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Objective. Provide a reference to elucidate the mechanism of circRNAs regulating osteoarthritis (OA) and the clinical treatment.
Methods. Herein, articles about circRNAs (hsa-circ) and osteoarthritis in the recent 5 years have been reviewed and the differential
expression and regulatory effect of circRNAs in OA deduced. Based on these conclusions and Protein-Protein Interaction (PPI),
Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the acquired circRNAs, the
potential functions and interactions of circRNAs in OA and the involved signaling pathways are discussed. Results. A total
of 33 studies meeting the inclusion criteria were included in this study, and 27 circRNAs were upregulated and 8
circRNAs were downregulated in OA. A total of 31 circRNAs were finally included in the PPI, GO, and KEGG analyses.
From PPI, 12 map nodes and 7 map edges were interrelated. VWF had the biggest node and edge size. From GO, VWF
showed a majority of the functions. From KEGG, circRNAs are enriched in PI3K/AKT, human papillomavirus infection
(HPI), and focal adhesion (FA) pathways, and VWF was involved in major pathways. Conclusion. We found that most
articles about circRNAs regulating OA in the recent 5 years focused on the mechanism, especially the absorption effect of
circ-miRNA as sponges in the recent 2 years, while most of the articles about their functions addressed ECM and PI3K,
AKT, and mTOR signaling pathways. Future studies might focus on the functions of circRNAs, and circRNA VWF, with
preferable functions, interactions, and involvement, can be used as a biological indicator to detect OA in clinical practice.

1. Introduction

Osteoarthritis (OA) is a common clinical disease that has a
long process from early inflammation in the joint to the
wear and tear of the cartilage layer and the formation of sub-
chondral osteophytes, eventually leading to the failure of the
joint to carry out daily movements and perform daily func-
tions [1, 2]. In clinical practice, OA can only be relieved and
improved but cannot be cured fully [3, 4]. The mechanism of
OA has not yet been defined in existing studies; however,
some studies have shown that circular RNAs (circRNAs)
play a role in the occurrence and development of OA, but
the functions and mechanism of circRNAs in OA were still
not very clear [5, 6]. The present study reviewed the articles
about circRNAs and OA in the recent 5 years to provide
some reference to elucidate the mechanism of circRNAs in
OA. Also, based on PPI, GO, and KEGG analysis of the
acquired circRNAs, the potential functions of circRNAs in

OA and the involved signaling pathways are also discussed
in this article. This review can provide some reference for
the fundamental research of the prevention and treatment
of OA.

2. Material and Methods

2.1. Data Source. “Circular RNA (circRNA)” and “osteoarthri-
tis (OA)” were used as keywords to search relevant articles
from January 1, 2016, to 2021 in China National Knowledge
Infrastructure (CNKI), PubMed, and Web of Science. There
are no ethics committee approval and informed consent in
this article.

2.2. Criteria

2.2.1. Inclusion Criteria. Inclusion criteria are as follows: (1)
experimental articles with the keywords in the databases
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and (2) articles with the circRNA ID starting with hsa
(human gene).

2.2.2. Exclusion Criteria. Exclusion criteria are as follows: (1)
overviews in the databases, (2) repeated articles, (3) articles
of poor quality, (4) articles with the circRNA ID starting
with mmu (mouse gene), and (5) articles about rheumatoid
arthritis (RA).

2.3. PPI, GO, and KEGG Analyses. Included circRNAs were
retrieved from circBase (http://www.circbase.org/) to check
the accuracy of information, and the circRNAs that had no
relevant information were deleted.

The PPI network (https://string-db.org/) was mapped.
Choose multiple proteins-gene symbol, and the minimum
required interaction score was 0.400.

GO analysis (DAVID, https://david.ncifcrf.gov/summary
.jsp) and KEGG analysis (KOBAS, http://kobas.cbi.pku.edu
.cn/kobas3) were performed to discuss the potential func-
tions and the participating signaling pathways (species,
Homo sapiens; input type, gene symbol; p < 0:05). As shown
in Figure 1.

2.4. Data Processing and Analysis. The acquired data were
analyzed and mapped using Cytoscape (3.7.2) and R lan-
guage (R x64 4.0.2).

3. Results

3.1. Current Studies on the Correlation between circRNAs
and OA. A total of 33 studies meeting the inclusion criteria
were included in this study, and 35 circRNAs were sorted
out by circRNA ID, gene symbol, regulation, miRNA, target
gene/signal pathway, reference, and year (Table 1). As
shown in Table 1, 81.82% of the articles about circRNAs in
the recent 5 years discussed the circ-miRNA axis. As shown
in Table 2, 27 circRNAs had upregulated expression and 8

had downregulated expression. As shown in Figure 2, most
articles (61%) about circRNAs were published in 2020, and
15% of the articles were published in 2021.

3.2. PPI, GO, and KEGG Analyses of circRNAs. Repeated cir-
cRNAs (SERPINE2, VWF, EPS15, and UNK) and those hav-
ing no information in circBase (hsa_circ_9119, hsa_circ_7,
PSM3, and hsa_circ_100226) were excluded, and a total of
31 circRNAs were finally included in the PPI, GO, and
KEGG analyses. The final result showed p < 0:05.

Figure 3 of PPI analysis shows a network of 30 circRNAs
(RP11-909M7.3 not found in STRING); of these, 12 map
nodes and 7 map edges were interrelated. VWF and DUSP5
had the biggest map node size (degree 2); IQGAP1-VWF-
SERPINE2 and PLOD1-COL6A3 had the bigger map edge
size (0.906, 0.928, and 0.913).

GO enrichment analysis usually covers molecular func-
tion (MF), cellular component (CC), and biological process
(BP). The results of this study showed that the functions of
31 circRNAs were mainly focused on MF, including protein
kinase activity and glycosaminoglycan binding; CC were
proteinaceous ECM, platelet α granule, extracellular matrix
(ECM), cellular exosome, and endoplasmic reticulum mem-
brane; BP included peptidyl-serine phosphorylation, ECM
organization, and cell adhesion (Figure 4). Among them,
VWF showed a majority of the functions (6/10, Table 3).

KEGG signaling pathway analysis showed that circRNAs
are enriched in PI3K/AKT, human papillomavirus infection
(HPI), focal adhesion (FA), and other seven pathways
(Figure 5), and VWF and COL6A3 were involved in 4/7
pathways (Table 4).

4. Discussion

4.1. Brief Information and Functions of circRNAs. circRNAs
are a type of noncoding RNAs mainly found in the

Web: CNKI, PubMed, WOS
MeSH: circRNA and Osteoarthritis

143 articles

PPI: 30 circRNAs (https://string-db.org/)

GO: 31 circRNAs (https://david.ncifcrf.gov/summary.jsp)

KEGG: 31 circRNAs (http://kobas.cbi.pku.edu.cn/kobas3)

31 circRNAs (http://www.circbase.org/)

Inclusion
(i) Experimental article
(ii) Species: Homo sapiens (hsa)

Exclusion
(i) Review, 28
(ii) Repetitive article, 5
(iii) Poor quality, 8
(iv) Species: Mus musculus (mmu) and animals, 36
(v) Rheumatoid arthritis (RA), 33

33 articles (35 circRNAs)

Figure 1: Flowchart.
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cytoplasm of mammalian cells. circRNAs consist of the 3′-
and 5′-phosphodiester bonds covalently linked to form a
circular structure, which is stable and resistant to RNA
exonuclease-mediated degradation, and hence are termed
as circRNAs. Three types of circRNAs, exon circRNAs (exon
circular RNA (ecircRNAs)), intron circRNAs (intron circu-
lar RNA (ciRNAs)), and exon-intron circRNAs (exon-intron
circular RNA (EIcircRNAs)) [42–44], especially ciRNAs, are
conserved across evolution and have a half-life of >48h,

which also confirms their high stability. In addition, cir-
cRNAs are highly stable and sensitive in body fluids and
used for biochemical tests [45–47].

Current studies showed that the functions of circRNAs
are as follows. (1) They adsorb microRNAs (miRNAs), bind
to miRNAs as sponges, affect the corresponding message
RNAs (mRNAs), and eventually regulate the expression of
target genes. (2) They regulate the activity of RNA-binding
proteins (RBPs) and transport them or act as their scaffold

Table 1: Articles about the correlation between circRNAs and OA in the recent 5 years.

circRNA ID Gene symbol Regulation miRNAs Target gene/pathway Reference Year

1 hsa_circ_0141827 SERPINE2 Down miR-1271 ERG pathway, SOX, COL2 Shen et al. [7] 2019

2 hsa_circ_0092516 NT5C2 Down miR-337-3p MMP-1, COL2 Huang et al. [8] 2020

3 hsa_circ_0020014 DUSP5 NA NA NA Wang et al. [9] 2020

4 hsa_circ_0041552 UBE2G1 Down miR-373 HIF-1a Chen et al. [10] 2020

5 hsa_circ_0000448 GCN1L1 Down miR-330-3p TNF-α, ADAMTS4 Zhu et al. [11] 2020

6 hsa_circ_0021592 HIPK3 Down miR-124 SOX-8 Wu et al. [12] 2020

7 hsa_circ_0129854 VCAN NA NA NF-κB pathway Ma et al. [13] 2020

8 hsa_circ_0080978 CDK14 Down miR-125a-5p SOX-9, Smad-2 Shen et al. [14] 2020

9 hsa_circ_0136474 ASH2L Down miR-127-5p MMP-13 Li et al. [15] 2019

10 hsa_circ_0129214 PDE4D Down miR-103a-3p FGF18 Wu et al. [16] 2021

11 hsa_circ_0055722 ANKRD36 Down miR-599 Casz1 Zhou et al. [17] 2021

12 hsa_circ_0005105 SEC24A Down miR-26a NAMPT Wu et al. [18] 2017

13 hsa_circ_0032131 PRKCH Down miR-1182 NA Wang et al. [19, 20] 2019

14 hsa_circ_0026176 TMBIM6 Down miR-27a MMP-13 Bai et al. [21] 2020

15 hsa_circ_9119# NA Down miR-26a PTEN Chen et al. [22] 2020

16

hsa_circ_0025119
hsa_circ_0025113
hsa_circ_0009897
hsa_circ_0002447

VWF
VWF
PLOD1
COL6A3

NA NA NA Wang et al. [23] 2020

17 hsa_circ_7# NA Down miR-7 PI3K/AKT/mTOR Zhou et al. [24, 25] 2020

18
hsa_circ_0045714
hsa_circ_0002485
hsa_circ_0005567

UNK
ATP9B
EPS15

NA NA NA Xiao et al. [26] 2019

19 NA# PSM3 Down miR-296-5p Ni et al. [27] 2020

20 hsa_circ_100226# MSR Down miR-875 TNF-α Liu et al. [28] 2017

21 hsa_circ_0001946 CDR1 Down miR-641 COL2, IL-6 Zhang et al. [29] 2020

22 hsa_circ_0040639 CDH13 Down miR-296-3p PTEN Zhou et al. [30] 2020

23 hsa_circ_0023404 RNF121 Down miR-665 MYD88 Wang et al. [31] 2020

24 hsa_circ_0141827 SERPINE2 Down miR-495 TGFBR2 Zhang et al. [32] 2020

25 hsa_circ_0035826 CSNK1G1 Down miR-4428 FUT2 Xiao et al. [33] 2020

26 hsa_circ_0005567 EPS15 Down miR-495 ATG14 Zhang et al. [34] 2020

27 hsa_circ_0010014 DHRS3 Down miR-183-5p GREM1 Jiang et al. [35] 2020

28 hsa_circ_0072655 ADAMTS6 Down miR-431-5p IL-β Fu et al. [36] 2020

29 hsa_circ_0045714 UNK Down miR-193b IGF1R Li et al. [37] 2017

30 hsa_circ_0114876 PTPRA Down miR-671 TRAF2 Wang et al. [38] 2021

31
hsa_circ_0104873
hsa_circ_0104595
hsa_circ_0101251

IQGAP1
SCAPER

RP11-909M7.3
NA NA NA Yu et al. [39] 2018

32 hsa_circ_0017855 RSU1 Down miR-93-5p MAP3K8 Yang et al. [40] 2021

33 hsa_circ_0045714 UNK Down miR-218-5p HRAS Jiang et al. [41] 2021

Note: “NA” means not available, and “#” means no relevant information in circBase.
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to facilitate the formation of new complexes. Additionally,
circRNAs can also interact with proteins, selectively cut or
transcribe parent genes (binding RNA polymerases), and
encode the proteins [48–52], as shown in Figure 6.

4.2. Studies on the Mechanism of circRNAs in OA and
circRNAs as Biological Indicators of OA. This study showed
that the articles on circRNAs in OA in the recent 5 years
mainly focused on the mechanism while they also discussed
circRNAs as clinical, biological indicators of OA.

According to the statistical results of this study, 61% of
the relevant articles in the recent 5 years were published in
2020 and 15% in 2021. The majority of these articles focused
on the mechanism of circ-miRNA with respect to the
absorption effect of circRNAs as sponges on miRNAs in
OA. Kulcheski et al. [53] proposed that circRNAs are
sponges of miRNAs and can serve as the novel type of bio-
markers. circRNA 0092516 regulates chondrocyte differenti-
ation and apoptosis via miRNA-337-3p/PTEN (phosphatase
and tensin homolog), according to Huang et al. [8], while
circRNA UBE2G1 regulates lipopolysaccharide- (LPS-)
induced OA chondrocytes via miR-373/hypoxic inducible
factor 1 alpha (HIF-1α), according to Chen et al. [9]. Wu
et al. [12] demonstrated that lowly expressed circRNA
HIPK3 regulates SRY-related high-mobility group box gene

8 (SOX-8), a critical marker of chondrocyte development
as the sponge of miR-124, thus promoting the apoptosis of
osteoarthritis chondrocytes. Ma et al. [13] found that cir-
cRNA VCAN promotes the apoptosis of OA chondrocytes
by blocking the NF-κB signaling pathway. Wu et al. [16]
showed that circRNA PDE4D protected OA by binding to
miR-103a-3p and regulating the fibroblast growth factor 18
(FGF18), and Zhou et al. [17] found that circRNA
ANKRD36 regulated Casz1 (miR-599 target gene) and pre-
vented the apoptosis and inflammation of OA chondrocytes
by targeting miR-599.

Additionally, some studies also discussed circRNAs as
biological indicators to detect and evaluate OA. In the study
by Wang et al. [9], patients with Kashin–Beck disease (KBD)
and OA were subjected to circRNA sequencing to observe
differential expression; the result of which showed that cir-
cRNA 0020014 could serve as the potential marker of OA
to evaluate the progression of OA. Wang et al. [23] analyzed
the gene expression profile, wherein VWF (hsa_circ_
0025119) and other three genes served as OA markers. Xiao
et al. [26] demonstrated that, on the Illumina HiSeq plat-
form, circRNA 0045714 was expressed differentially in OA.
Xiang et al. [54] revealed the expression profile of circRNAs
in OA through RNA sequencing and identified 122 cir-
cRNAs of differential expression. Based on these studies,

Table 2: Expression of circRNAs in OA.

Expression of 35 circRNAs in OA
Upregulation (27) Downregulation (8)

NT5C2 [8], DUSP5 [9], UBE2G1 [10], GCN1L1 [11], HIPK3 [12],
VCAN [13], ASH2L [15], SEC24A [18], PRKCH [19, 20], TMBIM6
[21], VWF [23], PLOD1 [23], COL6A3 [23], hsa_circ_7 [24, 25],
ATP9B [26], PSM3 [27], MSR [28], CDR1 [29], CDH13 [30],
RNF121 [31], CSNK1G1 [33], DHRS3 [35], PTPRA [38],
IQGAP1 [39], SCAPER [39], RP11-909M7.3 [39], RSU1 [40]

SERPINE2 [7, 32], CDK14 [14], PDE4D [16], ANKRD36 [17],
hsa_circ_9119 [22], EPS15 [26, 34], ADAMTS6 [36], UNK [37, 41]

2017Y
2018Y
2019Y

2020Y
2021Y

15% 9%

61%

3%

12%

Figure 2: Year of issue of the 33 articles.
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VWF (hsa_circ_0025119) had the highest value (Figure 3,
Tables 3 and 4), indicating a significant interaction between
VWF and other circRNAs; also, additional functions and
signaling pathways were detected in the BP. Therefore, we
speculated that VWF (hsa_circ_0025119) is more feasible
to be used as a biological indicator compared to other cir-
cRNAs, to detect OA in clinical practice.

4.3. Studies on the Potential Functions of circRNAs in OA
and Involved Signaling Pathways. The current study showed

that circRNAs play a critical role in ECM. Shen et al. [7]
showed that the overexpression of circRNA SERPINE2
downregulates the miR-1271-ERG (E26 transformation-
specific-related gene) pathway to reduce HCS (human
chondrocyte) apoptosis and promote ECM anabolism, thus
slowing down OA development. Zhu et al. [11] found that
circRNA GCN1L1 regulates miR-330-3p and TNF-α to
promote OA synovial cells and reduce ECM anabolism.
Wu et al. [18] demonstrated that circRNA 0005105 upregu-
lates the expression of NAMPT (miR-26a target gene) and

IQGAP1

DUSP5

VWF

CDR1

SERPINE2

SEC24APLOD1

COL6A3 EPS15 NT5C2

PDE4D

PTPRA

Figure 3: PPI network of circRNAs. Note: map node size to degree and map edge size to combined score, low values to small sizes and
bright colors.
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CC~extracellular matrix
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Figure 4: GO analysis of the 31 circRNAs.
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promotes ECM degradation in chondrocytes by absorbing
miR-26a as sponges. In addition, circRNA TMBIM6 pro-
motes ECM degradation of OA-induced chondrocytes via
the miR-27a/matrix metalloproteinase-13 (MMP-13) axis,
according to Bai et al. [21]. circRNA SERPINE2 reduces IL-
1β-induced apoptosis and ECM degradation of chondrocytes
by regulating the miR-495/transforming growth factor-beta
receptor 2 (TGFBR2) axis [32]. Furthermore, the functions
of circRNAs also include protein kinase activity, glycosamino-
glycan binding, endoplasmic reticulum membrane, and

peptidyl-serine phosphorylation, which can be the focus of
future studies on the mechanism of OA.

In this study, VWF and COL6A3 are involved in the
PI3K/AKT signaling pathway (Table 4). According to Zhou
et al. [24], circRNA7 regulates PI3K/AKT/mTOR by absorbing
miR-7, thus aggravating OA and indicating that the PI3K/AKT
signaling pathway may play a critical role in circRNAs regulat-
ing the development of OA. The PI3K/AKT/mTOR signaling
pathway functions in cartilage degeneration, subchondral bone
dysfunction, and synovial inflammation [55–57]. Therefore, in

Table 3: Functions of circRNAs.

Term Genes

MF: protein kinase activity PRKCH, CDK14, HIPK3, CSNK1G1

MF: glycosaminoglycan binding VCAN, SERPINE2

CC: proteinaceous COL6A3 extracellular matrix VCAN, VWF, COL6A3, ADAMTS6

CC: platelet alpha granule SERPINE2, VWF

CC: extracellular matrix VCAN, SERPINE2, VWF

CC: extracellular exosome PRKCH, VWF, PTPRA, CDH13, COL6A3, UBE2G1, PLOD1, IQGAP1, RSU1

CC: endoplasmic reticulum membrane SEC24A, TMBIM6, PLOD1, DHRS3, RNF121

BP: peptidyl-serine phosphorylation PRKCH, HIPK3, CSNK1G1

BP: extracellular matrix organization VCAN, VWF, COL6A3

BP: cell adhesion VCAN, VWF, CDH13, COL6A3

P value
0.04

0.02

0.01

0.03

0.0 0.02 0.03

Gene ratio

PI3K-Akt signaling pathway

Human papillomavirus infection

Focal adhesion

Protein processing in endoplasmic reticulum

Purine metabolism

Te
rm

Lysine degradation

Pyrimidine metabolism

Hedgehog signaling pathway

ECM-receptor interaction

Nicotinate and nicotinamide metabolism

2.00

1.75

1.50

1.25

1.00
Count

Figure 5: KEGG analysis of the 31 circRNAs.
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future studies on the mechanism of circRNA-regulated OA
chondrocytes and synovial cells, the correlation between the
circ-PI3K/AKT/mTOR axes can be observed, and the role of
PI3K/AKT/mTOR is discussed. Multiple collagen factors were
also detected in the ECM-receptor interaction pathway in
Figure 5. Collagen is a vital component of cartilage composition
and plays a crucial role in protecting cartilage tissues [58–60].
This finding suggested that the ECM-receptor interaction sig-
naling pathway may also play a critical role in the mechanism
underlying circRNA-regulated OA (Figure 7).

We also found that the expression of most circRNAs was
upregulated, while a few were downregulated in OA.
According to Wang et al. [31], circRNA RNF121 aggravated
the progression of OA via the miR-665/MYD88 axis
(MYD88 is the canonical adaptor for inflammatory path-
way), and according to Xiao et al. [33], circRNA CSNK1G1
promotes the progression of OAs by targeting the miR-
4428/FUT2 (fucosyltransferase) axis. Jiang et al. [35] dem-
onstrated that circRNA DHRS3 accelerates OA progression
via miR-183-5p/GREM1 (Gremlin, the miR-183-5p target

gene). Wang et al. [38] found that circRNA 0114876 aggra-
vates OA via the miR-671/TRAF2 (TNF receptor-associated
factor 2) axis. Yang et al. [40] found that circRNA RSU1
aggravates OA via the miR-93-5p/MAP3K8 (mitogen-acti-
vated protein kinase 8) axis, and Shen et al. [14] showed that
circRNA CDK14 protects OA via the sponge tissue miR-
125a-5p and enhances the expression of Smad2 (gene of
TGF-β family). Moreover, in the study by Chen et al. [22],
circRNA 9119 was shown to prevent apoptosis of IL-1β-
treated OA chondrocytes by blocking the miR-26a/PTEN
axis, and circRNA ADAMTS6 protects OA by absorbing
miR-431-5p [36]. Another study showed that circRNA
0045714 exerted a protective effect on OA via the miR-
193b/insulin-like growth factor 1 receptor (IGF1R) axis
[37]. In summary, 77.78% of the circRNAs were upregulated
and 22.23% were downregulated, and the overexpression of
the majority of the circRNAs aggravates the occurrence
and development of OA.

Herein, the studies on the correlation between circRNAs
and OA in the recent 5 years and the circRNAs with

RNA pol

miRNAs

mRNAs

circRNAs

LncRNAs

RBPs

RBPs RBPs RBPs RBPs RBPs

Scaffold

Transcription

P P

Figure 6: Functions of circRNAs.

Table 4: Signaling pathways involving circRNAs.

Term Input

ECM-receptor interaction VWF|COL6A3

Purine metabolism PDE4D|NT5C2

Protein processing in the endoplasmic reticulum SEC24A|UBE2G1

Focal adhesion VWF|COL6A3

Nicotinate and nicotinamide metabolism NT5C2

Human papillomavirus infection VWF|COL6A3

PI3K-Akt signaling pathway VWF|COL6A3

Hedgehog signaling pathway CSNK1G1

Pyrimidine metabolism NT5C2

Lysine degradation PLOD1
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differential expression and reliable mechanism of action in
OA were reviewed. We found that most articles about cir-
cRNAs regulating OA in the recent 5 years focused on the
mechanism, especially the absorption effect of circ-miRNA
as sponges in the recent 2 years, while most of the articles
about their functions addressed ECM and PI3K, AKT, and
mTOR signaling pathways. Based on the GO and KEGG
analysis results, future studies might focus on the functions
of circRNAs, such as protein kinase activity, glycosamino-
glycan binding, endoplasmic reticulum membrane, and
peptidyl-serine phosphorylation, as well as ECM-receptor
interaction-related signaling pathways. circRNA VWF, with
preferable functions, interactions, and involvement, can be
used as a biological indicator to detect OA in clinical
practice. However, although the absorption effect of circ-
miRNA as sponges in the mechanism of OA has been under
intensive focus in the recent 2 years, studies are still rare.

Therefore, further studies would focus on the database of
the circ-miRNA axis in OA in order to provide a reference
for the clinical treatment based on the mechanism of OA.
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