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Abstract
Objective: This retrospective, cross-sectional study evaluated the feasibility and 
potential benefits of incorporating deep-learning on structural magnetic resonance 
imaging (MRI) into planning stereoelectroencephalography (sEEG) implantation in 
pediatric patients with diagnostically complex drug-resistant epilepsy. This study 
aimed to assess the degree of colocalization between automated lesion detection and 
the seizure onset zone (SOZ) as assessed by sEEG.
Methods: A neural network classifier was applied to cortical features from MRI data 
from three cohorts. (1) The network was trained and cross-validated using 34 patients 
with visible focal cortical dysplasias (FCDs). (2) Specificity was assessed in 20 pedi-
atric healthy controls. (3) Feasibility of incorporation into sEEG implantation plans 
was evaluated in 34 sEEG patients. Coordinates of sEEG contacts were coregistered 
with classifier-predicted lesions. sEEG contacts in seizure onset and irritative tissue 
were identified by clinical neurophysiologists. A distance of <10 mm between SOZ 
contacts and classifier-predicted lesions was considered colocalization.
Results: In patients with radiologically defined lesions, classifier sensitivity was 
74% (25/34 lesions detected). No clusters were detected in the controls (specificity 
= 100%). Of the total 34 sEEG patients, 21 patients had a focal cortical SOZ, of 
whom eight were histopathologically confirmed as having an FCD. The algorithm 
correctly detected seven of eight of these FCDs (86%). In patients with histopatho-
logically heterogeneous focal cortical lesions, there was colocalization between 
classifier output and SOZ contacts in 62%. In three patients, the electroclinical 
profile was indicative of focal epilepsy, but no SOZ was localized on sEEG. In 
these patients, the classifier identified additional abnormalities that had not been 
implanted.
Significance: There was a high degree of colocalization between automated le-
sion detection and sEEG. We have created a framework for incorporation of 
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1 |  INTRODUCTION

One-third of children with epilepsy are medication-resist-
ant.1 In children with a focal seizure onset zone (SOZ), 
neurosurgical resection can offer seizure freedom in ap-
proximately 70%.2 Surgical treatment is planned by the 
multidisciplinary team (MDT) considering results from sei-
zure semiology; neuropsychological, neurodevelopmental, 
and neuropsychiatric evaluation; and noninvasive neuroim-
aging techniques, including video-electroencephalographic 
telemetry, magnetic resonance imaging (MRI), positron 
emission tomography, and magnetoencephalography. In 
complex patients, these noninvasive investigations can be 
inconclusive.

Stereoelectroencephalography (sEEG) can be used to 
delineate the SOZ in complex patients.3 In this procedure, 
implanted depth electrodes directly record brain activity. 
Currently, electrode placement is a clinical decision based 
on hypotheses generated by the MDT. In half of the patients 
selected for sEEG, the MRI scan does not show any lesions 
or shows nonspecific abnormalities,4 limiting the ability to 
accurately target potential areas of seizure onset.

Using machine learning, automated lesion detec-
tion methods aim to generate putative lesion locations 
based on structural MRIs. These approaches include vox-
el-based methods5–7 and surface-based approaches.8 We 
have previously developed an openly available, robust, 
and replicated surface-based method to identify focal 
cortical dysplasias (FCDs).9–12 However, most previous 
studies were based on cohorts with histologically or ra-
diologically confirmed FCDs, which do not fully capture 
the complexity and heterogeneity of diagnostically in-
conclusive patients who present for presurgical evalua-
tion by the MDT.

This retrospective study aimed to create and evaluate a 
framework for informing and adjusting sEEG electrode plan-
ning using automated lesion detection. We trained a classifier 
to detect focal cortical lesions in patients with MRI-positive 
FCDs and evaluated it on complex patients who had under-
gone sEEG. Classifier-identified clusters were coregistered 
to sEEG electrodes and were assessed for colocalization with 
the SOZ.

2 |  MATERIALS AND METHODS

2.1 | Participants

2.1.1 | MRI-positive cohort

A retrospective cohort of 34 patients (mean age = 11.6 years, 
range = 3.6-18.5, female = 20) from Great Ormond Street 
Hospital (GOSH) was studied, following permission by the 
hospital ethical review board. Patients were included if they 
had a radiologically identified FCD and underwent three-
dimensional (3D) T1-weighted (T1w) and fluid-attenuated 
inversion recovery (FLAIR) imaging on the 3-T MRI scan-
ner at GOSH. Patients younger than 3 years of age, with MRI 
scans showing severe motion artifacts (ie, indistinguishable 
adjacent gyri due to motion or severe ringing), or without 
the full protocol described in the following section were 
excluded.

2.1.2 | sEEG cohort

All patients who underwent sEEG at GOSH between 2015 
and 2018 were identified (n  =  66; Figure  1). sEEG pa-
tients were excluded for the following reasons: radiological 

deep-learning–based MRI lesion detection into sEEG implantation planning. Our 
findings support the prospective evaluation of automated MRI analysis to plan opti-
mal electrode trajectories.
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diagnosis of tuberous sclerosis (n = 9), hippocampal scle-
rosis (n  =  2), vascular/ischemic lesion (n  =  4), polymi-
crogyria (n  =  1), previous resection (n  =  12), and large 
MRI-detectable lesions where the indication for sEEG was 
to determine lesion extent (n  =  4). The final number of 
sEEG patients was 34 (mean age = 11.7 years, range = 3.6-
18.5, female = 17).

2.1.3 | Healthy controls

A control group of 20 term-born participants (mean 
age = 16.8 years, range = 8.4-28.2, female = 14) with no his-
tory of any neurological diagnosis was included.

2.1.4 | MRI acquisition

All patients and controls were scanned on a 3-T whole-
body MRI system (Magnetom Prisma, Siemens Medical 
Systems), using a 20-channel receive head coil and body 

coil for transmission and 80-mT/m magnetic field gradi-
ents. 3D structural T1w images and FLAIR images were 
acquired using the following protocols: magnetization-
prepared rapid acquisition gradient echo (repetition time 
[TR] = 2300 milliseconds, echo time [TE] = 2.74 millisec-
onds, field of view [FOV] = 256 × 256 mm, flip angle = 8°, 
voxel size = 1×1 × 1 mm3) and FLAIR (TR = 4000 milli-
seconds, TE = 395 milliseconds, inversion time = 1800 mil-
liseconds, FOV = 256 × 256 mm, flip angle = 120°, voxel 
size = 0.65 × 1 × 0.65 mm3).

2.1.5 | MRI postprocessing

Surface-based postprocessing of T1 and FLAIR data followed 
our previously published automated FCD detection pipeline 
(https://github.com/kwags tyl/FCDde tection; Figure  2).9 In 
brief:

1. Cortical reconstructions were generated using FreeSurfer 
version 5.313 for all participants. This generates gray and 

F I G U R E  1  Flowchart of inclusion 
criteria and magnetic resonance imaging/
stereoelectroencephalography (sEEG) 
colocalization results. Flowchart of 
inclusion criteria, sEEG results, and 
concordance with automated lesion 
detection in patients who underwent sEEG 
are shown. FCD, focal cortical dysplasia; 
HS, hippocampal sclerosis; mTLE, mesial 
temporal lobe epilepsy; SOZ, seizure onset 
zone; TS, tuberous sclerosis

https://github.com/kwagstyl/FCDdetection


   | 1409WAGSTYL eT AL.

white matter triangulated mesh surfaces, where vertices 
are paired between the surfaces.

2. Lesion masks were created for the 34 MRI-positive pa-
tients. Focal cortical lesions were identified on T1w and 
FLAIR images by an experienced pediatric neuroradiolo-
gist. 3D binary masks were manually delineated. The le-
sion masks were first mapped onto the individual surface 
reconstructions and then onto the bilaterally symmetric 
template (fsaverage_sym).14

3. Measures of morphological/intensity features. The follow-
ing measures were calculated per vertex across the cor-
tical surface in all participants: (a) cortical thickness, (b) 
intensity at the gray-white matter contrast, (c) curvature, 
(d) sulcal depth, (e) intrinsic curvature, and (f) FLAIR sig-
nal intensity sampled at 25%, 50%, and 75% of the cortical 
thickness as well as at the gray-white matter boundary and 
0.5 and 1 mm subcortically. The choice of features was 
motivated by the clinical features radiologists use to iden-
tify cortical lesions as well as our previous work evaluat-
ing the discriminatory power of these features.9

4. Smoothing. The following features were smoothed with 
a 10-mm Gaussian kernel: cortical thickness, intensity at 
the gray-white matter contrast, and FLAIR intensities at 
all cortical and subcortical depths, to increase the stability 
of per-vertex measures. Intrinsic curvature was smoothed 
with a 20-mm Gaussian kernel to provide a measure of 
folding pattern abnormalities that is stable across adjacent 
gyri and sulci. Manual delineated lesions had a median area 
of 1185 mm2 and median absolute deviation of 789 mm2, 
which is much larger than these smoothing kernels.

5. Registration to a bilaterally symmetrical template space. 
All features were registered to fsaverage_sym.

6. Normalization of features. Features underwent two nor-
malization procedures. (a) Features were normalized 
using a within-subject z scoring, which adjusts for inter-
individual differences in the mean and standard deviation, 
for example age-related changes in cortical thickness. 
(b) Features were normalized using a between-subject z 
scoring, where each participant's per-vertex feature was 
normalized by the mean and standard deviation in the pop-
ulation of healthy controls. This adjusts for interregional 
differences in the mean and standard deviation, for ex-
ample, normal variability in cortical thickness across the 
cortex.

7. Interhemispheric asymmetry. The right hemisphere vertex 
values for each feature were subtracted from the left hemi-
sphere values to create a left hemisphere asymmetry map 
and vice versa for the right hemisphere.

8. Deep-learning classification. The Neural Network Toolbox 
in MATLAB R2018a (MathWorks) was used to create a 
nonlinear classifier. To avoid exhaustively testing different 
neural network architectures, which can lead to overfitting, 

F I G U R E  2  Pipeline for automated lesion detection and 
colocalization with stereoelectroencephalography (sEEG) electrodes. 
A, Surface-based feature extraction, lesion labeling, and training of 
neural network classifier on magnetic resonance imaging (MRI)-
positive patient cohort. B, Testing of classifier on presurgical MRI 
of patients undergoing sEEG. Coregistration of classifier output 
clusters with sEEG electrode implantations extracted from postsurgical 
computed tomography (CT) is shown
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we used one hidden layer, and the number of nodes in this 
layer was determined as follows. We ran a principal com-
ponent analysis on the input surface-based features in the 
control cohort, and used the minimum number of principal 
components needed to explain >99% of the variance as the 
number of hidden nodes. The neural network was trained 
to classify each vertex as being either lesional or nonle-
sional. The network was trained on surface-based measures 
from vertices from each MRI-positive patient. The input 
measures were normalized cortical thickness, normalized 
gray-white matter intensity contrast, sulcal depth, mean 
curvature, the six normalized FLAIR intensity samples at 
different cortical depths, and intrinsic curvature, as well as 
the interhemispheric asymmetry measures. For training, 
vertices within the manual lesion masks were extracted 
as lesional examples, and an equal number of randomly 
selected vertices from the contralateral nonlesional hemi-
sphere were extracted as healthy examples.

9. Clustering and thresholding. Output per-vertex predictions 
were grouped into neighbor-connected clusters of vertices 
with predicted lesion values above a specified threshold. 
The threshold for the classifier was determined by calcu-
lating the Youden index (sensitivity + specificity − 100) 
on the training dataset at a range of values and identify-
ing the optimum threshold values. Clusters smaller than 
50 mm2 were excluded as noise.

2.2 | Evaluation of classifier in lesion-
positive cohort and controls

To assess the accuracy of the classifier on the lesion-positive 
cohort, the network was trained using a leave-one-out cross-
validation approach, training on 33 lesion-positive subjects 
and testing on the 34th. Lesions were recorded as being de-
tected if the predicted cluster overlapped with the manually 
delineated lesion mask. The network was then trained on all 
34 patients and tested on the controls to calculate specificity. 
Any cortical clusters identified by the classifier in controls 
were recorded as false positives.

2.3 | Stereoelectroencephalography

3D electrode trajectories were planned and placed within 
the patients’ brains using robotic-assisted surgery.15 Pre- 
and postsurgical computed tomography (CT) scans were 
acquired along with a CT angiogram, which was coregis-
tered to the presurgical structural T1 gadolinium-enhanced 
MRI using FLIRT from FMRIB Software Library,16,17 with 
a mutual information cost function. Registrations were 

visually inspected using Slicer (www.slicer.org).18 From the 
postsurgical CT, precise 3D coordinates were calculated for 
each contact along the depth electrodes (Figure 2) using an 
extension for semiautomated electrode contact localizer.19 
sEEG activity was assessed by expert neurophysiologists, 
and individual contacts were classified as being located 
within the SOZ, within the irritative zone, or not involved 
in the epileptogenic network. The SOZ was determined by 
visual examination of the ictal sEEG and patterns of seizure 
onset identified according to published criteria.20,21 For all 
patients in whom the ictal onset was considered to be focal, 
electrical seizure onset was before clinical onset. We also 
carried out stimulation studies, which produced habitual 
seizures in some patients, but a lack of stimulated seizure 
did not preclude identification of the SOZ.

2.4 | Comparison between sEEG and 
MRI clusters

Lesion clusters predicted by the classifier were coregistered 
from the native MRI surface reconstruction to the surface 
reconstructions in Slicer space (Figure  2). The minimum 
Euclidean distance was calculated from each cluster to each 
electrode contact.

An automatically identified lesion cluster and sEEG were 
recorded as colocalized if a lesion cluster was within 10 mm 
of an electrode contact in the SOZ.22 Neuroimaging process-
ing (K.W., S.A.) and neurophysiology assessment (B.P., R.T.) 
were carried out independently to avoid bias.

2.5 | Analysis of how lesion detection would 
have altered electrode placement

To estimate the impact on incorporating lesion detection into 
prospective electrode placement, the number of additional 
electrodes required to sample potential lesion clusters was 
calculated for each patient as follows.

Predicted lesion clusters were excluded if they were: 

• On the contralateral hemisphere in patients with a unilat-
eral implantation due to strong preimplantation evidence 
of laterality;

• Due to an obvious artifact (eg, motion ringing or skull 
stripping artifacts)

• Not in the top three clusters based on classifier prediction 
values.

If predicted lesion clusters were already within 10 mm of 
an electrode contact, electrodes were classed as concordant. 
This threshold of 10 mm was chosen as a balance between 

http://www.slicer.org
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sEEG sampling radius,22 the risk of two electrodes touching 
and impacting the quality of signal recorded,15 and the spatial 
specificity of our structural MRI features.

The number of remaining clusters that would require 
an additional electrode was then calculated using a rule of 
thumb that clusters with no electrode within 10 mm required 
an extra electrode to be inserted.

2.6 | Power calculations for a 
prospective study

Power calculations were performed to estimate appropriate 
sample sizes for a future prospective study. First, we calcu-
lated the statistical likelihood of a positive contribution from 
our results. Then, confidence intervals for estimates of the 
number of positive contributions for a given sample size were 
generated using 1000 randomly generated cohorts where the 
likelihood of contributing to a patient's plan had the prob-
ability estimated from this retrospective cohort and the pre-
dicted number of positive contributions over the cohort was 
calculated.

2.7 | Data and code availability

All code to replicate the automated lesion detection analy-
ses and code to compare the automated lesion detection with 
sEEG depth electrode contacts are freely available from 
https://github.com/MELDP roject. A full results table is also 
available from https://github.com/MELDP roject. Figures 
were plotted using nilearn23 and raincloud plots.24

3 |  RESULTS

3.1 | Classifier lesion detection results in 
MRI-positive cohort and controls

Of the 34 patients with visible FCD on MRI, the classifier 
was able to detect the lesion in 25 (sensitivity = 74%). In two 
of the nine undetected patients, no clusters were found. In the 
remaining seven patients, between one and four clusters were 
found. In the 20 healthy controls, no clusters were detected 
(specificity = 100%).

3.2 | sEEG implantation

3.2.1 | Indication

There were three types of indications for sEEG implantation 
(Table 1): (1) discordance: 13 patients were implanted where 

a lesion had been identified preoperatively but other data sug-
gested the SOZ may be located elsewhere; (2) five patients 
were implanted because the MRI was not definitive; and (3) 
16 patients were implanted because no lesion was identified 
on MRI (MRI-negative).

3.2.2 | Outcome of sEEG implantation

In 21 of 34 patients (62%), a focal cortical SOZ was identified 
on sEEG (Table  1). Of these 21 patients, 16 (76%) under-
went subsequent epilepsy surgery and 10 of 16 (63%) were 
seizure-free at last follow-up (Engel Class 1). Histology was 
FCD IIB in five, FCD IIA in two, FCD II-unspecified in one, 
nondiagnostic in six, and other in two patients. Of the eight 
patients with FCD on histology, all eight were seizure-free at 
last follow-up (Engel Class 1). Two patients underwent ther-
mocoagulation as a therapeutic test; one responded to it and 
subsequently underwent laser ablation at the same location 
and is now seizure-free. Three patients have not undergone 
resective surgery (Table 1), of whom two were offered a sec-
ond sEEG implantation to more thoroughly map the SOZ and 
the third patient was offered thermocoagulation but the par-
ents declined.

For seven patients, sEEG did not identify focal cortical 
SOZs. In three of these patients, although a focal SOZ was 
not identified, the pattern of seizure onset was thought to in-
dicate a focal origin where the suspected cortical abnormality 
was not adequately sampled. Two of the seven patients under-
went thermocoagulation. In four of the seven patients, seizure 
onset was described as diffuse, including one patient who has 
since been diagnosed with Rasmussen encephalitis.

In the final six patients, sEEG revealed a mesial tempo-
ral lobe SOZ. All six patients underwent epilepsy surgery. 
Histology was nondiagnostic in four patients, hippocampal 
sclerosis in one patient, and hippocampal gliosis in one pa-
tient. Four of six patients (67%) were seizure-free at last fol-
low-up (Engel Class 1).

3.3 | Comparison of automated lesion 
detection with sEEG results

Of the 21 patients in whom a focal cortical SOZ was identi-
fied on sEEG, the automatically predicted lesion was colo-
cated with the sEEG-determined SOZ in 13 patients (62%; 
Figure 1). Of the eight patients with histopathologically con-
firmed FCDs, the predicted lesion was colocated with the 
sEEG-determined SOZ in seven patients (88%; Figure  1). 
Preoperatively, one of these patients was MRI-negative, two 
had presurgical imaging that was not definitive, and five had 
discordant presurgical investigations. Of these five patients 
with discordance between presurgical neuroradiology and 

https://github.com/MELDProject
https://github.com/MELDProject
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electrophysiology, three were originally MRI-negative and 
subsequently had a subtle MRI abnormality suspected and 
the final two patients had a lesion reported on the radiology 

report. Three case studies where there was colocalization be-
tween the predicted lesion and the sEEG ictal contacts are 
presented in Figure 3.

T A B L E  1  Table of results from comparison between automated MRI lesion detection and sEEG along with presurgical sEEG indication, and 
post surgical seizure-freedom and histology

Patient sEEG indication
sEEG 
outcome Clusters, n

Concordance 
of sEEG & 
automated 
clusters Surgery Histology Outcome

Follow-up 
time, mo

1 Lesion-negative Focal 2 N TC & laser n.a. Seizure-free 4

2 Lesion-negative Focal 0 N Y non-diag Seizure-free 27

3 Lesion-negative Focal 3 Y Y non-diag Not seizure-free 8

4 Lesion-negative Focal 2 N N n.a. n.a. n.a.

5 Lesion-negative Focal 0 N N n.a. n.a. n.a.

6 Lesion-negative Focal 1 N Y FCD IIA Seizure-free 2

7 Discordance Focal 4 Y Y FCD IIB Seizure-free 14

8 Discordance Focal 7 Y Y non-diag Seizure-free 45

9 Discordance Focal 3 Y Y FCD II Seizure-free 22

10 Discordance Focal 5 Y Y non-diag Not seizure-free 14

11 Discordance Focal 1 Y Y FCD IIB Seizure-free 28

12 Discordance Focal 2 N Y Other Not seizure-free 18

13 Discordance Focal 2 Y Y Other Not seizure-free 16

14 Discordance Focal 4 Y Y FCD IIB Seizure-free 7

15 Discordance Focal 3 N Y non-diag Not seizure-free 7

16 Not definitive Focal 1 Y Y FCD IIB Seizure-free 12

17 Not definitive Focal 3 Y Y non-diag Seizure-free 2

18 Not definitive Focal 2 Y Y FCD IIB Seizure-free 21

19 Lesion-negative Focal 4 Y N n.a. n.a. n.a.

20 Discordance Focal 6 Y Y FCD IIA Seizure-free 2

21 Discordance Focal 1 N TC n.a. Not seizure-free 10

22 Lesion-negative mTLE 1 n.a. Y non-diag Seizure-free 13

23 Lesion-negative mTLE 1 n.a. Y non-diag Seizure-free 20

24 Lesion-negative mTLE 0 n.a. Y Other Not seizure-free 17

25 Lesion-negative mTLE 0 n.a. Y non-diag Not seizure-free 14

26 Lesion-negative mTLE 2 n.a. Y non-diag Seizure-free 7

27 Discordance mTLE 1 n.a. Y HS Seizure-free 14

28 Lesion-negative Diffuse 1 n.a. N n.a. n.a. n.a.

29 Lesion-negative Diffuse 4 n.a. N n.a. n.a. n.a.

30 Lesion-negative Diffuse 4 n.a. N n.a. n.a. n.a.

31 Not definitive Diffuse 
(Rasmussen)

1 n.a. TC n.a. Not seizure-free 23

32 Not definitive Likely focal 2 n.a. TC n.a. Not seizure-free 28

33 Discordance Likely focal 7 n.a. N n.a. n.a. n.a.

34 Lesion-negative Likely focal 6 n.a. N n.a. n.a. n.a.

Note: "Discordance" indicates that an MRI abnormality was identified but was discordant with other presurgical investigations. "Not definitive" indicates that 
presurgical MRI was not definitive.
Abbreviations: FCD, focal cortical dysplasia; HS, hippocampal sclerosis; MRI, magnetic resonance imaging; mTLE, mesial temporal lobe epilepsy; N, no (ie, no 
colocalization or no surgery); n.a., Dnot applicable; non-diag, nondiagnostic; sEEG, stereoelectroencephalography; TC, thermocoagulation; Y, yes.
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Of the remaining 13 patients, six had mesial temporal 
SOZs identified by sEEG. The automated cortical analysis is 
unable to explicitly identify mesial temporal (ie, hippocam-
pal and amygdala abnormalities), as these structures are not 
segmented as part of the cortical reconstruction. However, in 
two of these patients, the method did identify abnormalities 
in the ipsilateral temporal neocortex, consistent with findings 
that mesial temporal lobe epilepsy is associated with neocor-
tical abnormalities in the ipsilateral temporal lobe.25 Two pa-
tients had no neocortical clusters, and two had extratemporal 
neocortical clusters.

There were three patients in whom the pattern of seizure 
onset was thought to indicate a focal origin, but where the 
suspected cortical abnormality was not adequately sampled. 
In two of these patients, our automated method identified 
structural cortical abnormalities on the affected hemisphere 

that were not implanted. It is not possible to retrospectively 
evaluate whether these are the epileptogenic lesions.

Across the total cohort of 34 patients, on average each 
patient had 2.53  ±  1.99 clusters (range = 0-7 clusters). 
Interestingly, all of the six patients with focal epilepsy who 
were not seizure-free postoperatively had additional neocorti-
cal clusters identified by the automated cortical analysis that 
were not concordant with the contacts classified as ictal on 
sEEG (Table  1). A future prospective study could implant 
these as putative lesion locations.

3.4 | Impact on preimplantation planning

Feasibility analysis for a prospective study on using au-
tomated MRI analysis to improve detection of the SOZ in 

F I G U R E  3  Case studies of three 
sample patients where there is colocalization 
between ictal contacts and automated lesion 
detection. Ictal contacts (red contacts) are 
within 10 mm of the automated classifier 
prediction (red cluster). For each patient, a 
brief clinical overview (left upper), a plot of 
distance of the stereoelectroencephalography 
(sEEG) contacts from the predicted 
lesion (right upper), visualization of the 
electrode positioning (ictal contacts = red, 
interictal = yellow, other = black) with 
automated clusters (red = top cluster, 
yellow = other clusters, lower panels), and a 
coronal section of fluid-attenuated inversion 
recovery magnetic resonance imaging 
(MRI) with lesion indicated by red arrow 
are shown. L, left; R, right; FCD, focal 
cortical dysplasia; PET, positron emission 
tomography
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patients undergoing sEEG indicated that 14 extra electrodes 
would be required to ensure that the top three clusters identi-
fied by the classifier were being sampled in all 34 patients. 
Clusters were ranked based on their mean classifier predic-
tion value across all vertices within each cluster. This analysis 
indicated that an average of one extra electrode per two sEEG 
patients would be required. Our power calculation indicated 
that we would need to evaluate a minimum of 35 patients 
undergoing sEEG to have 90% confidence that we could pro-
vide contributory evidence for localization of seizure foci for 
10 patients. It is important to note that this cohort includes 
patients who would later be found to have diffuse SOZs or 
mesial temporal lobe epilepsy. To ensure that a concordant 
structural abnormality and SOZ are identified in a minimum 
of 10 patients, 21 patients with focal SOZs would be required. 
Finally, to provide a new target to implant in a patient who 
would otherwise not have had their SOZ detected by sEEG, 
we would need to implant 26 patients.

4 |  DISCUSSION

Here, we have developed a pipeline for automated detection 
of focal cortical lesions and tested the feasibility of incorpo-
rating this technology into planning of sEEG trajectories. In 
the training cohort of patients with radiologically diagnosed 
FCD, our classifier was able to detect 74%, while maintain-
ing 100% specificity. In the complex cohort representative 
of drug-resistant epilepsy patients who undergo sEEG at a 
tertiary neurosurgical center, of the eight patients who ulti-
mately had histologically confirmed FCD type II, automated 
lesion detection identified lesional clusters that colocalized 
with SOZ electrode contacts in 88% (seven patients). Across 
heterogeneous histopathologies, but with focal SOZs, the au-
tomated lesion detection colocalized with SOZ contacts in 
62% (13/21 patients). Incorporating automated lesion predic-
tions into implantation strategy would require one additional 
electrode per two patients. Given the clinical variation in 
electrode numbers, the potential to identify lesional areas that 
might be missed, and the relatively small increase in bleed-
ing risk of adding an extra electrode to an implantation,26 this 
work lays the framework for future prospective studies incor-
porating these artificial intelligence technologies into clinical 
practice.

In recent years, there have been considerable advances in 
the automated detection of focal epileptogenic abnormalities 
based on structural MRI scans. These approaches use a com-
bination of postprocessing and machine-learning techniques 
to automatically delineate structural abnormalities.6,8,9,11 The 
sensitivity (74%) and specificity (100%) are in keeping with 
comparable surface-based lesion detection methods with sen-
sitivities ranging from 72% to 74% and specificities ranging 
from 90% to 100%.8,9,11 However, these studies generally 

evaluated algorithms on cohorts of histopathologically con-
firmed FCD cases and healthy controls, which do not reflect 
the complexity and heterogeneity of patients with medica-
tion-resistant epilepsy. Therefore, it is unclear how these al-
gorithms would perform prospectively and how they might 
be used to inform clinical decision-making. This study eval-
uates the feasibility of these techniques on a clinically real-
istic complex cohort and demonstrates how such approaches 
could be incorporated into presurgical planning.

The advantage of incorporating these technologies is that 
they can provide objective lesion hypotheses even in patients 
in whom the SOZ is difficult to identify and may therefore 
generate stronger preimplantation hypotheses. For example, 
three patients in our study with focal seizure semiology had 
no SOZ identified through sEEG implantation. In two of 
these patients, our algorithm detected clusters that had not 
been implanted and were plausible lesion hypotheses. To test 
such hypotheses, a prospective study, where automated lesion 
detection is incorporated into sEEG implantation planning, is 
required. Positive outcomes would include increased presur-
gical confidence, identification of the SOZ in MRI-negative 
patients, improved delineation of cortical lesion boundaries, 
and a potential reduction in the number of required sEEG 
electrodes. Such developments offer the possibility of im-
proved clinical outcomes and reduced financial burden.

One limitation of this study is that it was retrospective. A 
corollary of this is that when clusters were identified that were 
not concordant with the SOZ, they were challenging to inter-
pret. Across all 34 patients, the classifier detected an average 
of 2.53 clusters per patient. As there is incomplete sampling 
of the brain with sEEG, some detected MRI clusters were not 
close to implanted electrodes. It is not possible to determine 
whether these were false positives or would have exhibited 
ictal activity, especially in patients where histology was non-
diagnostic and patients were not seizure-free. In clusters that 
were inconsistent with semiology (ie clusters in patients with 
diffuse SOZs), it is not possible to determine whether these 
are false positives or whether the cortical tissue would ex-
hibit histological abnormalities. This is further complicated 
by previous studies in patients with focal epilepsy25,27,28 that 
have identified extralesional structural abnormalities on MRI 
of currently unknown clinical significance.

Nevertheless, sEEG is an optimal approach for assess-
ing any new diagnostic technique in focal epilepsy, as it is 
the only approach for accurate assessment of the ictal onset 
zone other than postoperative outcome. Thus, this validation 
problem is shared with any noninvasive technique, and future 
studies will be required to fully elucidate the electrographic 
and histopathological basis of these clusters.

A second limitation is the relatively small sample sizes 
for classifier training and validation. Future studies incor-
porating MRI data from focal cortical epilepsy patients and 
controls across multiple centers with a wide representation of 
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ages will help to mitigate this.29 Additionally, larger studies 
will allow for the development and evaluation of deep-learn-
ing tools such as ensemble models30 and graph convolutional 
networks.31

A third limitation is that we are currently restricted to 
detecting focal cortical lesions, and some lesion-negative 
patients have mesial temporal lobe lesions (Table 1). Future 
development of a combined algorithm for automated cortical 
and mesial temporal lobe lesions is required.

In conclusion, our study demonstrates the feasibility of 
incorporating deep-learning–based cortical lesion detection 
from structural MRI into planning of sEEG implantation in 
patients with suspected focal epilepsy. Additionally, we esti-
mated the impact of implanting the extra electrodes required 
to adequately sample any additional automatically detected 
structural targets. These analyses lay the foundations for pro-
spective evaluation of automated lesion detection in clinical 
practice.

ACKNOWLEDGMENTS
This work and S.A. was funded by the Rosetrees Trust 
(A2665). K.W. was funded by the Wellcome Trust 
(215901/Z/19/Z). A.C. is supported by a GOSH Children's 
Charity Surgeon Scientist Fellowship. This research was sup-
ported by the National Institute for Health Research (NIHR) 
GOSH Biomedical Research Centre. The views expressed are 
those of the authors and not necessarily those of the National 
Health Service, the NIHR, or the Department of Health. T.B. 
is supported by GOSH Children's Charity.

CONFLICT OF INTEREST
None of the authors has any conflict of interest to disclose. 
We confirm that we have read the Journal's position on issues 
involved in ethical publication and affirm that this report is 
consistent with those guidelines.

AUTHOR CONTRIBUTIONS
Conception and design of the study: K.W., S.A., B.P., R.T., 
T.B., M.T. Acquisition and analysis of data: K.W., S.A., 
B.P., S.L., K.S., A.C., R.T., M.T. Drafting of the manuscript 
or figures: K.W., S.A., A.C., R.T., T.B., M.T.

ORCID
Konrad Wagstyl   https://orcid.org/0000-0003-3439-5808 
Sara Lorio   https://orcid.org/0000-0002-1790-3586 
Torsten Baldeweg   https://orcid.
org/0000-0002-5724-1679 

REFERENCES
 1. Kwan P, Schachter SC, Brodie MJ. Drug-resistant epilepsy. N Engl 

J Med. 2011;365:919–26.
 2. Wyllie E. Surgical treatment of epilepsy in children. Pediatr Neurol. 

1998;19:179–88.

 3. Gonzalez-Martinez J, Mullin J, Bulacio J, et al. 
Stereoelectroencephalography in children and adolescents with 
difficult-to-localize refractory focal epilepsy. Neurosurgery. 
2014;75(3):258–68.

 4. McGovern RA, Knight EP, Gupta A, et al. Robot-assisted ste-
reoelectroencephalography in children. J Neurosurg Pediatr. 
2018;23:288–96.

 5. Huppertz H-J, Grimm C, Fauser S, et al. Enhanced visualization of 
blurred gray–white matter junctions in focal cortical dysplasia by 
voxel-based 3D MRI analysis. Epilepsy Res. 2005;67:35–50.

 6. Wagner J, Weber B, Urbach H, Elger CE, Huppertz H-J. 
Morphometric MRI analysis improves detection of focal cortical 
dysplasia type II. Brain. 2011;134:2844–54.

 7. Wang ZI, Jones SE, Jaisani Z, et al. Voxel-based morphometric 
magnetic resonance imaging (MRI) postprocessing in MRI-
negative epilepsies. Ann Neurol. 2015;77:1060–75.

 8. Hong S-J, Kim H, Schrader D, Bernasconi N, Bernhardt BC, 
Bernasconi A. Automated detection of cortical dysplasia type II in 
MRI-negative epilepsy. Neurology. 2014;83:48–55.

 9. Adler S, Wagstyl K, Gunny R, et al. Novel surface features for auto-
mated detection of focal cortical dysplasias in paediatric epilepsy. 
Neuroimage Clin. 2017;14:18–27.

 10. Hoyos-Osorio K, Álvarez AM, Orozco ÁA, Rios JI, Daza-
Santacoloma G. Clustering-based undersampling to support 
automatic detection of focal cortical dysplasias. In: Mendoza 
M, Velastín S, editors Progress in Pattern Recognition, Image 
Analysis, Computer Vision, and Applications. Cham, Switzerland: 
Springer; 2017:298–305.

 11. Jin B, Krishnan B, Adler S, et al. Automated detection of focal 
cortical dysplasia type II with surface-based magnetic reso-
nance imaging postprocessing and machine learning. Epilepsia. 
2018;59:982–92.

 12. Mo J-J, Zhang J-G, Li W-L, et al. Clinical value of machine learn-
ing in the automated detection of focal cortical dysplasia using 
quantitative multimodal surface-based features. Front Neurosci. 
2018;12:1008.

 13. Fischl B. FreeSurfer. Neuroimage. 2012;62:774–81.
 14. Greve DN, Van der Haegen L, Cai Q, et al. A surface-based anal-

ysis of language lateralization and cortical asymmetry. J Cogn 
Neurosci. 2013;25:1477–92.

 15. Sharma JD, Seunarine KK, Tahir MZ, Tisdall MM. Accuracy of 
robot-assisted versus optical frameless navigated stereoelectro-
encephalography electrode placement in children. J Neurosurg 
Pediatr. 2019;23:297–302.

 16. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimi-
zation for the robust and accurate linear registration and motion 
correction of brain images. Neuroimage. 2002;17:825–41.

 17. Smith SM, Jenkinson M, Woolrich MW, et al. Advances in func-
tional and structural MR image analysis and implementation as 
FSL. Neuroimage. 2004;23:S208–19.

 18. Kikinis R, Pieper SD, Vosburgh KG. 3D slicer: a platform for sub-
ject-specific image analysis, visualization, and clinical support. In: 
Jolesz FA, ed. Intraoperative Imaging and Image-Guided Therapy. 
New York, NY: Springer; 2014:277–89.

 19. Narizzano M, Arnulfo G, Ricci S, et al. SEEG assistant: a 3DSlicer 
extension to support epilepsy surgery. BMC Bioinformatics. 
2017;18:124.

 20. Perucca P, Dubeau F, Gotman J. Intracranial electroencephalo-
graphic seizure-onset patterns: effect of underlying pathology. 
Brain. 2014;137:183–96.

https://orcid.org/0000-0003-3439-5808
https://orcid.org/0000-0003-3439-5808
https://orcid.org/0000-0002-1790-3586
https://orcid.org/0000-0002-1790-3586
https://orcid.org/0000-0002-5724-1679
https://orcid.org/0000-0002-5724-1679
https://orcid.org/0000-0002-5724-1679


1416 |   WAGSTYL eT AL.

 21. Lagarde S, Buzori S, Trebuchon A, et al. The repertoire of seizure 
onset patterns in human focal epilepsies: determinants and prog-
nostic values. Epilepsia. 2019;60:85–95.

 22. David O, Blauwblomme T, Job A-S, et al. Imaging the sei-
zure onset zone with stereo-electroencephalography. Brain. 
2011;134:2898–911.

 23. Abraham A, Pedregosa F, Eickenberg M, et al. Machine learn-
ing for neuroimaging with scikit-learn. Front Neuroinform. 
2014;8:14.

 24. Allen M, Poggiali D, Whitaker K, Marshall TR, Kievit RA. 
Raincloud plots: a multi-platform tool for robust data visualization. 
Wellcome Open Res. 2019;4:63.

 25. Adler S, Blackwood M, Northam GB, et al. Multimodal computa-
tional neocortical anatomy in pediatric hippocampal sclerosis. Ann 
Clin Transl Neurol. 2018;5:1200–10.

 26. McGovern RA, Ruggieri P, Bulacio J, Najm I, Bingaman WE, 
Gonzalez-Martinez JA. Risk analysis of hemorrhage in stereo-elec-
troencephalography procedures. Epilepsia. 2019;60:571–80.

 27. Adler S, Hong S-J, Liu M, et al. Topographic principles of cortical 
fluid-attenuated inversion recovery signal in temporal lobe epi-
lepsy. Epilepsia. 2018;59:627–35.

 28. Galovic M, van Dooren VQH, Postma T, et al. Progressive cor-
tical thinning in patients with focal epilepsy. JAMA Neurol. 
2019;76(10):1230.

 29. Adler S, Whitaker K, Semmelroch M, et al. Multi-centre Epilepsy 
Lesion Detection (MELD) project: conducting clinical research in 
an open-science framework. f1000research. 2018.

 30. Rosen BE. Ensemble learning using decorrelated neural networks. 
Conn Sci. 1996;8:373–84.

 31. Cucurull G, Wagstyl K, Casanova A, et al.Convolutional neural 
networks for mesh-based parcellation of the cerebral cortex. 2018. 
[cited 2018 Jun 14]. Available from https://openr eview.net/pd-
f?id=rkKvB Aiiz

How to cite this article: Wagstyl K, Adler S, Pimpel B, 
et al. Planning stereoelectroencephalography using 
automated lesion detection: Retrospective feasibility 
study. Epilepsia. 2020;61:1406–1416. https://doi.
org/10.1111/epi.16574

https://openreview.net/pdf?id=rkKvBAiiz
https://openreview.net/pdf?id=rkKvBAiiz
https://doi.org/10.1111/epi.16574
https://doi.org/10.1111/epi.16574

