2005	Cardiac death, nonfatal	Cardiac death, nonfatal	Two of the following three criteria
		myocardial infarction, and	myocardial infarction, and	were met: typical symptoms; elevated
		stroke	stroke	levels of cardiac enzymes (i.e., a
				level of creatine kinase MB above 5
				percent of the total level of creatine
				kinase, a level of lactic
				dehydrogenase 1.5 times the upper
				limit of normal, or a level of troponin T
				greater than 2 ng per milliliter); or
				diagnostic changes on the
				electrocardiogram.
A to Z	2004	Cardiovascular death,	Cardiovascular death,	NA
		myocardial infarction,	myocardial infarction,	
		Stroke, or Hospitalization	Stroke, or Hospitalization	
		for acute coronary	for acute coronary	
		syndrome	syndrome	
AFCAPS_	1998	Myocardial infarction,	Myocardial infarction,	NA
TEXCAPS		unstable angina, or sudden	unstable angina, or sudden	
		cardiac death	cardiac death	
ALERT	2003	Cardiac death, definite or	Cardiac death, definite or	An adjudicated MI was classified as
		probable non-fatal	probable non-fatal	definite if a new Q-wave developed in
		myocardial infarction,	myocardial infarction,	the presence of abnormal cardiac
		coronary-artery bypass	coronary-artery bypass	markers or symptoms, or pathological
		grafting, percutaneous	grafting, percutaneous	ST elevations and T-wave changes
		coronary intervention	coronary intervention	developed in the presence of
				abnormal cardiac markers plus
				symptoms. An MI was classified as
				probable if pathological ST elevations
				and T-wave changes developed in
				the presence of abnormal cardiac
				markers or symptoms
ASCOT-LL	2003	Total cardiovascular events	Cardiovascular death and	NA
А		and procedures	non-fatal myocardial	
			infarction	
AURORA	2009	Nonfatal myocardial	Nonfatal myocardial	NA
		infarction, nonfatal stroke,	infarction, nonfatal stroke,	
		or death from	or death from	
		cardiovascular causes	cardiovascular causes	
CARDS	2004	Cardiovascular death,	Cardiovascular death,	NA
		myocardial infarction,	myocardial infarction,	
		stroke, unstable angina or	stroke, unstable angina or	
		revascularization	revascularization	

Table S2. Study Characteristics of the Included Randomized Trials.

CARE	1996	Cardiovascular death or	Cardiovascular death or	NA
		myocardial infarction	myocardial infarction	
CORONA	2007	Cardiovascular death,	Cardiovascular death,	NA
		nonfatal myocardial	nonfatal myocardial	
		infarction, or nonfatal stroke	infarction, or nonfatal stroke	
HIJ-PROP	2017	All-cause death, non-fatal	All-cause death, non-fatal	NA
ER		myocardial infarction,	myocardial infarction,	
		non-fatal stroke, unstable	non-fatal stroke, unstable	
		angina, or revascularization	angina, or revascularization	
HOPE-3	2016	Cardiovascular death,	Cardiovascular death,	EITHER Cardiac Ischemic Symptoms
		nonfatal myocardial	nonfatal myocardial	lasting > 20 minutes, determined by
		infarction, or nonfatal stroke	infarction, or nonfatal stroke	the site investigator to be secondary
				to ischemia OR ECG or changes
				consistent with acute infarction or
				ischemia MI AND Elevated cardiac
				biomarkers (values according to each
				hospital's laboratory): A rise and/or
				fall in cardiac biomarker values
				(preferably troponin, CKMB, AST,
				LDH or myoglobin) with at least one
				value above the 99th percentile of the
				upper reference limit.
HPS	2002	Cardiovascular death,	Mortality and fatal or	NA
		myocardial infarction,	non-fatal vascular events	
		stroke, or revascularization		
IMPROVE-	2015	Death from cardiovascular	Death from cardiovascular	The presence of either ECG evidence
IT		causes, major coronary	causes, major coronary	or cardiac marker evidence
		event, or nonfatal stroke	event, or nonfatal stroke	(post-CABG, both ECG and cardiac
				marker evidence were required, if the
				CK-MB was ≥5X ULN to <10X ULN).
JUPITER	2008	Cardiovascular death,	Cardiovascular death,	NA
		myocardial infarction,	myocardial infarction,	
		stroke, unstable angina, or	stroke, unstable angina, or	
		revascularization	revascularization	
LIPID	1998	Cardiovascular death or	Cardiovascular death	The presence of at least two new
		nonfatal myocardial		pathologic Q waves on the
		infarction		electrocardiogram or two of the
				following three criteria: at least 15
				minutes of ischemic chest pain,
				evolutionary ST-T wave changes (as
				previously defined), or elevation of
				the serum level of creatine kinase or
				its MB isoenzyme to at least twice the
				upper limit of normal
Liu, et al	2016	Cardiovascular death,	Cardiovascular death,	A rise in cardiac biomarkers
		spontaneous myocardial	spontaneous myocardial	(preferably troponin), with at least 1

		infarction, and unplanned	infarction, and unplanned	value above the 99th percentile of the
		revascularization	revascularization	upper reference limit together with
				evidence of myocardial ischemia with
				at least 1 of the following: symptoms
				of ischemia, electrocardiogram
				changes indicative of new ischemia
				(new specific ST-T changes or new
				left-bundle branch block),
				development of pathological Q waves
				in the electrocardiogram, imaging
				evidence of new loss of viable
				mvocardium, or new regional wall
				motion abnormality.
PREVEND 2	2004	Cardiovascular death and	Cardiovascular death and	At least 2 of 4 of the following, which
-IT		hospitalization for	hospitalization for	should include either new Q waves or
		cardiovascular morbidity	cardiovascular morbidity	enzyme elevation: (1) presence or
		·		history of typical or atypical chest
				pain of at least 15 minutes' duration;
				(2) ECG detection of ST-segment
				changes of at least 0.1 mV and/or
				T-wave inversion in at least 2 of 12
				leads: (3) ECG detection of new
				significant Q waves in at least 2 of 12
				leads: and (4) elevation of
				measurements of total creatine
				kinase (CK) and/or its isoenzyme
				CK-MB in at least 2 samples drawn
				within 48 hours of development of
				chest pain
PROSPER 2	2002	Coronary heart disease	Coronary heart disease	NA
		death or non-fatal	death or non-fatal	
		myocardial infarction or	myocardial infarction or	
		fatal or non-fatal stroke	fatal or non-fatal stroke	
PROVE 20	2004	Death from any cause.	Death from any cause.	The presence of symptoms
IT-TIMI 22		mvocardial infarction.	mvocardial infarction.	suggestive of ischemia or infarction.
		documented unstable	documented unstable	with either electrocardiographic
		angina requiring	angina reguiring	evidence (new Q waves in two or
		rehospitalization.	rehospitalization.	more leads) or cardiac-marker
		revascularization. and	revascularization. and	evidence of infarction, according to
		stroke	stroke	the standard TIMI and American
				College of Cardiology definition.
REAL-CAD 20	2018	Cardiovascular death.	Cardiovascular death.	Spontaneous: troponin with at least
		nonfatal myocardial	nonfatal myocardial	one value above the 99 th percentile of
		infarction, nonfatal ischemic	infarction, nonfatal ischemic	the upper reference limit
		stroke, or unstable angina	stroke, or unstable angina	Periprocedural PCI: Troponin>3

		hospitalization. hospitalization.		
SEAS	2008	Cardiovascular death, aort	Cardiovascular death,	NA
		ic-valve replacement,	aortic-valve replacement,	
		nonfat al myocardial infarct	nonfat al myocardial infarct	
		ion, hospitalization for	ion, hospitalization for	
		unstable angina pectoris,	unstable angina pectoris,	
		heart failure,	heart failure,	
		coronary-artery bypass	coronary-artery bypass	
		grafting, percutaneous	grafting, percutaneous	
		coronary intervention, and	coronary intervention, and	
		nonhemorrhagic stroke	nonhemorrhagic stroke	
SHARP	2011	Cardiovascular death,	Non-fatal myocardial	NA
		myocardial infarction,	infarction or coronary death,	
		stroke, or coronary	non-haemorrhagic stroke,	
		revascularization	or any arterial	
			revascularisation procedure	
TNT	2005	Cardiovascular death,	Cardiovascular death,	NA
		nonfatal non-	nonfatal non-	
		procedure-related	procedure-related	
		myocardial infarction, or	myocardial infarction, or	
		resuscitation after cardiac	resuscitation after cardiac	
		arrest	arrest	
WOSCOP	1995	Cardiovascular death or	Cardiovascular death or	NA
S		nonfatal myocardial	nonfatal myocardial	
		infarction	infarction	

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; ALERT, Assessment of LEscol in Renal Transplantation Study; ASCOT-LLA, Anglo-Scandinavian Cardiac Outcomes Trial–Lipid Lowering Arm; AURORA, An Assessment of Survival and Cardiovascular Events; CARDS, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; HIJ-PROPER, the Heart Institute of Japan PRoper level of lipid IOwering with Pitavastatin and Ezetimibe in acute coRonary syndrome trial; HOPE-3, Heart Outcomes Prevention Evaluation; HPS, Heart Protection Study; IMPROVE-IT, Improved Reduction of Outcomes: Vytorin Efficacy International Trial; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPID, Long–term Intervention with Pravastatin in Ischaemic Disease; PREVEND IT, the Prevention of REnal and Vascular ENdstage Disease Intervention Trial; PROSPER, PROspective Study of Pravastatin in the Elderly at Risk; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection; TNT, Treating to New Targets; WOSCOPS, West of Scotland Coronary Prevention Study.

Trial	Year	Inclusion criteria	Exclusion criteria
4D	2005	Subjects with type 2	Levels of fasting serum low-density lipoprotein (LDL)
		diabetes mellitus 18 to 80	cholesterol of less than 80 mg per deciliter (2.1 mmol per liter)
		years of age who had	or more than 190 mg per deciliter (4.9 mmol per liter),
		been receiving	triglyceride levels greater than 1000 mg per deciliter (11.3 mmol
		maintenance	per liter); liver function values more than three times the upper
		hemodialysis for less than	limit of normal or equal to those in patients with symptomatic
		two years.	hepatobiliary cholestatic disease; hematopoietic disease or
			systemic disease unrelated to end-stage renal disease;
			vascular intervention, congestive heart failure, or myocardial
			infarction within the three months preceding the period of
			enrollment; unsuccessful kidney transplantation; and
			hypertension resistant to therapy (i.e., systolic blood pressure
			continuously greater than 200 mm Hg or diastolic blood
			pressure greater than 110 mm Hg).
A to Z	2004	Patients between the	Patients receiving statin therapy at the time of randomization, if
		ages of 21 and 80 years	coronary artery bypass graft surgery was planned, or if PCI was
		with either non-	planned within the first 2 weeks after enrollment. Patients also
		ST-elevation ACS or	were excluded for having an alanine aminotransferase (ALT)
		ST-elevation MI were	level higher than 20% above the upper limit of normal (ULN); for
		eligible for enrollment if	having an increased risk for myopathy due to renal impairment
		they had a total	(serum creatinine level 2.0 mg/dL [176.8 μmol/L]) or
		cholesterol level of 250	concomitant therapy with agents known to enhance myopathy
		mg/dL (6.48 mmol/L) or	risk, such as fibrates, cyclosporine, macrolide antibiotics, azole
		lower.	antifungals, amiodarone, or verapamil; or for having a prior
			history of nonexerciserelated elevations in creatine kinase level
			or nontraumatic rhabdomyolysis.
AFCAPS_	1998	Men aged 45 to 73 years	Individuals with uncontrolled hypertension, secondary
TEXCAPS		and postmenopausal	hyperlipidemia, or type 1 or type 2 diabetes mellitus that was
		women aged 55 to 73	either managed with insulin or associated with a
		years who met the lipid	glycohemoglobin level of at least 10% (20% above the upper
		entrance criteria (TC,	limit of normal), had a body weight of more than 50% greater
		4.65-6.82 mmol/L	than the desirable limit for height
		[180-264 mg/dL]; LDL-C,	
		3.36-4.91 mmol/L	
		[130-190 mg/dL]; HDL-C,	
		1.16 mmol/L [45 mg/dL]	
		for men or ≤1.22 mmol/L	
		[47 mg/dL] for women;	
		and triglycerides \leq 4.52	
		mmol/L [400 mg/dL]).	

Table S3. Inclusion and Exclusion criteria of Included Randomized Controlled Trials.

ALERT	2003	Men and women aged 30–75 years who had received renal or combined renal and pancreas transplants more than 6 months before randomisation and who had stable graft function. All patients were receiving immunosuppressive therapy with ciclosporin and had total serum cholesterol concentrations of 4.0–9.0 mmol/l	Patients who were already taking statins, who had familial hypercholesterolaemia, had experienced acute rejection episodes in the previous 3 months, or who had a predicted life expectancy of less than 1 year.
ASCOT-LLA	2003	Men and women aged between 40 and 79 years at randomisation, with either untreated hypertension. Patients had to have total cholesterol concentrations of 6.5 mmol/L or lower, and not currently be taking a statin or a fibrate.	Previous myocardial infarction, currently treated angina, a cerebrovascular event within the previous 3 months, fasting triglycerides higher than 4.5 mmol/L, heart failure, uncontrolled arrhythmias or any clinically important haematological or biochemical abnormality on routine screening.
AURORA	2009	Men and women 50 to 80 years of age who had end-stage renal disease and had been treated with regular hemodialysis or hemofiltration for at least 3 months were recruited from 280 centers in 25 countries.	Statin therapy within the previous 6 months, expected kidney transplantation within 1 year, and serious hematologic, neoplastic, gastrointestinal, infectious, or metabolic disease (excluding diabetes) that was predicted to limit life expectancy to less than 1 year, with a history of a malignant condition, active liver disease (indicated by an alanine aminotransferase level that was more than three times the upper limit of the normal range), uncontrolled hypothyroidism, and an unexplained elevation in the creatine kinase level to more than three times the upper limit of the normal range.
CARDS	2004	Men and women aged 40–75 years with type 2 diabetes mellitus and had at least one or more of the following: a history of hypertension,; retinopathy; or currently smoking (no minimum number of cigarettes per day was required).	Had any past history of myocardial infarction, angina, coronary vascular surgery, cerebrovascular accident, or severe peripheral vascular disease (defined as warranting surgery). We checked eligibility against the patient's clinical notes and their own recall and assessed lipid eligibility criteria by blood testing at one screening and four pretreatment visits over a 10-week period.

CARE	1996	Men and postmenopausal women had an acute myocardial infarction between 3 and 20 months before randomization, were 21 to 75 years of age, and had plasma total cholesterol levels of less than 240 mg per deciliter, LDL cholesterol levels of 115 to 174 mg per deciliter.	Patients with serious noncardiovascular disease likely to interfere with participation or to cause death before the trial is over, with contraindications to pravastatin.
CORONA	2007	Patients who were at least 60 years of age and who had chronic New York Heart Association (NYHA) class II, III, or IV heart failure of ischemic cause (as reported by investigators) and an ejection fraction of no more than 40% (no more than 35% in patients in NYHA class II)	Previous statin-induced myopathy or hypersensitivity reaction; decompensated heart failure or a need for inotropic therapy; myocardial infarction within the past 6 months; unstable angina or stroke within the past 3 months; percutaneous coronary intervention (PCI), coronary-artery bypass grafting (CABG), or the implantation of a cardioverter–defibrillator or biventricular pacemaker within the past 3 months or a planned implantation of such a device; previous or planned heart transplantation; clinically significant, uncorrected primary valvular heart disease or a malfunctioning prosthetic valve; hypertrophic cardiomyopathy; acute endomyocarditis or myocarditis, pericardial disease, or systemic disease (e.g., amyloidosis); acute or chronic liver disease; levels of alanine aminotransferase or thyrotropin of more than 2 times the upper limit of the normal range; a serum creatinine level of more than 2.5 mg per deciliter (221 µmol per liter); chronic muscle disease or an unexplained creatine kinase level of more than 2.5 times the upper limit of the normal range; previous treatment with cyclosporine; any other condition that would substantially reduce life expectancy or limit compliance with the protocol; or the receipt of less than 80% of dispensed placebo tablets during the run-in period
HIJ-PROPER	2017	All participants had been hospitalized for ST-segment elevation myocardial infarction (STEMI) or for non-ST-segment elevation myocardial infarction (NSTEMI) or unstable angina (UA) within 72 h before randomization, with at least 20 years of age.	The occurrence within 24 hours before enrolment of (i) hemodynamic instabilities such as hypotension, pulmonary oedema, congestive heart failure, acute mitral regurgitation, or ventricular rupture; (ii) ischaemic events (stroke, recurrent symptoms of cardiac ischaemia, acute occlusion of target vessel); and (iii) arrhythmic events (ventricular fibrillation, sustained ventricular tachycardia, advanced heart block).

		Low-density lipoprotein cholesterol was at least 100 mg/dL (2.6 mmol/L).	
HOPE-3	2016	Men 55 years of age or older and women 65 years of age or older who had at least one of cardiovascular risk factors	Participants with cardiovascular disease and those with an indication for or contraindication to statins, angiotensin-receptor blockers, angiotensin-converting–enzyme inhibitors, or thiazide diuretics
HPS	2002	Men and women aged about 40–80 years with non-fasting blood total cholesterol concentrations of at least 3.5 mmol/L (135 mg/dL) if they were considered to be at substantial 5-year risk of death from coronary heart disease.	Patients had: chronic liver disease (cirrhosis or hepatitis) or evidence of abnormal liver function (eg, alanine aminotransferase >67 IU/L [1.5 times the central laboratory upper limit of normal: ULN]); severe renal disease or evidence of impaired renal function (creatinine >200 mmol/L); inflammatory muscle disease (eg, dermatomyositis or polymyositis) or evidence of muscle problems (creatine kinase >750 IU/L [3 ULN]); concurrent treatment with ciclosporin, fibrates, or high-dose niacin; child-bearing potential (premenopausal woman not sterilised or using reliable contraception); severe heart failure; some lifethreatening condition other than vascular disease or diabetes (eg, severe chronic airways disease or any cancer other than non-melanoma skin cancer); or conditions that might limit long-term compliance (eg, severely disabling stroke, dementia, or psychiatric disorder).
IMPROVE-IT	2015	Men and women who were at least 50 years of age if they had been hospitalized within the preceding 10 days for an acute coronary syndroma. Patients were required to have an LDL cholesterol level of 50 mg per deciliter (1.3 mmol per liter) or higher.	Planned coronary-artery bypass grafting for the acute coronary syndrome event, creatinine clearance of less than 30 ml per minute, active liver disease, or use of statin therapy that had LDL cholesterol–lowering potency greater than 40 mg of simvastatin.

JUPITER	2008	Men 50 years of age or older and women 60 years of age or older if they did not have a history of cardiovascular disease and if, at the initial screening visit, they had an LDL cholesterol level of less than 130 mg per deciliter (3.4 mmol per liter) and a high-sensitivity C-reactive protein level of 2.0 mg per liter or more.	previous or current use of lipid-lowering therapy, current use of postmenopausal hormone-replacement therapy, evidence of hepatic dysfunction (an alanine aminotransferase level that was more than twice the upper limit of the normal range), a creatine kinase level that was more than three times the upper limit of the normal range, a creatinine level that was higher than 2.0 mg per deciliter (176.8 µmol per liter), diabetes, uncontrolled hypertension (systolic blood pressure >190 mm Hg or diastolic blood pressure >100 mm Hg), cancer within 5 years before enrollment (with the exception of basal-cell or squamous-cell carcinoma of the skin), uncontrolled hypothyroidism (a thyroid-stimulating hormone level that was more than 1.5 times the upper limit of the normal range), and a recent history of alcohol or drug abuse or another medical condition that might compromise safety or the successful completion of the study. Because a core scientific hypothesis of the trial concerned the role of underlying low-grade inflammation as evidenced by elevated high-sensitivity C-reactive protein levels, patients with inflammatory conditions such as severe arthritis, lupus, or inflammatory bowel disease were excluded, as were patients taking immunosuppressant agents such as cyclosporine, tacrolimus, azathioprine, or long-term oral duccocriticoids
LIPID	1998	Patients had an acute myocardial infarction or had a hospital discharge diagnosis of unstable angina between 3 and 36 months before study entry, and the plasma total cholesterol level measured four weeks before randomization was required to be 155 to 271 mg per deciliter and the fasting triglyceride level less than 445 mg per deciliter (5.0 mmol per	A clinically significant medical or surgical event within three months before study entry, cardiac failure, renal or hepatic disease, and the current use of any cholesterol-lowering agents.
Liu, et al	2016	Itter). (1) Stable angina with inducible myocardial ischemia and indication for coronary angiography or (2) ACS requiring primary or elective PCI	Chronic atorvastatin use ≥20 mg/d (or equivalent dose of other statins) before PCI, abnormal liver enzymes (alanine aminotransferase [ALT] or aspartate aminotransferase [AST] more than 40 U/L); blood creatinine >2 mg/dL, or muscle disease.

PREVEND-IT PROSPER	2004	Persistent microalbuminuria, a blood pressure 160/100 mm Hg and no use of antihypertensive medication, and a total cholesterol level <8.0 mmol/L, or <5.0 mmol/L	Any of the following: creatinine clearance< 60% of the normal age-adjusted value, serum potassium >5.5 mmol/L, history of chronic liver disease, lactate dehydrogenase, aspartate-amino transferase or alanine-amino transferase .3 times the upper limit of normal, use of angiotensin-converting enzyme inhibitors or angiotensin II receptor antagonists, use of insulin, previously documented allergy or intolerance to study drugs, and pregnant or nursing women.
	2004	70–82 years if they had either pre-existing vascular disease or raised risk of such disease. Their plasma total cholesterol was required to be 4.0– 9.0 mmol/L and their triglyceride concentrations less than 6.0 mmol/L.	examination score <24).
PROVE IT-TIMI 22	2004	Men and women who were at least 18 years old if they had been hospitalized for an acute coronary syndrome or high-risk unstable angina. Patients had to have a total cholesterol level of 240 mg per deciliter (6.21 mmol per liter) or less.	Had a coexisting condition that shortened expected survival to less than two years, were receiving therapy with any statin at a dose of 80 mg per day at the time of their index event or lipid-lowering therapy with fibric acid derivatives or niacin that could not be discontinued before randomization, had received drugs that are strong inhibitors of cytochrome P-450 3A4 within the month before randomization or were likely to require such treatment during the study period (because atorvastatin is metabolized by this pathway), had undergone percutaneous coronary intervention within the previous six months (other than for the qualifying event) or coronary-artery bypass surgery within the previous two months or were scheduled to undergo bypass surgery in response to the index event, had factors that might prolong the QT interval, had obstructive hepatobiliary disease or other serious hepatic disease, had an unexplained elevation in the creatine kinase level that was more than three times the upper limit of normal and that was not related to myocardial infarction, or had a creatinine level of more than 2.0 mg per deciliter (176.8 µmol per liter).
REAL-CAD	2018	Men and women 20 to 80 years of age with stable CAD	Patients with LDL-C <100 mg/dL without statin therapy before enrollment because the label in the instructions for pitavastatin restricted use to patients with hypercholesterolemia.
SEAS	2008	Men and women between the ages of 45 and 85 years who had asymptomatic, mild-to-moderate aortic valve stenosis, as	Patients had received a diagnosis or had symptoms of coronary artery disease, peripheral arterial disease, cerebrovascular disease, or diabetes mellitus or if they had any other condition requiring lipid-lowering therapy.

		assessed on	
		echocardiography, with a	
		peak aortic-jet velocit y of	
		2.5 to 4 m per second.	
SHARP	2011	Patients aged 40 years	Definite history of MI or coronary revascularization procedure;
		and older were eligible to	Functioning renal transplant or living donor renal ; transplant
		participate if they had	planned; Less than 2 months since presentation as an acute
		chronic kidney disease	uremic emergency; Definite history of chronic liver disease or
		with more than one	abnormal liver function (ie, ALT N1.5× ULN or, if ALT not
		previous measurement of	available, AST N1.5× ULN) (patients with a history of hepatitis
		serum or plasma	are eligible if these limits are not exceeded); Evidence of active
		creatinine of at least 150	inflammatory muscle disease (eg, dermatomyositis,
		µmol/L (1·7 mg/dL) in men	polymyositis) or CK N3× ULN; Definite previous adverse
		or 130 µmol/L (1·5 mg/dL)	reaction to a statin or to ezetimibe; Concurrent treatment with a
		in women, whether	contraindicated drug; Child-bearing potential (ie,
		receiving dialysis or not.	premenopausal woman who is not using a reliable method of
			contraception); Known to be poorly compliant with clinic visits or
			prescribed medication; Medical history that might limit the
			individual's ability to take the trial treatments for the duration of
			the study (eg, severe respiratory disease, history of cancer
			other than nonmelanoma skin cancer or recent history of
			alcohol or substance misuse)
TNT	2005	Men and women 35 to 75	Hypersensitivity to statins; active liver disease or hepatic
		years of age who had	dysfunction defined as alanine aminotransferase or aspartate
		clinically evident CHD,	aminotransferase >1.5 times the upper limit of normal; women
		defined by one or more of	who are pregnant or breastfeeding; patients with nephrotic
		the following: previous	syndrome; uncontrolled diabetes mellitus; uncontrolled
		myocardial infarction,	hypothyroidism; uncontrolled hypertension (as defined by the
		previous or current angina	investigator) at the screening visit; a MI, coronary
		with objective evidence of	revascularization procedure or severe/unstable angina within 1
		atherosclerotic CHD, and	month of screening; any planned surgical procedure for the
		a history of coronary	treatment of atherosclerosis; an ejection fraction <30%;
		revascularization.	hemodynamically important valvular disease; gastrointestinal
			disease limiting drug absorption or partial ileal bypass; any
			nonskin malignancy, malignant melanoma or other
			survival-limiting disease; unexplained creatine phosphokinase
			levels >6 times the upper limit of normal; concurrent therapy
			with long-term immunosuppressants; concurrent therapy with
			lipid-regulating drugs not specified as study treatment in the
			protocol; history of alcohol abuse; and participation in another
	ļ		clinical trial concurrently or within 30 days before screening.
WOSCOPS	1995	Males aged 45-64 yr who,	NA
		at randomization, display	
		at most minor overt	
		evidence of CHD. (1)	
		LDL > 4.0 mmol/l at both	

screening visits 2 and 3;
(2) LDL > 4.5 mmol/l at
one or both of screening
visits 2 and 3; (3) LDL <
6.0 mmol/l at one or both
of screening visits 2 and 3

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; ALERT, Assessment of LEscol in Renal Transplantation Study; ASCOT-LLA, Anglo-Scandinavian Cardiac Outcomes Trial–Lipid Lowering Arm; AURORA, An Assessment of Survival and Cardiovascular Events; CARDS, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; HIJ-PROPER, the Heart Institute of Japan PRoper level of lipid IOwering with Pitavastatin and Ezetimibe in acute coRonary syndrome trial; HOPE-3, Heart Outcomes Prevention Evaluation; HPS, Heart Protection Study; IMPROVE-IT, Improved Reduction of Outcomes: Vytorin Efficacy International Trial; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPID, Long–term Intervention with Pravastatin in Ischaemic Disease; PREVEND IT, the Prevention of REnal and Vascular ENdstage Disease Intervention Trial; PROSPER, PROspective Study of Pravastatin in the Elderly at Risk; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection; TNT, Treating to New Targets; WOSCOPS, West of Scotland Coronary Prevention Study.

Table S4. Listing of Potential Sources of Bias.

Study	Year	Random	Allocatio	Blinding of	Blinding of	Incomple	Selective	Other
		sequenc	n	participants	outcome	te	reporting	bias
		е	conceal	and	assessme	outcome	(reportin	
		generatio	ment	personnel	nt	data	g bias)	
		n	(selectio	(performanc	(detection	(attrition		
		(selectio	n bias)	e bias)	bias)	bias)		
		n bias)						
4D	2005	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	High risk
A to Z	2004	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	High risk
			risk					
AFCAPS_T	1998	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	Low risk
EXCAPS			risk					
ALERT	2003	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	High risk
			risk					
ASCOT-LL	2003	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	High risk
А			risk					
AURORA	2009	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	High risk
			risk					
CARDS	2004	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	High risk
CARE	1996	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	Unclear
			risk					risk
CORONA	2007	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	High risk
HIJ-PROP	2017	Low risk	Unclear	High risk	Low risk	Low risk	Low risk	Low risk
ER			risk					
HOPE-3	2016	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	High risk
			risk					
HPS	2002	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	High risk
IMPROVE-I	2015	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	High risk
Т			risk					
JUPITER	2008	Unclear	Low risk	Low risk	Low risk	Low risk	Low risk	High risk
		risk						
LIPID	1998	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	High risk
			risk					
Liu, et al	2016	Low risk	Unclear	Unclear risk	Unclear risk	Low risk	Low risk	Low risk
			risk					
PREVEND-	2004	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
PROSPER	2002	Low risk	Low risk	Low risk	Low risk	Unclear	Low risk	Low risk
	2004	Unclear	Low risk	Low risk	Low risk	Low risk	Low risk	High risk
11-11MI 22	0040	risk						11
REAL-CAD	2018	Low risk	Unclear	Unclear risk	Low risk	Low risk	Low risk	Unclear
	0005		risk					risk
SEAS	2008	Low risk	Low risk	Unclear risk	Low risk	Unclear	Low risk	High risk
	0041					risk		
SHARP	2011	Low risk	Low risk	LOW ISK	LOW risk	Low risk	Low risk	High risk

TNT	2005	Low risk	Low risk	Low risk	Unclear risk	Low risk	Low risk	Low risk
WOSCOPS	1995	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	High risk
			risk					

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; ALERT, Assessment of LEscol in Renal Transplantation Study; ASCOT-LLA, Anglo-Scandinavian Cardiac Outcomes Trial–Lipid Lowering Arm; AURORA, An Assessment of Survival and Cardiovascular Events; CARDS, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; HIJ-PROPER, the Heart Institute of Japan PRoper level of lipid IOwering with Pitavastatin and Ezetimibe in acute coRonary syndrome trial; HOPE-3, Heart Outcomes Prevention Evaluation; HPS, Heart Protection Study; IMPROVE-IT, Improved Reduction of Outcomes: Vytorin Efficacy International Trial; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPID, Long–term Intervention with Pravastatin in Ischaemic Disease; PREVEND IT, the Prevention of REnal and Vascular ENdstage Disease Intervention Trial; PROSPER, PROspective Study of Pravastatin in the Elderly at Risk; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection; TNT, Treating to New Targets; WOSCOPS, West of Scotland Coronary Prevention Study.

Table S5. Meta-analysis Excluding Trials with Potential Bias.

	Ba	seline CRP ≥ me	edian	Bas	eline CRP < med	lian		Overall	
	Trials	Rate Ratio	P value	Trials	Rate Ratio	Р	Trials	Rate Ratio	Р
		(95% CI)			(95% CI)	value		(95% CI)	value
All-cause mortality									
Trials with HF or requiring hemodialysis	10	0.90 (0.83,	0.007	10	0.92 (0.85,	0.043	20	0.91 (0.86,	0.001
excluded		0.97)			0.99)			0.96)	
Trials with less than 1000 patients excluded	12	0.93 (0.88,	0.004	9	0.90 (0.83,	0.011	21	0.91 (0.87,	<0.001
		0.98)			0.98_			0.96)	
Year before 2000 excluded	13	0.93 (0.88,	0.003	6	0.93 (0.86,	0.099	19	0.93 (0.89,	0.001
		0.98)			1.01)			0.97)	
Cardiovascular mortality									
Trials with HF or requiring hemodialysis	9	0.81 (0.72,	<0.001	11	0.85 (0.78,	<0.001	20	0.83 (0.78,	<0.001
excluded		0.91)			0.92)			0.90)	
Trials with less than 1000 patients excluded	12	0.85 (0.78,	0.001	9	0.81 (0.74,	<0.001	21	0.84 (0.79,	<0.001
		0.93)			0.88)			0.90)	
Year before 2000 excluded	11	0.85 (0.77,	0.001	7	0.86 (0.77,	0.007	18	0.86 (0.80,	<0.001
		0.94)			0.96)			0.92)	
Myocardial infarction									
Trials with HF or requiring hemodialysis	11	0.80 (0.69,	<0.001	11	0.71 (0.67,	<0.001	22	0.74 (0.68,	<0.001
excluded		0.88)			0.76)			0.80)	
Trials with less than 1000 patients excluded	13	0.79 (0.72,	<0.001	9	0.70 (0.65,	<0.001	22	0.75 (0.70,	<0.001
		0.88)			0.76)			0.81)	
Year before 2000 excluded	13	0.80 (0.72,	<0.001	7	0.70 (0.63,	<0.001	20	0.76 (0.70,	<0.001
		0.88)			0.79)			0.83)	
Stroke									
Trials with HF or requiring hemodialysis	11	0.79 (0.71,	<0.001	11	0.85 (0.77,	0.003	22	0.82 (0.77,	<0.001
excluded		0.88)			0.95)			0.89)	
Trials with less than 1000 patients excluded	13	0.84 (0.75,	0.001	9	0.86 (0.77,	0.017	22	0.85 (0.79,	<0.001
		0.93)			0.97)			0.92)	

Year before 2000 excluded		0.84 (0.76,	0.001	7	0.89 (0.75,	0.188	20	0.86 (0.78,	0.001
		0.94)			1.06)			0.94)	
Coronary revascularization									
Trials with HF or requiring hemodialysis	11	0.80 (0.73,	<0.001	10	0.77 (0.72,	<0.001	21	0.78 (0.73,	<0.001
excluded		0.88)			0.81)			0.83)	
Trials with less than 1000 patients excluded	12	0.82 (0.75,	<0.001	9	0.75 (0.70,	<0.001	21	0.78 (0.73,	<0.001
		0.89)			0.81)			0.84)	
Year before 2000 excluded	12	0.82 (0.74,	<0.001	6	0.75 (0.68,	<0.001	18	0.79 (0.73,	<0.001
		0.90)			0.82)			0.85)	
MACE									
Trials with HF or requiring hemodialysis	11	0.80 (0.74,	<0.001	11	0.80 (0.76,	<0.001	22	0.81 (0.77,	<0.001
excluded		0.87)			0.85)			0.85)	
Trials with less than 1000 patients excluded	13	0.85 (0.79,	<0.001	9	0.79 (0.74,	<0.001	22	0.82 (0.78,	<0.001
		0.90)			0.83)			0.86)	
Year before 2000 excluded	13	0.85 (0.79,	<0.001	7	0.81 (0.77,	<0.001	20	0.84 (0.80,	<0.001
		0.90)			0.87)			0.88)	

CRP, C-reactive protein; MACE, major adverse cardiovascular event.
				Statin	•		Statin + ezetimibe	
		Subgroup	Trials	Rate Ratio (95% CI)	P value	Trials	Rate Ratio (95% CI)	P value
All-cause mortality	Baseline CRP	< median	8	0.89 (0.82, 0.97)	0.005	1	1.04 (0.80, 1.36)	0.763
		≥ median	10	0.91 (0.86, 0.97)	<0.001	3	0.99 (0.90, 1.08)	0.745
	Magnitude of reduction in CRP	< median	4	0.81 (0.74, 0.88)	<0.001	2	0.99 (0.92, 1.07)	0.839
		≥ median	8	0.91 (0.87, 0.96)	<0.001	1	1.02 (0.94, 1.10)	0.671
		Total	19	0.90 (0.86, 0.94)	<0.001	4	1.00 (0.94, 1.05)	0.91
Cardiovascular mortality	Baseline CRP	< median	9	0.81 (0.74, 0.88)	<0.001	1	0.85 (0.58, 1.24)	0.385
		≥ median	10	0.82 (0.73, 0.91)	<0.001	2	0.97 (0.88, 1.06)	0.481
	Magnitude of reduction in CRP	< median	5	0.76 (0.68, 0.85)	<0.001	2	0.98 (0.88, 1.10)	0.786
		≥ median	9	0.84 (0.75, 0.94)	0.002	1	0.92 (0.80, 1.07)	0.278
		Total	19	0.82 (0.77, 0.88)	<0.001	3	0.96 (0.88, 1.05)	0.374
Myocardial infarction	Baseline CRP	< median	9	0.70 (0.65, 0.76)	<0.001	1	0.65 (0.39, 1.08)	0.094
		≥ median	11	0.75 (0.67, 0.86)	<0.001	3	0.88 (0.82, 0.96)	0.002
	Magnitude of reduction in CRP	< median	5	0.71 (0.58, 0.87)	0.001	2	0.84 (0.70, 1.02)	0.08
		≥ median	9	0.72 (0.64, 0.82)	<0.001	1	0.92 (0.76, 1.11)	0.378
		Total	21	0.73 (0.68, 0.78)	<0.001	4	0.88 (0.81, 0.95)	0.001
Stroke	Baseline CRP	< median	9	0.86 (0.76, 0.97)	0.011	1	1.12 (0.69, 1.82)	0.659
		≥ median	11	0.81 (0.70, 0.93)	0.003	3	0.85 (0.75, 0.96)	0.008
	Magnitude of reduction in CRP	< median	5	0.93 (0.77, 1.12)	0.443	2	0.88 (0.76, 1.02)	0.089
		≥ median	9	0.79 (0.68, 0.91)	0.001	1	0.83 (0.68, 1.01)	0.065
		Total	21	0.83 (0.76, 0.91)	<0.001	4	0.86 (0.77, 0.97)	0.014
Coronary Revascularization	Baseline CRP	< median	8	0.76 (0.71, 0.82)	<0.001	1	0.68 (0.49, 0.94)	0.018
		≥ median	10	0.78 (0.70, 0.86)	<0.001	3	0.89 (0.80, 0.98)	0.022
	Magnitude of reduction in CRP	< median	4	0.83 (0.76, 0.90)	<0.001	2	0.83 (0.60, 1.14)	0.253
		≥ median	8	0.76 (0.68, 0.84)	<0.001	1	0.80 (0.69, 0.94)	0.005
		Total	19	0.77 (0.72, 0.81)	< 0.001	4	0.85 (0.75, 0.96)	0.010
MACE	Baseline CRP	< median	9	0.77 (0.73, 0.81)	< 0.001	1	0.93 (0.81, 1.07)	0.332
		≥ median	11	0.81 (0.75, 0.88)	<0.001	3	0.91 (0.85, 0.97)	0.004

Table S6. Sensitivity Analysis Stratified for Agent Used in the More-intensive Treatment Group.

Magnitude of reduction in CRP	< median	5	0.79 (0.72, 0.87)	<0.001	2	0.94 (0.89, 0.99)	0.010
	≥ median	9	0.81 (0.74, 0.88)	<0.001	1	0.84 (0.75, 0.95)	0.004
	Total	21	0.80 (0.76, 0.84)	<0.001	4	0.92 (0.88, 0.96)	<0.001

CRP, C-reactive protein; MACE, major adverse cardiovascular event.

				Active	-		Placebo	
		Subgroup	Trials	Rate Ratio	P value	Trials	Rate Ratio	P value
				(95% CI)			(95% CI)	
All-cause mortality	Baseline CRP	< median	2	0.90 (0.72, 1.13)	0.372	7	0.90 (0.82, 0.99)	0.026
		≥ median	5	0.82 (0.67, 1.00)	0.05	8	0.94 (0.89, 0.99)	0.015
	Magnitude of reduction in CRP	< median	3	0.88 (0.74, 1.04)	0.128	3	0.91 (0.74, 1.13)	0.393
		≥ median	1	0.69 (0.47, 1.00)	0.047	8	0.93 (0.88, 0.98)	0.009
		Total	7	0.87 (0.77, 0.98)	0.024	15	0.92 (0.88, 0.97)	0.001
Cardiovascular mortality	Baseline CRP	< median	2	0.80 (0.67, 0.95)	0.013	8	0.81 (0.74, 0.90)	<0.001
		≥ median	3	0.89 (0.71, 1.10)	0.268	9	0.84 (0.75, 0.93)	0.001
	Magnitude of reduction in CRP	< median	3	0.86 (0.70, 1.06)	0.162	4	0.77 (0.67, 0.87)	<0.001
		≥ median	1	0.78 (0.45, 1.35)	0.371	9	0.85 (0.77, 0.94)	0.003
		Total	5	0.86 (0.74, 0.99)	0.034	17	0.84 (0.78, 0.90)	<0.001
Myocardial infarction	Baseline CRP	< median	2	0.69 (0.50, 0.97)	0.031	8	0.69 (0.63, 0.75)	<0.001
		≥ median	5	0.89 (0.82, 0.95)	0.001	9	0.75 (0.66, 0.85)	<0.001
	Magnitude of reduction in CRP	< median	3	0.83 (0.67, 1.02)	0.078	4	0.69 (0.61, 0.78)	<0.001
		≥ median	1	0.89 (0.71, 1.12)	0.325	9	0.73 (0.63, 0.83)	<0.001
		Total	7	0.85 (0.77, 0.93)	0.001	17	0.72 (0.66, 0.78)	<0.001
Stroke	Baseline CRP	< median	2	0.92 (0.62, 1.36)	0.680	8	0.84 (0.75, 0.95)	0.004
		≥ median	5	0.85 (0.74, 0.97)	0.017	9	0.83 (0.72, 0.95)	0.009
	Magnitude of reduction in CRP	< median	3	0.93 (0.76, 1.14)	0.496	4	0.87 (0.73, 1.05)	0.141
		≥ median	1	0.98 (0.54, 1.80)	0.955	9	0.79 (0.69, 0.90)	<0.001
		Total	7	0.87 (0.77, 0.99)	0.030	17	0.84 (0.76, 0.92)	<0.001
Coronary Revascularization	Baseline CRP	< median	2	0.79 (0.69, 0.90)	<0.001	7	0.72 (0.65, 0.80)	<0.001
		≥ median	5	0.92 (0.86, 0.97)	0.005	8	0.76 (0.69, 0.83)	<0.001
	Magnitude of reduction in CRP	< median	3	0.91 (0.85, 0.98)	0.015	3	0.74 (0.63, 0.87)	<0.001
		≥ median	1	0.87 (0.75, 0.99)	0.043	8	0.75 (0.68, 0.82)	<0.001
		Total	7	0.85 (0.78, 0.94)	0.001	15	0.74 (0.70, 0.79)	<0.001
MACE	Baseline CRP	< median	2	0.80 (0.72, 0.88)	<0.001	8	0.78 (0.73, 0.84)	<0.001

Table S7. Sensitivity Analysis Stratified for the Type of Treatment in the Less-intensive Group.

	≥ median	5	0.89 (0.83, 0.96)	0.001	9	0.82 (0.75, 0.90)	<0.001
Magnitude of reduction in CRP	< median	3	0.89 (0.82, 0.98)	0.016	4	0.79 (0.67, 0.93)	0.004
	≥ median	1	0.85 (0.76, 0.96)	0.006	9	0.81 (0.74, 0.89)	<0.001
	Total	7	0.86 (0.80, 0.92)	<0.001	17	0.81 (0.76, 0.85)	<0.001

CRP, C-reactive protein; MACE, major adverse cardiovascular event.

				Primary Preventie	on	Secondary Prevention		
		Subgroup	Trials	Rate Ratio	P value	Trials	Rate Ratio	P value
				(95% CI)			(95% CI)	
All-cause mortality	Baseline CRP	< median	6	0.94 (0.86, 1.02)	0.127	3	0.86 (0.73, 1.00)	0.051
		≥ median	3	0.87 (0.71, 1.08)	0.208	6	0.90 (0.81, 1.00)	0.051
	Magnitude of reduction in CRP	< median	2	1.04 (0.84, 1.27)	0.739	4	0.85 (0.73, 0.98)	0.029
		≥ median	4	0.90 (0.79, 1.03)	0.139	2	0.85 (0.63, 1.16)	0.301
		Total	9	0.93 (0.86, 1.01)	0.065	9	0.87 (0.79, 0.96)	0.004
Cardiovascular mortality	Baseline CRP	< median	7	0.86 (0.76, 0.98)	0.019	3	0.78 (0.69, 0.87)	<0.001
		≥ median	3	0.70 (0.46, 1.06)	0.091	5	0.93 (0.84, 1.04)	0.184
	Magnitude of reduction in CRP	< median	3	0.79 (0.58, 1.09)	0.150	4	0.83 (0.70, 0.99)	0.036
		≥ median	4	0.76 (0.58, 0.99)	0.042	3	0.93 (0.80, 1.08)	0.327
		Total	10	0.80 (0.69, 0.92)	0.002	8	0.86 (0.77, 0.95)	0.004
Myocardial infarction	Baseline CRP	< median	7	0.66 (0.58, 0.74)	<0.001	3	0.73 (0.64, 0.83)	<0.001
		≥ median	3	0.63 (0.39, 1.02)	0.058	7	0.87 (0.81, 0.93)	<0.001
	Magnitude of reduction in CRP	< median	3	0.68 (0.59, 0.80)	<0.001	4	0.80 (0.68, 0.94)	0.007
		≥ median	4	0.64 (0.45, 0.91)	0.012	3	0.81 (0.72, 0.93)	0.002
		Total	10	0.66 (0.58, 0.76)	<0.001	10	0.81 (0.75, 0.88)	<0.001
Stroke	Baseline CRP	< median	7	0.86 (0.73, 1.00)	0.053	3	0.88 (0.71, 1.11)	0.001
		≥ median	3	0.64 (0.45, 0.92)	0.016	7	0.83 (0.74, 0.93)	0.279
	Magnitude of reduction in CRP	< median	3	1.07 (0.73, 1.57)	0.741	4	0.90 (0.78, 1.03)	0.121
		≥ median	4	0.68 (0.54, 0.85)	0.001	3	0.80 (0.66, 0.99)	0.037
		Total	10	0.80 (0.68, 0.92)	0.003	10	0.85 (0.78, 0.93)	<0.001
Coronary Revascularization	Baseline CRP	< median	6	0.66 (0.58, 0.75)	<0.001	3	0.80 (0.74, 0.87)	<0.001
		≥ median	3	0.71 (0.56, 0.89)	0.003	6	0.87 (0.79, 0.95)	0.003
	Magnitude of reduction in CRP	< median	2	0.65 (0.53, 0.79)	<0.001	4	0.89 (0.82, 0.96)	0.002
		≥ median	4	0.71 (0.60, 0.84)	<0.001	2	0.81 (0.70, 0.93)	0.003
		Total	9	0.70 (0.64, 0.76)	<0.001	9	0.84 (0.78, 0.90)	<0.001
MACE	Baseline CRP	< median	7	0.78 (0.71, 0.86)	<0.001	3	0.79 (0.73, 0.85)	<0.001

Table S8. Sensitivity Analysis Stratified for the Type of Population.

	≥ median	3	0.68 (0.52, 0.90)	0.007	7	0.89 (0.84, 0.94)	<0.001
Magnitude of reduction in CRP	< median	3	0.79 (0.59, 1.06)	0.118	4	0.86 (0.77, 0.95)	0.004
	≥ median	4	0.71 (0.59, 0.86)	<0.001	3	0.87 (0.78, 0.96)	0.007
	Total	10	0.75 (0.68, 0.83)	<0.001	10	0.85 (0.80, 0.90)	<0.001

CRP, C-reactive protein; MACE, major adverse cardiovascular event.

Table S9. Multivariable Meta-regression Models for the Association of Each 1-mg/L Reduction in log(baseline CRP Concentration), Magnitude of Reduction in CRP Concentration, and Mortality and Cardiovascular Outcomes in Statin Trials.

			Rate Ratio (95% CI)						
Outcomes	No. of	log(Baseline CRP)	Magnitude of	Achieved CRP	log(Baseline CRP)	log(Baseline CRP) Adjusted for			
	Trials		reduction in CRP		Adjusted for	Magnitude of reduction in CRP,			
					Magnitude of	Baseline LDL-C, Magnitude of			
					reduction in CRP	reduction in LDL-C and Age			
All-cause mortality	18	0.97 (0.90, 1.05)	1.01 (0.93, 1.10)	1.00 (0.96, 1.04)	0.98 (0.88, 1.09)	0.99 (0.86, 1.14)			
Cardiovascular mortality	19	0.98 (0.87, 1.10)	0.99 (0.88, 1.12)	1.00 (0.94, 1.07)	0.98 (0.83, 1.15)	1.01 (0.84, 1.22)			
Myocardial infarction	20	1.12 (1.01, 1.23)	0.95 (0.84, 1.07)	0.99 (0.93, 1.04)	1.18 (1.06, 1.30)	1.22 (1.06, 1.41)			
Stroke	20	0.91 (0.79, 1.04)	0.90 (0.78, 1.02)	0.96 (0.90, 1.03)	0.96 (0.80, 1.16)	0.97 (0.76, 1.24)			
Revascularization	18	1.04 (0.96, 1.12)	0.94 (0.85, 1.05)	0.99 (0.94, 1.05)	1.04 (0.96, 1.15)	1.04 (0.89, 1.22)			
MACE	20	1.03 (0.95, 1.12)	0.97 (0.89, 1.05)	0.99 (0.95, 1.04)	1.05 (0.94, 1.17)	1.08 (0.95, 1.22)			

CRP, C-reactive protein; LDL-C, low-density lipoprotein cholesterol; MACE, major adverse cardiovascular event.

Table S10. Multivariable Meta-regression Models for the Association of Each 1-mg/LReduction in log(baseline CRP Concentration), Magnitude of Reduction in CRPConcentration, and Mortality and Cardiovascular Outcomes in Secondary Prevention Trials*.

		Rate Ratio (95% CI)						
Outcomes	No. of	log(Baseline	Magnitude of	log(Baseline CRP)				
	Trials	CRP)	Reduction in CRP	Adjusted for Magnitude				
				of Reduction in CRP				
All-cause mortality	9	0.98 (0.87, 1.10)	1.09 (0.72, 1.65)	1.01 (0.84, 1.22)				
Cardiovascular mortality	8	1.03 (0.90, 1.19)	1.11 (0.76, 1.61)	1.03 (0.86, 1.23)				
Myocardial infarction	10	1.12 (1.03, 1.21)	1.00 (0.68, 1.48)	1.15 (1.02, 1.29)				
Stroke	10	0.95 (0.85, 1.07)	0.83 (0.59, 1.17)	0.94 (0.82, 1.07)				
Coronary revascularization	9	1.04 (0.97, 1.11)	0.87 (0.67, 1.14)	1.06 (0.99, 1.13)				
MACE	10	1.04 (0.98, 1.10)	1.02 (0.80, 1.29)	1.04 (0.94, 1.14)				

*Meta-regression analyses were not adjusted for age, baseline LDL-C and magnitude reduction of LDL-C because of limited number of trials.

CRP, C-reactive protein; LDL-C, low-density lipoprotein cholesterol; MACE, major adverse cardiovascular event.

Table S11. Multivariable Meta-regression Models for the Association of Each 1-mg/LReduction in log(baseline CRP Concentration), Magnitude of Reduction in CRPConcentration, and Mortality and Cardiovascular Outcomes in Primary Prevention Trials*.

		Rate Ratio (95% CI)					
Outcomes	No. of	log(Baseline	Magnitude of	log(Baseline CRP)			
	Trials	CRP)	Reduction in	Adjusted for Magnitude of			
			CRP	Reduction in CRP			
All-cause mortality	9	0.87 (0.71, 1.07)	0.92 (0.83, 1.01)	0.96 (0.55, 1.66)			
Cardiovascular mortality	10	0.82 (0.59, 1.14)	0.95 (0.78, 1.15)	0.73 (0.22, 2.43)			
Myocardial infarction	10	0.91 (0.67, 1.25)	0.95 (0.79, 1.14)	1.29 (0.35, 4.72)			
Stroke	10	0.71 (0.53, 0.96)	0.89 (0.74, 1.05)	0.74 (0.22, 2.43)			
Coronary revascularization	9	1.01 (0.76, 1.35)	0.98 (0.83, 1.16)	1.11 (0.44, 2.78)			
MACE	10	0.90 (0.73, 1.12)	0.96 (0.84, 1.08)	0.89 (0.35, 2.27)			

*Meta-regression analyses were not adjusted for age, baseline LDL-C and magnitude reduction of LDL-C because of limited number of trials.

CRP, C-reactive protein; LDL-C, low-density lipoprotein cholesterol; MACE, major adverse cardiovascular event.

Figure S1. Identification and Selection of Randomized Clinical Trials Evaluating the Effect of Low-Density Lipoprotein Cholesterol Lowering Therapy on Cardiovascular Outcomes.

CRP, C-reactive protein.

Figure S2. Publication Bias. (A) All-cause mortality; (B) cardiovascular mortality; (C) myocardial infarction; (D) stroke; (E) Coronary revascularization; (F) MACE.

MACE, major adverse cardiovascular event.

Figure S3. Meta-regression Analysis of All-Cause Mortality Rate Ratio Plotted Against Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

CRP, C-reactive protein; RR, rate ratio.

Figure S4. Meta-analysis of All-cause Mortality Stratified by Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

		No. of Patients With Event/Total No					
	Rate Ratio	More Intensive	Less Intensive	Weight			
Study and Subgroup	(95% CI)	LDL-C Lowering	LDL-C Lowering	%			
CRP reduction ≥ median							
4D (2005)	- 0.95 (0.85, 1.06)	559/636	573/619	8.83			
AURORA (2009)	- 0.96 (0.87, 1.06)	636/1389	660/1384	9.48			
CARDS (2004)	0.74 (0.53, 1.02)	61/1429	82/1412	2.14			
CORONA (2007)	- 0.95 (0.87, 1.05)	728/2514	759/2497	9.89			
HOPE-3 (2016)	- 0.93 (0.80, 1.08)	334/6361	357/6344	6.73			
HPS (2002) 📥	0.88 (0.82, 0.95)	1328/10269	1507/10267	11.54			
JUPITER (2008)	0.80 (0.67, 0.97)	198/8901	247/8901	5.14			
PROVE IT-TIMI 22 (2004)	0.69 (0.47, 1.00)	46/2099	66/2063	1.71			
SHARP (2011)	1.02 (0.94, 1.10)	1142/4650	1115/4620	10.99			
Subtotal (I-squared = 45.4%, p = 0.067) Subtotal effect: z = 2.75, p = 0.006	0.92 (0.87, 0.98)	5032/38248	5366/38107	66.45			
CRP reduction < median							
A to Z (2004)	0.79 (0.61, 1.02)	104/2265	130/2232	3.27			
AFCAPS_TEXCAPS (1998)	1.04 (0.76, 1.42)	80/3304	77/3301	2.34			
IMPROVE-IT (2015)	₽ 0.99 (0.91, 1.07)	1215/9067	1231/9077	11.14			
LIPID (1998)	0.78 (0.70, 0.88)	498/4512	633/4502	8.55			
REAL-CAD (2018)	0.80 (0.67, 0.96)	207/6199	260/6214	5.29			
SEAS (2008)	1.03 (0.79, 1.35)	105/944	100/929	2.97			
Subtotal (I-squared = 67.1%, p = 0.010) Subtotal effect: z = 1.93, p = 0.053	0.89 (0.79, 1.00)	2209/26291	2431/26255	33.55			
Overall (I-squared = 54.0%, p = 0.007)	0.91 (0.86, 0.96)	7241/64539	7797/64362	100.00			
Overall effect: z = 3.57, p < 0.001 p = 0.58 for interaction (≥ median vs. < median)							
0.2	1 2						

Favors More Intensive LDL-C Lowering

Favors Less Intensive LDL-C Lowering

Figure S5. Meta-regression Analysis of Cardiovascular Mortality Rate Ratio Plotted Against Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

CRP, C-reactive protein; RR, rate ratio.

Figure S6. Meta-analysis of Cardiovascular Mortality Stratified by Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

	No. of Patients With Event/Total No.				
	Rate Ratio	More Intensive	Less Intensive	Weight	
Study and Subgroup	(95% CI)	LDL-C Lowering	LDL-C Lowering	%	
CRP reduction ≥ median					
4D (2005)	0.82 (0.68, 0.98)	202/636	241/619	7.50	
AURORA (2009)	1.00 (0.86, 1.16)	324/1389	324/1384	8.82	
CARDS (2004)	0.67 (0.40, 1.11)	25/1429	37/1412	1.95	
CARE (1996)	0.81 (0.62, 1.05)	96/2081	119/2078	5.05	
CORONA (2007)	1.00 (0.88, 1.12)	488/2514	487/2497	9.97	
HOPE-3 (2016)	0.90 (0.72, 1.12)	154/6361	171/6344	6.41	
HPS (2002)	0.83 (0.76, 0.92)	781/10269	937/10267	11.05	
JUPITER (2008)	0.53 (0.41, 0.69)	83/8901	157/8901	5.11	
PROVE IT-TIMI 22 (2004)	0.78 (0.45, 1.35)	23/2099	29/2063	1.71	
SHARP (2011)	0.92 (0.80, 1.07)	361/4650	388/4620	9.10	
Subtotal (I-squared = 64.0%, p = 0.003)	0.85 (0.77, 0.94)	2537/40329	2890/40185	66.66	
Subtotal effect: z = 3.19, p = 0.001					
CRP reduction < median					
A to Z (2004)	0.75 (0.57, 1.00)	83/2265	109/2232	4.72	
AFCAPS_TEXCAPS (1998)	0.68 (0.37, 1.26)	17/3304	25/3301	1.38	
IMPROVE-IT (2015)	1.00 (0.89, 1.13)	537/9067	538/9077	10.05	
LIPID (1998)	0.76 (0.66, 0.88)	331/4512	433/4502	9.10	
PREVEND-IT (2004)	→ 1.00 (0.25, 3.97)	4/433	4/431	0.30	
REAL-CAD (2018)	0.77 (0.58, 1.02)	86/6199	112/6214	4.76	
SEAS (2008)	0.83 (0.56, 1.21)	47/944	56/929	3.03	
Subtotal (I-squared = 45.4%, p = 0.089)	0.83 (0.72, 0.95)	1105/26724	1277/26686	33.34	
Subtotal effect: z = 2.71, p = 0.007					
Overall (I-squared = 55.6%, p = 0.003)	0.85 (0.78, 0.91)	3642/67053	4167/66871	100.00	
Overall effect: z = 4.30, p < 0.001					
p = 0.79 for interaction (≥ median vs. < median)					
0.2 1	2				
Favors More Intensive LDL-C Lowering Fa	avors Less Intensive LDL-	C Lowering			

Figure S7. Meta-regression Analysis of Myocardial Infarction Rate Ratio Plotted Against Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

CRP, C-reactive protein; RR, rate ratio.

Figure S8. Meta-analysis of Myocardial Infarction Stratified by Magnitude of Reduction in **CRP** Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

		No. of Patients Wi	f Patients With Event/Total No.	
	Rate Ratio	More Intensive	Less Intensive	Weight
Study and Subgroup	(95% CI)	LDL-C Lowering	LDL-C Lowering	%
CRP reduction ≥ median				
4D (2005)	0.84 (0.67, 1.07)	124/636	143/619	6.59
AURORA (2009)	0.85 (0.64, 1.12)	91/1389	107/1384	5.77
CARDS (2004)	0.53 (0.35, 0.82)	33/1429	61/1412	3.52
CARE (1996)	0.76 (0.62, 0.93)	157/2081	207/2078	7.36
CORONA (2007)	0.81 (0.63, 1.03)	115/2514	141/2497	6.47
HOPE-3 (2016)	0.65 (0.45, 0.95)	45/6361	69/6344	4.10
HPS (2002)	0.62 (0.55, 0.71)	357/10269	574/10267	9.22
JUPITER (2008)	0.46 (0.30, 0.70)	31/8901	68/8901	3.49
PROVE IT-TIMI 22 (2004)	0.89 (0.71, 1.12)	139/2099	153/2063	6.89
SHARP (2011)	0.92 (0.76, 1.11)	213/4650	230/4620	7.86
Subtotal (I-squared = 64.1%, p = 0.003) Subtotal effect: z = 4.50, p < 0.001	0.74 (0.65, 0.85)	1305/40329	1753/40185	61.27
CRP reduction < median				
A to Z (2004)	- 0.96 (0.77, 1.20)	151/2265	155/2232	7.01
AFCAPS_TEXCAPS (1998)	0.60 (0.43, 0.83)	57/3304	95/3301	4.83
IMPROVE-IT (2015)	0.87 (0.80, 0.95)	977/9067	1118/9077	10.26
LIPID (1998)	0.72 (0.63, 0.83)	336/4512	463/4502	9.02
PREVEND-IT (2004)	- 0.53 (0.23, 1.25)	8/433	15/431	1.12
REAL-CAD (2018)	0.56 (0.38, 0.82)	40/6199	72/6214	3.96
SEAS (2008)	0.60 (0.35, 1.02)	22/944	36/929	2.53
Subtotal (I-squared = 64.5%, p = 0.010)	0.75 (0.64, 0.87)	1591/26724	1954/26686	38.73
Overall (I-squared = 64.9%, p = 0.000)	0.75 (0.68, 0.82)	2896/67053	3707/66871	100.00
$p = 0.97$ for interaction (\geq median vs. < median)				
	1			
0.2 1 Favors More Intensive LDL-C Lowering	2 Favors Less Intensive LDL-	C Lowerina		

Favors Less Intensive LDL-C Lowering

Figure S9. Meta-regression Analysis of Stroke Rate Ratio Plotted Against log(baseline CRP Concentrations) in the More Intensive Group.

CRP, C-reactive protein; RR, rate ratio.

Figure S10. Meta-regression Analysis of Stroke Rate Ratio Plotted Against Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

CRP, C-reactive protein; RR, rate ratio.

Figure S11. Meta-analysis of Stroke Stratified by Baseline CRP Concentrations.

		No. of Patients Wi	th Event/Total No.	
	Rate Ratio	More Intensive	Less Intensive	Weight
Study and Subgroup	(95% CI)	LDL-C Lowering	LDL-C Lowering	%
Baseline CRP > median				
4D (2005)		84/636	76/619	4.33
A to Z (2004)	- 0.79 (0.48, 1.29)	28/2265	35/2232	2.05
AURORA (2009)	1.17 (0.79, 1.74)	53/1389	45/1384	2.98
CARDS (2004)	0.53 (0.31, 0.90)	21/1429	39/1412	1.83
CARE (1996)	0.69 (0.49, 0.98)	54/2081	78/2078	3.67
CORONA (2007)	0.85 (0.64, 1.13)	89/2514	104/2497	4.93
HIJ-PROPER (2017)	0.94 (0.48, 1.81)	17/864	18/857	1.22
HPS (2002)	0.76 (0.67, 0.86)	444/10269	585/10267	10.72
IMPROVE-IT (2015)	0.86 (0.74, 1.00)	296/9067	345/9077	9.21
JUPITER (2008)	0.52 (0.34, 0.78)	33/8901	64/8901	2.71
Liu, et al (2016)	0.65 (0.38, 1.11)	21/400	32/398	1.80
PROSPER (2002)	- 1.04 (0.82, 1.32)	135/2891	131/2913	6.06
PROVE IT-TIMI 22 (2004)	0.98 (0.54, 1.80)	21/2099	21/2063	1.45
SHARP (2011)	0.83 (0.68, 1.01)	176/4650	211/4620	7.38
Subtotal (I-squared = 38.8%, p = 0.068)	0.83 (0.75, 0.92)	1472/49455	1784/49318	60.34
Subtotal effect: z = 3.56, p < 0.001				
Baseline CPR < median				
AFCAPS_TEXCAPS (1998)	0.82 (0.41, 1.67)	14/3304	17/3301	1.08
ALERT (2003)	— 1.02 (0.77, 1.36)	93/1050	91/1052	4.79
ASCOT-LLA (2003)	0.73 (0.56, 0.96)	89/5168	121/5137	5.12
HOPE-3 (2016)	0.71 (0.52, 0.96)	70/6361	99/6344	4.39
LIPID (1998)	0.83 (0.67, 1.01)	169/4512	204/4502	7.23
PREVEND-IT (2004)		7/433	4/431	0.38
REAL-CAD (2018)	— 1.13 (0.87, 1.45)	127/6199	113/6214	5.65
SEAS (2008)	1.12 (0.68, 1.84)	33/944	29/929	2.04
TNT (2005)	0.76 (0.60, 0.96)	117/4995	155/5006	6.03
WOSCOPS (1995)	- 0.90 (0.60, 1.34)	46/3302	51/3293	2.95
Subtotal (I-squared = 27.6%, p = 0.190)	0.87 (0.77, 0.98)	765/36268	884/36209	39.66
Subtotal effect: z = 2.26, p = 0.024				
Overall (I-squared = 33.0%, p = 0.061)	0.85 (0.78, 0.91)	2237/85723	2668/85527	100.00
Overall effect: z = 4.28, p < 0.001				
p = 0.56 for interaction (≥ median vs. < median)				
0.2 1	2			
Favors More Intensive LDL-C Lowering	Favors Less Intensive LDL-	C Lowering		

Figure S12. Meta-analysis of Stroke Stratified by Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

	No. of Patients With Event/Total No.			
	Rate Ratio	More Intensive	Less Intensive	Weight
Study and Subgroup	(95% CI)	LDL-C Lowering	LDL-C Lowering	%
CRP reduction ≥ median				
4D (2005)	1.08 (0.79, 1.46)	84/636	76/619	6.19
AURORA (2009)	— 1.17 (0.79, 1.74)	53/1389	45/1384	4.35
CARDS (2004)	0.53 (0.31, 0.90)	21/1429	39/1412	2.72
CARE (1996)	0.69 (0.49, 0.98)	54/2081	78/2078	5.30
CORONA (2007)	0.85 (0.64, 1.13)	89/2514	104/2497	6.97
HOPE-3 (2016)	0.71 (0.52, 0.96)	70/6361	99/6344	6.27
HPS (2002)	0.76 (0.67, 0.86)	444/10269	585/10267	13.84
JUPITER (2008)	0.52 (0.34, 0.78)	33/8901	64/8901	3.98
PROVE IT-TIMI 22 (2004)	- 0.98 (0.54, 1.80)	21/2099	21/2063	2.17
SHARP (2011)	0.83 (0.68, 1.01)	176/4650	211/4620	10.03
Subtotal (I-squared = 44.8%, p = 0.061)	0.79 (0.70, 0.90)	1045/40329	1322/40185	61.81
Subtotal effect: z = 3.54, p < 0.001				
CRP reduction < median				
A to Z (2004)	0.79 (0.48, 1.29)	28/2265	35/2232	3.04
AFCAPS_TEXCAPS (1998)	- 0.82 (0.41, 1.67)	14/3304	17/3301	1.63
IMPROVE-IT (2015)	0.86 (0.74, 1.00)	296/9067	345/9077	12.17
LIPID (1998)	0.83 (0.67, 1.01)	169/4512	204/4502	9.86
PREVEND-IT (2004)	— =→ 1.74 (0.51, 5.94)	7/433	4/431	0.58
REAL-CAD (2018)	1.13 (0.87, 1.45)	127/6199	113/6214	7.89
SEAS (2008)	1.12 (0.68, 1.84)	33/944	29/929	3.02
Subtotal (I-squared = 4.0%, p = 0.396) Subtotal effect: z = 1.81, p < 0.070	0.90 (0.81, 1.01)	674/26724	747/26686	38.19
Overall (I-squared = 39.6%, p = 0.047)	0.84 (0.76, 0.92)	1719/67053	2069/66871	100.00
p = 0.13 for interaction (≥ median vs. < median)				
0.2 1	2			

Favors More Intensive LDL-C Lowering Favors Less Intensive LDL-C Lowering

CRP, C-reactive protein; RR, rate ratio.

Figure S14. Meta-regression Analysis of Coronary Revascularization Rate Ratio Plotted Against Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

CRP, C-reactive protein; RR, rate ratio.

Figure S15. Meta-analysis of Coronary Revascularization Stratified by Baseline CRP Concentrations.

	No. of Patients With Event/Total No.			
	Rate Ratio	More Intensive	Less Intensive	Weight
Study and Subgroup	(95% CI)	LDL-C Lowering	LDL-C Lowering	%
Baseline CRP ≥ median				
4D (2005)	0.74 (0.52, 1.05)	55/636	72/619	2.51
A to Z (2004)	0.95 (0.74, 1.21)	119/2265	124/2232	3.96
AURORA (2009)	0.97 (0.78, 1.21)	148/1389	152/1384	4.46
CARDS (2004)	0.70 (0.41, 1.17)	24/1429	34/1412	1.32
CARE (1996)	0.75 (0.65, 0.87)	294/2081	391/2078	6.34
HIJ-PROPER (2017)	0.87 (0.73, 1.03)	225/864	257/857	5.69
HPS (2002)	0.71 (0.63, 0.79)	513/10269	725/10267	7.42
IMPROVE-IT (2015)	0.94 (0.88, 1.01)	1690/9067	1793/9077	8.72
JUPITER (2008)	0.58 (0.44, 0.77)	76/8901	131/8901	3.39
Liu, et al (2016)	0.57 (0.31, 1.03)	16/400	28/398	1.04
PROSPER (2002)	0.82 (0.54, 1.25)	39/2891	48/2913	1.88
PROVE IT-TIMI 22 (2004)	0.87 (0.75, 1.00)	342/2099	388/2063	6.63
SHARP (2011) -	0.80 (0.69, 0.94)	284/4650	352/4620	6.16
Subtotal (I-squared = 66.1%, p = 0.000)	0.81 (0.74, 0.89)	3825/46941	4495/46821	59.52
Subtotal effect: z = 4.60, p < 0.001				
Baseline CPR < median				
AFCAPS_TEXCAPS (1998)	0.67 (0.53, 0.86)	106/3304	157/3301	4.01
ALERT (2003)	0.67 (0.48, 0.93)	59/1050	88/1052	2.75
ASCOT-LLA (2003)	0.63 (0.44, 0.89)	51/5168	81/5137	2.51
HOPE-3 (2016)	0.68 (0.49, 0.96)	56/6361	82/6344	2.62
LIPID (1998)	0.82 (0.74, 0.92)	585/4512	708/4502	7.55
REAL-CAD (2018)	0.85 (0.76, 0.95)	529/6199	626/6214	7.36
SEAS (2008)	0.65 (0.49, 0.86)	77/944	117/929	3.35
TNT (2005) 🚽	0.74 (0.67, 0.82)	667/4995	904/5006	7.83
WOSCOPS (1995)	0.64 (0.45, 0.90)	51/3302	80/3293	2.50
Subtotal (I-squared = 27.6%, p = 0.199) Subtotal effect: $z = 7.51$, $p < 0.001$	0.75 (0.70, 0.81)	2181/35835	2843/35778	40.48
Overall (lequared = 61.6% $p = 0.000$)	0 78 /0 73 0 83)	6006/82776	7338/82599	100.00
Overall effect: $z = 7.56$ n < 0.001	0.10 (0.10, 0.00)	000002110	1000102000	100.00
p = 0.24 for interaction (> median vs < median)				
0.2 1	2	.		

Favors More Intensive LDL-C Lowering

Favors Less Intensive LDL-C Lowering

Figure S16. Meta-analysis of Coronary Revascularization Stratified by Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

	No. of Patients With Event/Total No.			
	Rate Ratio	More Intensive	Less Intensive	Weight
Study and Subgroup	(95% CI)	LDL-C Lowering	LDL-C Lowering	%
CRP reduction ≥ median				
4D (2005)	0.74 (0.52, 1.05)	55/636	72/619	3.40
AURORA (2009)	0.97 (0.78, 1.21)	148/1389	152/1384	5.95
CARDS (2004)	0.70 (0.41, 1.17)	24/1429	34/1412	1.80
CARE (1996)	0.75 (0.65, 0.87)	294/2081	391/2078	8.34
HOPE-3 (2016)	0.68 (0.49, 0.96)	56/6361	82/6344	3.54
HPS (2002)	0.71 (0.63, 0.79)	513/10269	725/10267	9.69
JUPITER (2008)	0.58 (0.44, 0.77)	76/8901	131/8901	4.55
PROVE IT-TIMI 22 (2004)	0.87 (0.75, 1.00)	342/2099	388/2063	8.71
SHARP (2011)	0.80 (0.69, 0.94)	284/4650	352/4620	8.11
Subtotal (I-squared = 42.8%, p = 0.082)	0.77 (0.70, 0.84)	1792/37815	2327/37688	54.10
Subtotal effect: z = 5.82, p < 0.001				
CRP reduction < median				
A to Z (2004)	0.95 (0.74, 1.21)	119/2265	124/2232	5.30
AFCAPS_TEXCAPS (1998)	0.67 (0.53, 0.86)	106/3304	157/3301	5.37
IMPROVE-IT (2015)	0.94 (0.88, 1.01)	1690/9067	1793/9077	11.28
LIPID (1998)	0.82 (0.74, 0.92)	585/4512	708/4502	9.84
REAL-CAD (2018)	0.85 (0.76, 0.95)	529/6199	626/6214	9.61
SEAS (2008)	0.65 (0.49, 0.86)	77/944	117/929	4.50
Subtotal (I-squared = 67.7%, p = 0.008)	0.83 (0.75, 0.92)	3106/26291	3525/26255	45.90
Subtotal effect: z = 3.41, p = 0.001				
Overall (I-squared = 66.5%, p = 0.000)	0.79 (0.74, 0.86)	4898/64106	5852/63943	100.00
Overall effect: z = 5.95, p < 0.001				
p = 0.21 for interaction (≥ median vs. < median)				
0.2	2			

Favors More Intensive LDL-C Lowering

Favors Less Intensive LDL-C Lowering

Figure S17. Meta-regression Analysis of MACE Rate Ratio Plotted Against log(baseline CRP Concentrations) in the More Intensive Group.

CRP, C-reactive protein; RR, rate ratio.

Figure S18. Meta-regression Analysis of MACE Rate Ratio Plotted Against Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

CRP, C-reactive protein; RR, rate ratio.

Figure S19. Meta-analysis of MACE Stratified by Baseline CRP Concentrations.

		No. of Patients Wi	th Event/Total No.	
	Rate Ratio	More Intensive	Less Intensive	Weight
Study and Subgroup	(95% CI)	LDL-C Lowering	LDL-C Lowering	%
Baseline CRP ≥ median				
4D (2005)	0.91 (0.78, 1.06)	294/636	315/619	4.22
A to Z (2004)	0.89 (0.77, 1.03)	309/2265	343/2232	4.39
AURORA (2009)	0.97 (0.85, 1.10)	396/1389	408/1384	4.77
CARDS (2004)	0.65 (0.49, 0.85)	83/1429	127/1412	2.22
CARE (1996)	0.77 (0.65, 0.92)	212/2081	274/2078	3.74
CORONA (2007)	0.94 (0.85, 1.04)	692/2514	732/2497	5.67
HIJ-PROPER (2017)	0.89 (0.76, 1.04)	283/864	316/857	4.27
HPS (2002)	0.79 (0.74, 0.83)	2033/10269	2585/10267	6.70
IMPROVE-IT (2015)	0.94 (0.89, 0.99)	2572/9067	2742/9077	6.79
JUPITER (2008)	0.57 (0.46, 0.69)	142/8901	251/8901	3.21
Liu, et al (2016)	0.62 (0.42, 0.93)	35/400	56/398	1.25
PROSPER (2002)	0.87 (0.76, 0.99)	408/2891	473/2913	4.86
PROVE IT-TIMI 22 (2004)	0.85 (0.76, 0.96)	470/2099	543/2063	5.21
SHARP (2011)	0.84 (0.75, 0.95)	526/4650	619/4620	5.24
Subtotal (I-squared = 74.8%, p = 0.000)	0.84 (0.79, 0.90)	8455/49455	9784/49318	62.53
Subtotal effect: z = 5.26, p < 0.001				
Baseline CPR < median				
AFCAPS_TEXCAPS (1998)	0.63 (0.50, 0.80)	116/3304	183/3301	2.77
ALERT (2003)	0.79 (0.63, 0.98)	137/1050	174/1052	2.93
ASCOT-LLA (2003)	0.80 (0.70, 0.91)	389/5168	486/5137	4.80
HOPE-3 (2016)	0.77 (0.65, 0.91)	235/6361	304/6344	3.90
LIPID (1998)	0.78 (0.70, 0.87)	557/4512	715/4502	5.38
PREVEND-IT (2004)	0.87 (0.49, 1.56)	21/433	24/431	0.64
REAL-CAD (2018)	0.80 (0.68, 0.94)	266/6199	334/6214	4.11
SEAS (2008)	0.92 (0.80, 1.07)	333/944	355/929	4.51
TNT (2005)	0.79 (0.70, 0.90)	434/4995	548/5006	4.98
WOSCOPS (1995)	0.70 (0.58, 0.85)	174/3302	248/3293	3.44
Subtotal (I-squared = 8.9%, p = 0.360)	0.79 (0.75, 0.83)	2662/36268	3371/36209	37.47
Subtotal effect: z = 8.74, p < 0.001				
Overall (I-squared = 67.5%, p = 0.000)	0.82 (0.78, 0.86)	11117/85723	13155/85527	100.00
Overall effect: z = 8.00, p < 0.001				
p = 0.16 for interaction (≥ median vs. < median)				
Eavors More Intensive I DI -C Lowering	∠ Favors Less Intensive I DI -	C Lowering		

Figure S20. Meta-analysis of MACE Stratified by Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

Study and Subgroup Rate Ratio More Intensive Less Intensive Weight 5tudy and Subgroup (95% CI) LDL-C Lowering % CRP reduction ≥ median 0.91 (0.78, 1.06) 294/636 315/619 5.82 AURORA (2009) 0.97 (0.85, 1.10) 396/1389 408/1384 6.50 CARDS (2004) 0.97 (0.65, 0.92) 212/2081 274/2078 5.23 CORONA (2007) 0.94 (0.85, 1.04) 692/2514 732/2497 7.56 HOPE-3 (2016) 0.77 (0.65, 0.92) 212/2081 274/2078 5.23 DYPITER (2008) 0.77 (0.66, 0.91) 235/6361 304/6344 5.43 DYPITER (2008) 0.57 (0.46, 0.69) 142/8901 251/8901 4.55 Subtotal (I-squared = 73.6%, p = 0.000) 0.82 (0.75, 0.88) 5083/40329 6158/40185 61.10 Subtotal effect: z = 5.04, p < 0.001 0.49 (0.89, 0.99) 2572/9067 274/2077 8.81 IMPROVE-IT (2015) 0.49 (0.89, 0.99) 2572/9067 274/2077 8.81 LIPID (1998) 0.49 (0.89, 0.99)		No. of Patients With Event/Total No.			
Study and Subgroup (95% Cl) LDL-C Lowering LDL-C Lowering % CRP reduction ≥ median 4D (2005) 0.91 (0.78, 1.06) 294/636 315/619 5.82 AURORA (2009) 0.91 (0.78, 1.06) 294/636 315/619 5.82 CARDS (2004) 0.97 (0.85, 1.10) 396/1389 408/1384 6.50 CARE (1996) 0.77 (0.65, 0.92) 212/2081 274/2078 5.23 CORONA (2007) 0.94 (0.85, 1.04) 692/2514 732/2497 7.56 HOPE-3 (2016) 0.77 (0.65, 0.91) 235/6361 304/6344 5.43 PROVE IT-TIMI 22 (2004) 0.78 (0.76, 0.96) 470/2099 543/2063 7.02 ShARP (2011) 0.85 (0.76, 0.96) 470/2099 543/2232 6.04 AFC APS_TEXCAPS (1998) 0.89 (0.77, 1.03) 309/2265 343/2232 6.04 AFC APS_TEXCAPS (1998) 0.44 0.89 (0.77, 1.03) 309/2265 343/2232 6.04 NFP OVE-IT (2015) 0.48 (0.76, 0.93) 116/3304 183/3301 3.98 0.94 (0.89, 0.99) 257/9067 <th></th> <th>Rate Ratio</th> <th>More Intensive</th> <th>Less Intensive</th> <th>Weight</th>		Rate Ratio	More Intensive	Less Intensive	Weight
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Study and Subgroup	(95% CI)	LDL-C Lowering	LDL-C Lowering	%
4D (2005) 0.91 (0.78, 1.06) 294/636 315/619 5.82 AURORA (2009) 0.97 (0.85, 1.10) 396/1389 408/1384 6.50 CARDS (2004) 0.65 (0.49, 0.85) 83/1429 127/1412 3.23 CORONA (2007) 0.94 (0.85, 0.92) 21/2081 274/2078 5.23 ORONA (2007) 0.94 (0.85, 0.92) 21/212081 274/2078 5.23 OROVE IT-TIMI 22 (2004) 0.97 (0.85, 0.91) 235/6381 304/6344 5.43 NPS (2011) 0.97 (0.85, 0.96) 470/2099 543/2063 7.02 Subtotal (I-squared = 73.6%, p = 0.000) 0.88 (0.77, 1.03) 309/2265 343/2232 6.04 AFCAPS_TEXCAPS (1998) 0.94 (0.89, 0.99) 572/9067 2742/9077 8.81 ILPID (1998) 0.94 (0.89, 0.99) 257/9067 2742/9077 8.81 NPROVE-IT (2015) 0.94 (0.89, 0.99) 257/9067 2742/9077 8.81 ILPID (1998) 0.94 (0.89, 0.99) 257/9067 2742/9077 8.81 Ox84 (0.76, 0.93) 4174/26724 4696/26686 38.90 Subtotal effect: z = 3.52, p < 0.001	CRP reduction ≥ median				
AURORA (2009) CARDS (2004) CARDS (2004) CORONA (2007) HOPE-3 (2016) HPS (2002) JUPITER (2008) PROVE IT-TIMI 22 (2004) Subtotal (I-squared = 73.6%, p = 0.000) Subtotal (I-squared = 70.3%, p = 0.001) PREVEND-IT (2015) LIPID (1998) MPROVE-IT (2015) LIPID (1998) MEAL-CAD (2018) Subtotal (I-squared = 70.3%, p = 0.003) Subtotal (I-squared = 70.3%, p =	4D (2005)	0.91 (0.78, 1.06)	294/636	315/619	5.82
$\begin{array}{c} \text{CARDS} (2004) \\ \text{CARE} (1996) \\ \text{CARE} (1996) \\ \text{CARE} (1996) \\ \text{CARE} (1996) \\ \text{CORONA} (2007) \\ \text{HOFE-3} (2016) \\ \text{HPS} (2002) \\ \text{JUPITER} (2008) \\ \text{PROVE} [1-TIMI 22 (2004) \\ \text{SHARP} (2011) \\ \text{Subtotal} (I-squared = 73.6\%, p = 0.000) \\ \text{Subtotal} (I-squared = 70.3\%, p = 0.003) \\ \text{MPROVE-IT} (2015) \\ \text{LIPID} (1998) \\ \text{REAL-CAD} (2018) \\ \text{Subtotal} (I-squared = 70.3\%, p = 0.003) \\ \text{Subtotal} (I-squared = 70.3\%, p = 0.003) \\ \text{Subtotal} (I-squared = 74.1\%, p = 0.000) \\ \text{Overall} (I-squared = 74.1\%, p = 0.000) \\ $	AURORA (2009)	0.97 (0.85, 1.10)	396/1389	408/1384	6.50
CARE (1996) CORONA (2007) HOPE-3 (2016) HOPE-3 (2016) JUPITER (2008) PROVE IT-TIMI 22 (2004) ShaRP (2011) Subtotal (I-squared = 73.6%, p = 0.000) Subtotal effect: $z = 5.04$, $p < 0.001$ CRP reduction < median A to Z (2004) AFCAPS_TEXCAPS (1998) IMPROVE-IT (2015) LIPID (1988) PREVEND-IT (2018) Subtotal (I-squared = 70.3%, p = 0.003) Subtotal effect: $z = 5.22$, $p < 0.001$ Overall (I-squared = 70.3%, p = 0.003) Subtotal effect: $z = 3.52$, $p < 0.001$ Overall (I-squared = 70.3%, p = 0.003) Subtotal effect: $z = 5.22$, $p < 0.001$ Overall (I-squared = 70.3%, p = 0.003) Subtotal effect: $z = 5.22$, $p < 0.001$ Overall (I-squared = 70.3%, p = 0.003) Subtotal effect: $z = 6.22$, $p < 0.001$ Overall (I-squared = 70.3%, p = 0.000) Overall effect: $z = 6.22$, $p < 0.001$ Dec 1 $\frac{1}{2}$	CARDS (2004)	0.65 (0.49, 0.85)	83/1429	127/1412	3.23
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CARE (1996)	0.77 (0.65, 0.92)	212/2081	274/2078	5.23
HOPE-3 (2016) 0.77 (0.65, 0.91) 235/6361 304/6344 5.43 HPS (2002) JUPITER (2008) 0.79 (0.74, 0.83) 2033/10269 2585/10267 8.71 JUPITER (2008) 0.57 (0.46, 0.69) 142/8901 251/8901 4.55 PROVE IT-TIMI 22 (2004) 0.85 (0.76, 0.96) 470/2099 543/2063 7.02 Subtotal (I-squared = 73.6%, p = 0.000) 0 0.84 (0.75, 0.95) 526/4650 619/4620 7.05 Subtotal effect: z = 5.04, p < 0.001	CORONA (2007)	0.94 (0.85, 1.04)	692/2514	732/2497	7.56
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HOPE-3 (2016)	0.77 (0.65, 0.91)	235/6361	304/6344	5.43
JUPITER (2008) 0.57 (0.46, 0.69) 142/8901 251/8901 4.55 PROVE IT-TIMI 22 (2004) 0.85 (0.76, 0.96) 470/2099 543/2063 7.02 SHARP (2011) 0.84 (0.75, 0.95) 526/4650 619/4620 7.05 Subtotal (I-squared = 73.6%, p = 0.000) 0.82 (0.75, 0.88) 5083/40329 6158/40185 61.10 Subtotal effect: z = 5.04, p < 0.001	HPS (2002)	0.79 (0.74, 0.83)	2033/10269	2585/10267	8.71
PROVE IT-TIMI 22 (2004) 0.85 (0.76, 0.96) 470/2099 543/2063 7.02 SHARP (2011) 0.85 (0.76, 0.96) 470/2099 543/2063 7.02 Subtotal (I-squared = 73.6%, p = 0.000) 0 0.84 (0.75, 0.95) 526/4650 619/4620 7.05 Subtotal effect: z = 5.04, p < 0.001	JUPITER (2008)	0.57 (0.46, 0.69)	142/8901	251/8901	4.55
SHARP (2011) 0.84 (0.75, 0.95) 526/4650 619/4620 7.05 Subtotal (I-squared = 73.6%, p = 0.000) 0 0 0.82 (0.75, 0.88) 5083/40329 6158/40185 61.10 Subtotal effect: $z = 5.04$, $p < 0.001$ 0 0.82 (0.75, 0.88) 5083/40329 6158/40185 61.10 CRP reduction < median	PROVE IT-TIMI 22 (2004)	0.85 (0.76, 0.96)	470/2099	543/2063	7.02
Subtotal (I-squared = 73.6%, p = 0.000) \bigcirc Subtotal effect: z = 5.04, p < 0.001	SHARP (2011)	0.84 (0.75, 0.95)	526/4650	619/4620	7.05
Subtotal effect: $z = 5.04$, $p < 0.001$ CRP reduction < median A to Z (2004) AFCAPS_TEXCAPS (1998) IMPROVE-IT (2015) LIPID (1998) PREVEND-IT (2004) REAL-CAD (2018) Subtotal (I-squared = 70.3%, $p = 0.003$) Subtotal effect: $z = 3.52$, $p < 0.001$ Overall (I-squared = 74.1%, $p = 0.000$) Overall (I-squared = 74.1%, $p = 0.000$) Overall effect: $z = 6.22$, $p < 0.001$ Dverall (I-squared = 74.1%, $p = 0.000$) Overall effect: $z = 6.22$, $p < 0.001$ Dverall (I-squared = 74.1%, $p = 0.000$) Overall effect: $z = 6.22$, $p < 0.001$ Dverall (I-squared = 74.1%, $p = 0.000$) Overall effect: $z = 6.22$, $p < 0.001$ Dverall (I-squared = 74.1%, $p = 0.000$) Dverall of the squared in two. < median) Dverall of the squared in two. < median)	Subtotal (I-squared = 73.6%, p = 0.000)	0.82 (0.75, 0.88)	5083/40329	6158/40185	61.10
CRP reduction < median	Subtotal effect: z = 5.04, p < 0.001				
A to Z (2004) 0.89 (0.77, 1.03) 309/2265 343/2232 6.04 AFCAPS_TEXCAPS (1998) 0.63 (0.50, 0.80) 116/3304 183/3301 3.98 IMPROVE-IT (2015) 0.94 (0.89, 0.99) 2572/9067 2742/9077 8.81 LIPID (1998) 0.87 (0.49, 1.56) 21/433 24/431 0.98 REAL-CAD (2018) 0.80 (0.68, 0.94) 266/6199 334/6214 5.70 SEAS (2008) 0.92 (0.80, 1.07) 333/944 355/929 6.19 Subtotal (I-squared = 70.3%, p = 0.003) 0.82 (0.78, 0.88) 9257/67053 10854/66871 100.00 Overall (I-squared = 74.1%, p = 0.000) 0.82 (0.78, 0.88) 9257/67053 10854/66871 100.00 Overall effect: z = 6.22, p < 0.001	CRP reduction < median				
AFCAPS_TEXCAPS (1998)0.63 (0.50, 0.80)116/3304183/33013.98IMPROVE-IT (2015)0.94 (0.89, 0.99)2572/90672742/90778.81LIPID (1998)0.78 (0.70, 0.87)557/4512715/45027.22PREVEND-IT (2004)0.87 (0.49, 1.56)21/43324/4310.98REAL-CAD (2018)0.80 (0.68, 0.94)266/6199334/62145.70SEAS (2008)0.92 (0.80, 1.07)333/944355/9296.19Subtotal (I-squared = 70.3%, p = 0.003)0.84 (0.76, 0.93)4174/267244696/2668638.90Overall (I-squared = 74.1%, p = 0.000)0.82 (0.78, 0.88)9257/6705310854/66871100.00Overall effect: z = 6.22, p < 0.001	A to Z (2004)	0.89 (0.77, 1.03)	309/2265	343/2232	6.04
IMPROVE-IT (2015) 0.94 (0.89, 0.99) 2572/9067 2742/9077 8.81 LIPID (1998) 0.78 (0.70, 0.87) 557/4512 715/4502 7.22 PREVEND-IT (2004) 0.87 (0.49, 1.56) 21/433 24/431 0.98 REAL-CAD (2018) 0.80 (0.68, 0.94) 266/6199 334/6214 5.70 SEAS (2008) 0.92 (0.80, 1.07) 333/944 355/929 6.19 Subtotal (I-squared = 70.3%, p = 0.003) 0.84 (0.76, 0.93) 4174/26724 4696/26686 38.90 Subtotal effect: z = 3.52, p < 0.001	AFCAPS_TEXCAPS (1998)	0.63 (0.50, 0.80)	116/3304	183/3301	3.98
LIPID (1998) 0.78 (0.70, 0.87) $557/4512$ $715/4502$ 7.22 PREVEND-IT (2004) 0.87 (0.49, 1.56) $21/433$ $24/431$ 0.98 REAL-CAD (2018) 0.80 (0.68, 0.94) $266/6199$ $334/6214$ 5.70 SEAS (2008) 0.92 (0.80, 1.07) $333/944$ $355/929$ 6.19 Subtotal (I-squared = 70.3%, p = 0.003) $4174/26724$ $4696/26686$ 38.90 Subtotal effect: $z = 3.52$, $p < 0.001$ $0.82 (0.78, 0.88)$ $9257/67053$ $10854/66871$ 100.00 Overall effect: $z = 6.22$, $p < 0.001$ 0.2 1 2 1 1	IMPROVE-IT (2015)	0.94 (0.89, 0.99)	2572/9067	2742/9077	8.81
PREVEND-IT (2004) 0.87 (0.49, 1.56) $21/433$ $24/431$ 0.98 REAL-CAD (2018) 0.80 (0.68, 0.94) $266/6199$ $334/6214$ 5.70 SEAS (2008) 0.92 (0.80, 1.07) $333/944$ $355/929$ 6.19 Subtotal (I-squared = 70.3%, p = 0.003) $4174/26724$ $4696/26686$ 38.90 Subtotal effect: z = 3.52, p < 0.001	LIPID (1998)	0.78 (0.70, 0.87)	557/4512	715/4502	7.22
REAL-CAD (2018) 0.80 (0.68, 0.94) 266/6199 334/6214 5.70 SEAS (2008) 0.92 (0.80, 1.07) 333/944 355/929 6.19 Subtotal (I-squared = 70.3%, p = 0.003) \bigcirc 0.84 (0.76, 0.93) 4174/26724 4696/26686 38.90 Subtotal effect: z = 3.52, p < 0.001	PREVEND-IT (2004)	0.87 (0.49, 1.56)	21/433	24/431	0.98
SEAS (2008) 0.92 (0.80, 1.07) 333/944 355/929 6.19 Subtotal (I-squared = 70.3%, p = 0.003) \bullet 0.84 (0.76, 0.93) 4174/26724 4696/26686 38.90 Subtotal effect: z = 3.52, p < 0.001	REAL-CAD (2018)	0.80 (0.68, 0.94)	266/6199	334/6214	5.70
Subtotal (I-squared = 70.3%, p = 0.003) Subtotal effect: $z = 3.52$, $p < 0.001$ 0.84 (0.76, 0.93) 4174/26724 4696/26686 38.90 Overall (I-squared = 74.1%, p = 0.000) Overall effect: $z = 6.22$, $p < 0.001$ 0.82 (0.78, 0.88) 9257/67053 10854/66871 100.00 $p = 0.63$ for interaction (\geq median vs. < median)	SEAS (2008)	0.92 (0.80, 1.07)	333/944	355/929	6.19
Overall (I-squared = 74.1%, p = 0.000) Overall (I-squared = 74.1%, p = 0.000) Overall (0.82 (0.78, 0.88) 9257/67053 10854/66871 100.00) Overall effect: z = 6.22, p < 0.001	Subtotal (I-squared = 70.3%, p = 0.003) Subtotal effect: z = 3.52, p < 0.001	0.84 (0.76, 0.93)	4174/26724	4696/26686	38.90
0.2 1 2	Overall (I-squared = 74.1%, p = 0.000) O Overall effect: z = 6.22, p < 0.001	0.82 (0.78, 0.88)	9257/67053	10854/66871	100.00
	0.2	2			

Favors More Intensive LDL-C Lowering Favors Less Intensive LDL-C Lowering

Figure S21. Meta-regression Analysis of Myocardial Infarction Rate Ratio Plotted Against log(baseline CRP Concentrations) in the Secondary Prevention Trials.

CRP, C-reactive protein; RR, rate ratio.

Figure S22. Meta-analysis of All-Cause Mortality Stratified by the Achieved CRP Concentrations.

	No. of Patients With Event/Total No.			
	Rate Ratio	More Intensive	Less Intensive	Weight
Study and Subgroup	(95% CI)	LDL-C Lowering	LDL-C Lowering	%
Achieved CRP ≥ median				
4D (2005)	0.95 (0.85, 1.06)	559/636	573/619	10.65
AURORA (2009)	0.96 (0.87, 1.06)	636/1389	660/1384	11.30
CARDS (2004)	0.74 (0.53, 1.02)	61/1429	82/1412	2.93
CORONA (2007)	0.95 (0.87, 1.05)	728/2514	759/2497	11.71
JUPITER (2008)	0.80 (0.67, 0.97)	198/8901	247/8901	6.64
LIPID (1998)	0.78 (0.70, 0.88)	498/4512	633/4502	10.37
SHARP (2011)	1.02 (0.94, 1.10)	1142/4650	1115/4620	12.77
Subtotal (I-squared = 66.9%, p = 0.006)	0.91 (0.84, 0.98)	3822/24031	4069/23935	66.36
Subtotal effect: z = 2.35, p = 0.019				
Achieved CRP < median				
A to Z (2004)	0.79 (0.61, 1.02)	104/2265	130/2232	4.37
AFCAPS_TEXCAPS (1998)	1.04 (0.76, 1.42)	80/3304	77/3301	3.19
IMPROVE-IT (2015)	0.99 (0.91, 1.07)	1215/9067	1231/9077	12.91
PROVE IT-TIMI 22 (2004)	0.69 (0.47, 1.00)	46/2099	66/2063	2.37
REAL-CAD (2018)	0.80 (0.67, 0.96)	207/6199	260/6214	6.81
SEAS (2008)	1.03 (0.79, 1.35)	105/944	100/929	3.99
Subtotal (I-squared = 50.6%, p = 0.072)	0.90 (0.79, 1.02)	1757/23878	1864/23816	33.64
Subtotal effect: z = 1.71, p = 0.087				
Overall (I-squared = 57.6%, p = 0.005)	0.91 (0.85, 0.97)	5579/47909	5933/47751	100.00
Overall effect: z = 3.03, p = 0.022				
p = 0.87 for interaction (≥ median vs. < median)				
0.2	2			
Favors More Intensive LDL-C Lowering Fav	ors Less Intensive LDL-	C Lowering		

Figure S23. Meta-analysis of Cardiovascular Mortality Stratified by the Achieved CRP Concentrations.

		No. of Patients With Event/Total No.			
	Rate Ratio	More Intensive	Less Intensive	Weight	
Study and Subgroup	(95% CI)	LDL-C Lowering	LDL-C Lowering	%	
Achieved CRP ≥ median					
4D (2005)	0.82 (0.68, 0.98)	202/636	241/619	9.03	
AURORA (2009)	1.00 (0.86, 1.16)	324/1389	324/1384	10.27	
CARDS (2004)	0.67 (0.40, 1.11)	25/1429	37/1412	2.73	
CARE (1996)	0.81 (0.62, 1.05)	96/2081	119/2078	6.49	
CORONA (2007)	1.00 (0.88, 1.12)	488/2514	487/2497	11.29	
JUPITER (2008)	0.53 (0.41, 0.69)	83/8901	157/8901	6.55	
LIPID (1998)	0.76 (0.66, 0.88)	331/4512	433/4502	10.53	
SHARP (2011)	0.92 (0.80, 1.07)	361/4650	388/4620	10.53	
Subtotal (I-squared = 74.4%, p = 0.000)	0.83 (0.73, 0.94)	1910/26112	2186/26013	67.43	
Achieved CRP < median	0.75 (0.57, 4.00)	92/2265	100/2222	0.44	
	0.75 (0.57, 1.00)	03/2203	109/2232	6.11	
AFCAPS_TEXCAPS (1998)		17/3304	25/3301	1.97	
	1.00 (0.89, 1.13)	537/9067	538/9077	11.36	
PREVEND-IT (2004)	→ 1.00 (0.25, 3.97)	4/433	4/431	0.44	
PROVE IT-TIMI 22 (2004)	0.78 (0.45, 1.35)	23/2099	29/2063	2.41	
REAL-CAD (2018)	0.77 (0.58, 1.02)	86/6199	112/6214	6.16	
SEAS (2008)	- 0.83 (0.56, 1.21)	47/944	56/929	4.12	
Subtotal (I-squared = 13.9%, p = 0.324)	0.88 (0.78, 0.99)	797/24311	873/24247	32.57	
Subtotal effect: z = 2.10, p = 0.036					
Overall (I-squared = 59.9%, p = 0.002)	0.84 (0.76, 0.92)	2707/50423	3059/50260	100.00	
Overall effect: z = 3.75, p < 0.001					
p = 0.52 for interaction (≥ median vs. < median)					
	2				
Favors More Intensive LDL-C Lowering	Favors Less Intensive LDL	-C Lowering			

Figure S24. Meta-analysis of Myocardial Infarction Stratified by the Achieved CRP Concentrations.

		No. of Patients With Event/Total No.			
	Rate Ratio	More Intensive	Less Intensive	Weight	
Study and Subgroup	(95% CI)	LDL-C Lowering	LDL-C Lowering	%	
Achieved CRP ≥ median					
4D (2005)	0.84 (0.67, 1.07)	124/636	143/619	7.52	
AURORA (2009)	- 0.85 (0.64, 1.12)	91/1389	107/1384	6.41	
CARDS (2004)	0.53 (0.35, 0.82)	33/1429	61/1412	3.65	
CARE (1996) -	0.76 (0.62, 0.93)	157/2081	207/2078	8.61	
CORONA (2007)	0.81 (0.63, 1.03)	115/2514	141/2497	7.34	
JUPITER (2008)	0.46 (0.30, 0.70)	31/8901	68/8901	3.62	
LIPID (1998)	0.72 (0.63, 0.83)	336/4512	463/4502	11.17	
SHARP (2011)	- 0.92 (0.76, 1.11)	213/4650	230/4620	9.35	
Subtotal (I-squared = 50.9%, p = 0.047)	0.76 (0.67, 0.86)	1100/26112	1420/26013	57.67	
Subtotal effect: z = 4.45, p < 0.001					
Achieved CRP < median					
A to Z (2004)	- 0.96 (0.77, 1.20)	151/2265	155/2232	8.11	
AFCAPS_TEXCAPS (1998)	0.60 (0.43, 0.83)	57/3304	95/3301	5.21	
IMPROVE-IT (2015)	0.87 (0.80, 0.95)	977/9067	1118/9077	13.28	
PREVEND-IT (2004)	0.53 (0.23, 1.25)	8/433	15/431	1.09	
PROVE IT-TIMI 22 (2004)	- 0.89 (0.71, 1.12)	139/2099	153/2063	7.93	
REAL-CAD (2018)	0.56 (0.38, 0.82)	40/6199	72/6214	4.16	
SEAS (2008)	0.60 (0.35, 1.02)	22/944	36/929	2.55	
Subtotal (I-squared = 55.8%, p = 0.035)	0.78 (0.67, 0.91)	1394/24311	1644/24247	42.33	
Subtotal effect: z = 3.16, p = 0.002					
Overall (I-squared = 54.6%, p = 0.006) Overall effect: z = 5.47, p < 0.001	0.77 (0.70, 0.85)	2494/50423	3064/50260	100.00	
p = 0.81 for interaction (≥ median vs. < median)					
0.2 Favors More Intensive LDL-C Lowering	I 2 Favors Less Intensive LDL-	C Lowering			

Figure S25. Meta-analysis of Stroke Stratified by the Achieved CRP Concentrations.

		No. of Patients With Event/Total No.			
	1	Rate Ratio	More Intensive	Less Intensive	Weight
Study and Subgroup		(95% CI)	LDL-C Lowering	LDL-C Lowering	%
Achieved CRP ≥ median					
4D (2005)		1.08 (0.79, 1.46)	84/636	76/619	7.80
AURORA (2009)	 1	1.17 (0.79, 1.74	53/1389	45/1384	5.55
CARDS (2004)		0.53 (0.31, 0.90)	21/1429	39/1412	3.51
CARE (1996)		0.69 (0.49, 0.98	54/2081	78/2078	6.72
CORONA (2007)	+ (0.85 (0.64, 1.13	89/2514	104/2497	8.74
JUPITER (2008)		0.52 (0.34, 0.78	33/8901	64/8901	5.08
LIPID (1998)		0.83 (0.67, 1.01	169/4512	204/4502	12.14
SHARP (2011)		0.83 (0.68, 1.01	176/4650	211/4620	12.35
Subtotal (I-squared = 51.4%, p = 0.044)	(0.81 (0.69, 0.95	679/26112	821/26013	61.89
Subtotal effect: z = 2.64, p = 0.008					
Achieved CRP < median					
A to Z (2004)	-	0.79 (0.48, 1.29	28/2265	35/2232	3.91
AFCAPS_TEXCAPS (1998)	-	0.82 (0.41, 1.67	14/3304	17/3301	2.12
IMPROVE-IT (2015)		0.86 (0.74, 1.00	296/9067	345/9077	14.78
PREVEND-IT (2004)		1.74 (0.51, 5.94	7/433	4/431	0.75
PROVE IT-TIMI 22 (2004)	<u>μ</u> α	0.98 (0.54, 1.80	21/2099	21/2063	2.81
REAL-CAD (2018)		1.13 (0.87, 1.45	127/6199	113/6214	9.84
SEAS (2008)	a 1	1.12 (0.68, 1.84	33/944	29/929	3.89
Subtotal (I-squared = 0.0%, p = 0.501)	<u>ب</u> ا	0.93 (0.83, 1.05	526/24311	564/24247	38.11
Subtotal effect: z = 1.18, p = 0.239					
Overall (I-squared = 36.7%, p = 0.077)	. (0.87 (0.78, 0.97	1205/50423	1385/50260	100.00
Overall effect: z = 2.58, p = 0.010					
p = 0.17 for interaction (≥ median vs. < median)	<u> </u>				
0.2	1 2		.		
Favors More Intensive LDL-C Lowering	Favors Les	s Intensive LDL	-C Lowering		

Figure S26. Meta-analysis of Coronary Revascularization Stratified by the Achieved CRP Concentrations.

		No. of Patients With Event/Tota			
	Rate Ratio	More Intensive	Less Intensive	Weight	
Study and Subgroup	(95% CI)	LDL-C Lowering	LDL-C Lowering	%	
Achieved CRP ≥ median					
4D (2005)	0.74 (0.52, 1.05)	55/636	72/619	3.59	
AURORA (2009)	0.97 (0.78, 1.21)	148/1389	152/1384	6.60	
CARDS (2004)	0.70 (0.41, 1.17)	24/1429	34/1412	1.85	
CARE (1996)	0.75 (0.65, 0.87)	294/2081	391/2078	9.70	
JUPITER (2008)	0.58 (0.44, 0.77)	76/8901	131/8901	4.91	
LIPID (1998)	0.82 (0.74, 0.92)	585/4512	708/4502	11.80	
SHARP (2011)	0.80 (0.69, 0.94)	284/4650	352/4620	9.39	
Subtotal (I-squared = 35.2%, p = 0.160)	0.79 (0.72, 0.86)	1466/23598	1840/23516	47.84	
Subtotal effect: z = 5.01, p < 0.001					
Achieved CRP < median					
A to Z (2004)	0.95 (0.74, 1.21)	119/2265	124/2232	5.81	
AFCAPS_TEXCAPS (1998)	0.67 (0.53, 0.86)	106/3304	157/3301	5.88	
IMPROVE-IT (2015)	0.94 (0.88, 1.01)	1690/9067	1793/9077	13.94	
PROVE IT-TIMI 22 (2004)	0.87 (0.75, 1.00)	342/2099	388/2063	10.20	
REAL-CAD (2018)	0.85 (0.76, 0.95)	529/6199	626/6214	11.47	
SEAS (2008)	0.65 (0.49, 0.86)	77/944	117/929	4.85	
Subtotal (I-squared = 63.9%, p = 0.017)	0.84 (0.76, 0.94)	2863/23878	3205/23816	52.16	
Subtotal effect: z = 3.23, p = 0.001					
Overall (I-squared = 60.5%, p = 0.002)	0.81 (0.75, 0.88)	4329/47476	5045/47332	100.00	
Overall effect: z = 5.36, p < 0.001					
p = 0.33 for interaction (≥ median vs. < median)					
1					
Favors More Intensive LDL-C Lowering	Favors Less Intensive LDL	-C Lowering			

Figure S27. Meta-analysis of MACE Stratified by the Achieved CRP Concentrations.

		No. of Patients With Event/Total No.			
		Rate Ratio	More Intensive	Less Intensive	Weight
Study and Subgroup		(95% CI)	LDL-C Lowering	LDL-C Lowering	%
Achieved CRP ≥ median					
4D (2005)	+=+	0.91 (0.78, 1.06)	294/636	315/619	6.81
AURORA (2009)	; 	0.97 (0.85, 1.10)	396/1389	408/1384	7.56
CARDS (2004) -		0.65 (0.49, 0.85)	83/1429	127/1412	3.85
CARE (1996)		0.77 (0.65, 0.92)	212/2081	274/2078	6.14
CORONA (2007)		0.94 (0.85, 1.04)	692/2514	732/2497	8.72
JUPITER (2008) -	-	0.57 (0.46, 0.69)	142/8901	251/8901	5.37
LIPID (1998)	-	0.78 (0.70, 0.87)	557/4512	715/4502	8.35
SHARP (2011)	+	0.84 (0.75, 0.95)	526/4650	619/4620	8.17
Subtotal (I-squared = 77.3%, p = 0.000) Subtotal effect: z = 3.89, p < 0.001	\diamond	0.81 (0.73, 0.90)	2902/26112	3441/26013	54.97
Achieved CRP < median					
A to Z (2004)		0.89 (0.77, 1.03)	309/2265	343/2232	7.05
AFCAPS_TEXCAPS (1998) -		0.63 (0.50, 0.80)	116/3304	183/3301	4.71
IMPROVE-IT (2015)	=	0.94 (0.89, 0.99)	2572/9067	2742/9077	10.07
PREVEND-IT (2004) -	-	- 0.87 (0.49, 1.56)	21/433	24/431	1.19
PROVE IT-TIMI 22 (2004)	÷	0.85 (0.76, 0.96)	470/2099	543/2063	8.14
REAL-CAD (2018)		0.80 (0.68, 0.94)	266/6199	334/6214	6.67
SEAS (2008)		0.92 (0.80, 1.07)	333/944	355/929	7.21
Subtotal (I-squared = 58.9%, p = 0.024) Subtotal effect: z = 3.55, p < 0.001	\diamond	0.86 (0.79, 0.93)	4087/24311	4524/24247	45.03
Overall (I-squared = 71.9%, p = 0.000) Overall effect: $z = 5.39$, $p < 0.001$ $p = 0.39$ for interaction (\geq median vs. < median	n)	0.83 (0.78, 0.89)	6989/50423	7965/50260	100.00
I 0.2 Favors More Intensive LDL-C I	Lowering Fa	I 2 vors Less Intensive LDL-	C Lowering		