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Purpose: Manually identifying geographic atrophy (GA) presence and location on OCT volume scans can be
challenging and time consuming. This study developed a deep learning model simultaneously (1) to perform
automated detection of GA presence or absence from OCT volume scans and (2) to provide interpretability by
demonstrating which regions of which B-scans show GA.

Design: Med-XAI-Net, an interpretable deep learning model was developed to detect GA presence or
absence from OCT volume scans using only volume scan labels, as well as to interpret the most relevant B-scans
and B-scan regions.

Participants: One thousand two hundred eighty-four OCT volume scans (each containing 100 B-scans) from
311 participants, including 321 volumes with GA and 963 volumes without GA.

Methods: Med-XAI-Net simulates the human diagnostic process by using a region-attention module to
locate the most relevant region in each B-scan, followed by an image-attention module to select the most relevant
B-scans for classifying GA presence or absence in each OCT volume scan. Med-XAI-Net was trained and tested
(80% and 20% participants, respectively) using gold standard volume scan labels from human expert graders.

Main Outcome Measures: Accuracy, area under the receiver operating characteristic (ROC) curve, F1 score,
sensitivity, and specificity.

Results: In the detection of GA presence or absence, Med-XAI-Net obtained superior performance (91.5%,
93.5%, 82.3%, 82.8%, and 94.6% on accuracy, area under the ROC curve, F1 score, sensitivity, and specificity,
respectively) to that of 2 other state-of-the-art deep learning methods. The performance of ophthalmologists
grading only the 5 B-scans selected by Med-XAI-Net as most relevant (95.7%, 95.4%, 91.2%, and 100%,
respectively) was almost identical to that of ophthalmologists grading all volume scans (96.0%, 95.7%, 91.8%,
and 100%, respectively). Even grading only 1 region in 1 B-scan, the ophthalmologists demonstrated moderately
high performance (89.0%, 87.4%, 77.6%, and 100%, respectively).

Conclusions: Despite using ground truth labels during training at the volume scan level only, Med-XAI-Net was
effective in locating GA in B-scans and selecting relevant B-scans within each volume scan for GA diagnosis. These
results illustrate the strengths of Med-XAI-Net in interpreting which regions and B-scans contribute to GA detection
in the volume scan. Ophthalmology Science 2021;1:100038 Published by Elsevier on behalf of the American
AcademyofOphthalmology. This is anopenaccess article under theCCBY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).

Supplemental material available at www.ophthalmologyscience.org.
Age-relatedmacular degeneration (AMD) is a leading cause of
vision loss in industrialized countries.1 Late AMDhas 2 forms,
atrophic and neovascular; geographic atrophy (GA) is the
defining lesion of atrophic disease.2 Geographic atrophy is
thought to affect more than 5 million people worldwide.3 In
GA, confluent atrophy of the retinal pigment epithelium
(RPE) typically is accompanied by atrophy of adjacent
photoreceptors and choriocapillaris and is associated with
dense scotomata.4,5 For this reason, central GA usually is
accompanied by very poor visual acuity.6 Geographic
Published by Elsevier on behalf of the American Academy of Ophthalmology. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
atrophy represents an important research priority because no
treatments are available routinely in clinical practice to
prevent its occurrence or to restore lost vision, although
recent trials of local complement inhibition have shown
some success in slowing down its enlargement rate.7,8 In this
context, rapid and accurate identification of eyes with GA
could lead to improved clinical diagnosis and decision
making, enhanced recruitment of eligible patients for future
clinical trials, and eventually to early identification of
appropriate patients for proven treatments.
1https://doi.org/10.1016/j.xops.2021.100038
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A traditional clinical definition for GA (based on clinical
examination or color fundus photography) has been a sharply
demarcated, usually circular zone of partial or complete
depigmentation of the RPE, typically with exposure of un-
derlying large choroidal blood vessels, in the absence of
neovascular changes in the same eye.9 However, recent years
have seen the advent of spectral-domain (SD) OCT10 as an
essential imaging method in ophthalmology. Spectral-
domain OCT volume scans consist of a large number of
2-dimensional images (i.e., B-scans) captured in a raster
pattern to form a cube. As a 3-dimensional imaging method,
SD OCT has advantages over 2-dimensional methods such as
color fundus photography that include detailed characteriza-
tion of the multiple layers of the inner and outer retina at high
resolution.11,12 This allows atrophy to be studied in 3
dimensions and the involvement of specific retinal layers to
be assessed quantitatively. Indeed, an international group of
retinal experts has proposed SD OCT as the reference
standard to diagnose GA.13 The SD OCT term for GA is
complete RPE and outer retinal atrophy (cRORA).

However, diagnosing cRORA on OCT scans sometimes
can be challenging for ophthalmologists, particularly in cases
of early disease, because each of 4 anatomic criteria (i.e., a
region of hypertransmission of at least 250 mm in diameter in
any lateral dimension, a zone of attenuation or disruption of
the RPE of at least 250 mm in diameter, evidence of overlying
photoreceptor degeneration, and absence of scrolled RPE or
other signs of an RPE tear) must be met.13 In addition,
because each SD OCT volume scan consists of a large
number of B-scans (often 100 or more), the diagnostic
process can be time-consuming for ophthalmologists. In this
context, automated deep learning approaches to the detection
of AMD and GA could be highly useful.14e18 Several pre-
vious approaches to semiautomated or automated detection of
GA have been proposed.13 Specifically, several segmentation
algorithms19e21 have used a partial summed voxel projection
of the choroid, relying on the increased OCT signal intensity
observed beneath Bruch’s membrane in GA. With the
development of deep neural networks, which can extract
powerful feature representations automatically, various deep
modelsdincluding convolutional neural networks (CNN),22

sparse autoencoders,23,24 3-dimensional CNNs,25 and
adversarial networks26dhave been applied to segment and
classify GA. However, most of these models have required
ground truth bounding boxes and typically used small
datasets (e.g., fewer than 100 scans) for training and testing.
Indeed, manually annotating bounding boxes is impractical
for large datasets (e.g., more than 1000 volume scans, with
each containing 100 or more B-scans). Moreover, none of
those studies focused on model interpretability, a major
barrier to the widespread adoption of automated machine
learning systems in medical diagnosis and health care.
However, other approaches to annotation have been used in
some studies, with larger datasets in some cases. This
includes GA annotation at the B-scan level,27 which allows
for GA segmentation, and annotation at the pixel level for
features including those constituting cRORA.28 To reduce
annotation costs, deep multiple instance learning
frameworks29,30 first extract features from B-scans using
volume-level labels for OCT classification and then use
2

Gradient-weighted Class Activation Mapping (Grad-CAM)31

or Class Activation Mapping (CAM)32 to generate class
activation maps for identifying significant regions in the
B-scan. This process involves 2 separate stages, and it is
different from the human diagnostic process that locates the
most relevant regions in each B-scan, followed by selecting
the most relevant B-scans for classifying GA presence or
absence in each OCT volume scan. Recently, loss-based
attention mechanisms33,34 have been proposed to select
significant regions and to classify images simultaneously
and have demonstrated better model interpretability than
methods with 2 separate stages, but they originally were
designed for 2-dimensional natural images and cannot be
applied directly to OCT scans.

To detect GA directly on OCT scans and also to provide
interpretability for the decision making without any ground
truth bounding boxes, we aimed to develop a novel deep
learning algorithm to simulate the human diagnostic process
and to perform several tasks simultaneously on an SD OCT
volume scan: the localization of GA within each B-scan (if
GA was present in the volume scan), the selection of the
most representative B-scans in each volume scan, and the
diagnosis of GA (i.e., presence or absence in the volume
scan). Specifically, we aimed to train the deep learning
algorithm to do this using only the semantic labels: the
presence or absence of GA at the level of the entire OCT
volume scan. As such, we proposed a novel CNN, namely
Med-XAI-Net (explainable artificial intelligence for medical
images analysis) (Fig 1). Importantly, Med-XAI-Net was
designed to include 2 different loss-based attention modules,
called image attention and region attention. The purposes of
these 2 attention modules, respectively, were (1) to interpret
the contribution of each B-scan in determining GA presence
or absence in a volume scan and (2) to interpret the
contribution of each region for locating GA in a B-scan. The
specific aims of this study were (1) to assess the perfor-
mance of the proposed framework on GA detection at the
level of the entire OCT volume scan and (2) to validate the
interpretation capability of the proposed framework by
comparing its performance with that of ophthalmologists.
Methods

Image Datasets for Training and Testing

The dataset used for this study was from the Age-Related Eye
Disease Study 2 (AREDS2) Ancillary SD OCT Study. The
AREDS2 Ancillary SD OCT Study participants were a subset of
the AREDS2 participants. The study designs and protocols for both
studies were described previously.35,36 The AREDS2 was a
multicenter, phase 3, randomized controlled clinical trial
designed to assess the effects of nutritional supplements on the
course of AMD in people at moderate to high risk of progression
to late AMD. It enrolled participants between the ages of 50 and
85 years with bilateral large drusen or large drusen in 1 eye and
advanced AMD in the fellow eye. At baseline and annual study
visits, comprehensive eye examinations were performed by
certified study personnel using standardized protocols.

The AREDS2 Ancillary SD OCT Study enrolled AREDS2
participants from 4 study sites (Devers Eye Institute, Duke Eye
Center, Emory Eye Center, and the National Eye Institute). The
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study was approved by the institutional review boards of the 4
study sites and was registered at ClinicalTrails.gov (identifier,
NCT00734487). It adhered to the tenets of the Declaration of
Helsinki, and written informed consent was obtained from all
participants. The participants underwent imaging using the
Bioptigen Tabletop SD OCT system (Research Triangle Park, NC)
at each annual study visit, as described previously.35 For each eye,
6.7 � 6.7-mm SD OCT volume scans were captured (with 1000
A-scans per B-scan and 67-mm spacing between each B-scan). The
ground truth grading of the SD OCT scans for the presence or
absence of cRORA or GA was described previously.13,37 In brief,
the OCT scans were displayed with the Duke OCT Retinal
Analysis Program and were graded independently by 2 human
experts, with any disagreement adjudicated by another human
expert. These grades (for the presence or absence of cRORA or
GA at the level of each volume scan) provided the ground truth
labels used for training and testing purposes in this study.

The SD OCT dataset consisted of 1284 volume scans from 311
participants (because participants contributed volume scans from
multiple study visits over consecutive years, with a median number
of 4 volume scans per participant). This comprised 321 volume
scans with GA and 963 without GA. The dataset was split
randomly into 2 independent subsets, the training subset (80%) and
the testing subset (20%); this split was made at the participant
level, so that all volume scans of each participant were in the same
subset. Then, we randomly selected 10% participants of the
training subset as a validation set. This process was repeated 10
times.

Composition of Med-XAI-Net

Med-XAI-Net (Fig 1) was designed as a deep learning model with 3
major parts: (1) a backbone network consisting of multiple
convolutional layers to extract powerful feature representations
from each B-scan; (2) a region-attention layer, which is an atten-
tion module using the parameters of the fully connected layer to
select the region with GA in each B-scan; and (3) an image-attention
layer, which is an attention module with the fully connected layer to
select the B-scans that contributed most to the GA classification for
the volume scan. In addition, we proposed a novel loss function to
guarantee consistency between region or B-scan selection and
volume scan classification during model training. The details of the
backbone network, region-attention module, image-attention mod-
ule, and loss function are shown in Appendix 1 (Supplemental
information). Note that region-attention and image-attention use
the same parameters to calculate the weights of regions and B-scans
as used for classifying volume scans (i.e., loss-based attention).

We adopted a deep model, ResNet26 (which is derived from the
state-of-the-art CNN ResNet5038 and shown in Supplemental
Table 1), as the backbone network. ResNet26 comprises 25
convolutional layers and 1 fully connected layer, comprising a
total of more than 11 million parameters.

Before training, we scaled all images to a resolution of 224 �
224 pixels and augmented each image with random translations
({Dx, Dy} w [e16, 16]). We trained our model using the PyTorch
platform. During the training stage, we updated the model pa-
rameters using the Adam optimizer for every minibatch of 1 vol-
ume scan (i.e., 100 B-scans) because labels were available only at
the level of each volume scan. In total, we trained the model for
100 epochs using a learning rate of 10e4 for the first 50 epochs and
10e7 for the second 50 epochs. During the first 50 epochs, we used
only the region-attention module for model training, while
assigning each B-scan the same weight; during the second 50
epochs, we used both the region-attention and image-attention
modules to update the model parameters. All experiments were
conducted on a server with 48 Intel Xeon CPUs, using an NVIDIA
GeForce GTX 1080 Ti 32Gb GPU for training and testing, with
754 Gb available in RAM memory.

Performance Evaluation and Comparison

To evaluate the performance of Med-XAI-Net on classifying GA
presence or absence on SD OCT volume scans, we compared its
performance with that of 2 popular methods: (1) Baseline, which is
a baseline method that uses ResNet26 directly for volume scan
classification and assigns equal weight to the B-scans in each
volume scan and to the regions in each B-scan; (2) Inflated 3D
Convnet (I3D),39 which is a 3-dimensional CNN based on Incep-
tion40; and (3) AttentionNet, which adopts a state-of-the art
attention mechanism,41 namely, gated attention. Specifically, 2
gated-attention modules are embedded into ResNet26 for region
and image selection, respectively (i.e., using a similar structure to
that of Med-XAI-Net). Gated-attention uses different parameters to
calculate the weights of regions and B-scans from those used for
classification of volume scans. In this way, gated attention differs
from the loss-based attention described above for Med-XAI-Net.
For fairness, both Baseline and AttentionNet adopt the same
experimental setting as Med-XAI-Net. Overall accuracy, area
under receiver operating characteristic (ROC) curve, F1 score,
sensitivity, specificity, and precision-recall (PR) curves were used
to evaluate the performance of Med-XAI-Net and the 2 compara-
tive methods against the ground truth of human exert grading. All
trained models used the softmax function to generate binary pre-
dictions (where the class with the highest output was selected).

To assess the performance of Med-XAI-Net in providing
interpretability, that is, in selecting the relevant B-scans from a
volume scan and localizing GA within a B-scan, we first randomly
selected 100 different volume scans from the testing sets
comprising 50 negative and 50 positive cases (i.e., we randomly
selected 5 negative and 5 positive volume scans from each testing
set, ensuring that no duplicates were present). For each trained
model applied to each volume scan, the weights of each B-scan in a
volume scan and of each region in a B-scan were recorded. Next,
we selected the 5 B-scans with the highest weights in each volume
scan and the region (of size 64 � 64 pixels) with the highest weight
in each B-scan. Three ophthalmologists independently evaluated
these selected B-scans and regions without access to any additional
clinical information. Specifically, (1) to evaluate the performance
of Med-XAI-Net in B-scan selection, the ophthalmologists recor-
ded GA presence or absence in each volume scan based on the 5 B-
scans selected, that is, recorded as GA present in the volume scan if
at least 1 B-scan showed GA; and (2) to evaluate the performance
of Med-XAI-Net in GA localization, the ophthalmologists recorded
GA presence or absence in each B-scan based on the selected re-
gion, that is, more than half of the GA or cRORA should be in the
selected region. If at least 2 of the ophthalmologists recorded GA
as present in the volume scan, GA was recorded as present; if not,
GA was recorded as absent.
Results

Performance of Med-XAI-Net in Identifying the
Presence or Absence of Geographic Atrophy in
Spectral-Domain OCT Volume Scans

The mean performance metrics of the 4 models in correctly
classifying GA presence or absence from SD OCT volume
scans are shown in Table 1. Med-XAI-Net achieved the
highest overall accuracy (0.915), area under the ROC curve
(0.935), F1 score (0.823), and specificity (0.946) among the
3
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Figure 1. Overview of the proposed framework, Med-XAI-Net, for detecting geographic atrophy in a SD OCT cube scan by mining the relevant B-scans
and regions. [ai1 ai2 . . . aim e 1 aim] denotes the weights of region logits [pi1 pi2 . . . pim e 1 pim] in the ith image, and [a1 a2 . . . an e 1 an] represents the weights
of B-scan logits [p1 p2 . . . pn e 1 pn]. m and n are the number of regions in each B-scan and the number of B-scans in each cube, respectively.
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4 models. Its sensitivity (0.828) was intermediate between
that of AttentionNet (0.796) and Baseline (0.853). Baseline
obtained the highest sensitivity (0.853), but the lowest
specificity (0.729). Additionally, I3D achieved a much
better performance than Baseline, probably because
3-dimensional CNNs can capture more useful structural
information than 2-dimensional CNNs. Figures 2 and 3
show the ROC and PR curves of the 4 models on GA
classification at the level of volume scans, respectively.

Interpretability: the Performance of Med-XAI-Net
in Identifying the Representative B-Scans and
Localizing of Geographic Atrophy

Table 2 shows the performance metrics of the
ophthalmologists in correctly classifying GA presence or
absence at the level of the volume scan, based on either all
B-scans, only the 5 B-scans selected by Med-XAI-Net, or
only 1 region of 1 B-scan (both selected by Med-XAI-Net)
using the testing set of 50 positive and 50 negative volume
scans. Alongside these are shown the performance metrics of
Med-XAI-Net on the same testing set based on all B-scans.

As shown in Table 2, the performance of the
ophthalmologists was essentially identical when using
either all B-scans or only the 5 B-scans selected by Med-
XAI-Net as most representative. In the former case, the
performance metrics were 96.0%, 95.7%, 91.8%, and
100.0% for accuracy, F1 score, sensitivity, and specificity,
respectively. In the latter case, the metrics were 95.7%,
95.4%, 91.2%, and 100.0%, respectively. The performance of
the ophthalmologists was lower (driven by lower sensitivity)
when using only the 1 region of 1 B-scan selected by
Table 1. Performance of Med-XAI-Net and 3 Comparative Meth

Method

Accuracy
(95% Confidence

Interval)

Area under the Receiver
Operating Characteristic Curve
(95% Confidence Interval)

Baseline 0.764 (0.727e0.802) 0.770 (0.732e0.808)
I3D 0.895 (0.875e0.919) 0.932 (0.915e0.949)
AttentionNet 0.858 (0.831e0.885) 0.876 (0.848e0.934)
Med-XAI-Net 0.915 (0.905e0.928) 0.935 (0.917e0.953)

I3D ¼ Inflated 3D Convnet.

4

Med-XAI-Net compared with using all B-scans or the 5 B-
scans. In this case, the metrics were 89.0%, 87.4%, 77.6%,
and 100.0%, respectively. The performance metrics of Med-
XAI-Net on its own were 91.0%, 90.5%, 86.0%, and 96.0%,
respectively. Figure 4 presents 3 representative examples of
volume scans with GA present; in each case, the 5 B-scans
selected by Med-XAI-Net from the volume scan are
shown, as well as the region with GA selected by Med-XAI-
Net from the B-scan.
Which Attention Module Is More Important?

Table 3 shows the performance of Med-XAI-Net in correctly
classifying GA presence or absence according to 3 different
versions of Med-XAI-Net: (1) region attention, that is, using
only the region-attention layer; (2) image attention, that is,
using only the image-attention layer; and (3) dual attention,
that is, using both layers. Med-XAI-Net with region attention
generally obtained almost the same performance metrics as
Med-XAI-Net using dual attention. For all performance
metrics, the absolute difference was less than 1%. Given the
size of the test set and the overlapping 95% confidence in-
tervals, these very small numerical differences do not seem
meaningful. This strongly suggests that the region-attention
module is a key contributor for correctly classifying the
volume scans for GA presence or absence. However, because
performance was not meaningfully lower with dual attention
than with region attention, there seems to be no substantial
tradeoff between performance and interpretability. Hence,
with dual attention, interpretability is gained without mean-
ingful loss of performance.
ods on the Full Testing Sets of Spectral Domain OCT Scans

F1 Score
(95% Confidence

Interval)

Sensitivity
(95% Confidence

Interval)

Specificity
(95% Confidence

Interval)

0.705 (0.673e0.737) 0.853 (0.827e0.879) 0.729 (0.684e0.774)
0.797 (0.759e0.835) 0.855 (0.815e0.897) 0.912 (0.885e0.937)
0.752 (0.726e0.778) 0.796 (0.771e0.813) 0.880 (0.849e0.911)
0.823 (0.799e0.846) 0.828 (0.784e0.872) 0.946 (0.933e0.959)



Figure 2. Receiver operator characteristic curves of 4 deep models on the
full testing sets of spectral-domain OCT volume scans. AUC ¼ area under
the receiver operating characteristic curve; I3D ¼ Inflated 3D Convnet.

Table 2. Performance of Ophthalmologists on a Subset of the Full
Testing Sets of Spectral Domain OCT Scans

Method Data Accuracy F1 Score Sensitivity Specificity

Ophthalmologists Volume 0.960 0.957 0.918 1.00
B-scans 0.957 0.954 0.912 1.00
Region 0.890 0.874 0.776 1.00

Med-XAI-Net 0.910 0.905 0.860 0.960

The table shows the full volume scan (first row), 5 B-scans selected by Med-
XAI-Net from the volume scan (second row), 1 region of 1 B-scan selected
by Med-XAI-Net from the volume scan (third row), and performance of
Med-XAI-Net on the full volume scan (fourth row). In total, 100 volume
scans are from the testing sets, comprising 50 negative and 50 positive
cases.
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Discussion

Table 1 demonstrates that the proposed framework, Med-
XAI-Net, achieved superior performance to that of
ResNet26 and AttentionNet. This is because Med-XAI-Net
effectively can select relevant B-scans in each volume scan
and relevant regions in each B-scan (as shown in Table 2),
but Baseline and AttentionNet easily generate classification
bias, for example, Baseline often misclassifies OCT scans
without GA as having GA present (i.e., high false-positive
rate), whereas AttentionNet sometimes misclassifies OCT
scans with GA as not having GA (i.e., false-negative re-
sults). Additionally, I3D can obtain almost the same area
under the ROC curve and superior sensitivity to Med-XAI-
Net, and it has slightly worse performance on accuracy, F1
score, specificity, and area under the PR curve. Regarding
the relative performance of Med-XAI-Net and I3D, although
Figure 3. Precision-recall curves of 4 deep models on the full testing sets of
spectral-domain OCT volume scans. I3D ¼ Inflated 3D Convnet;
PR-AUC ¼ area under the precision-recall curve.
most of the performance metrics of I3D were numerically
inferior, no statistically significant difference was found in
the area under the ROC curve and area under the PR curve
metrics of the 2 algorithms. In terms of interpretability, the
proposed method is still more beneficial. Inflated 3D
Convnet could be combined with Grad-CAM to provide
interpretable predictions; however, in contrast to our pro-
posed method, this would involve 2 separate stages: (1)
training a model to extract features from volume scans for
OCT classification and (2) using GradCAM to generate
class activation maps to identify significant regions in the B-
scan. Hence, it could not simulate the human diagnostic
process (i.e., locating the most relevant region in each B-
scan, followed by selecting the most relevant B-scans for
classifying GA presence or absence in each OCT volume
scan), thereby potentially decreasing model interpretability
on decision making. Table 3 implies that region attention
was a key contributor for Med-XAI-Net to classify OCT
volume scans correctly. This means that locating GA was
more relevant for GA diagnosis than B-scan selection and
that image attention for B-scan selection is used primarily to
reduce the workload of ophthalmologists with interpreting
the significance of B-scans.

Several previous attention-based deep multiple instance
learning methods,41,42 which embed attention mechanisms
using auxiliary layers into neural networks, also can be
used for B-scan and region selection. However, their
interpretation capability usually is inferior to that of loss-
based attention mechanisms33,34 because they use different
parameters to calculate the weights of regions or B-scans
from those used to classify the volume scans, potentially
leading to inconsistency between B-scan or region selection
and volume scan classification, that is, the selected region
or B-scan does not contain GA for the volume scan with
GA. Med-XAI-Net develops the loss-based attention mech-
anism33,34 to maintain consistency between selection and
classification. Importantly, unlike the previous loss-based
attention mechanism that only contained one attention mod-
ule for region selection, the proposed Med-XAI-Net used 2
different attention modules simultaneously for region and
B-scan selection. Moreover, we proposed a new and different
loss function (equation (3) in Appendix 1) in this work to
connect the region or B-scan selection with the volume scan
classification to maximize this consistency.
5



Figure 4. The selected images and located geographic atrophy (GA) by Med-XAI-Net. Each row represents 1 volume scan with 5 selected images, in which
1 box with a size of 64 � 64 is to locate GA.
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The proposed method has potential clinical applicability
in assisting physicians and other health care professionals
with the detection of GA from OCT scans. For retinal
specialists and general ophthalmologists in routine clinical
practice, this may lead to increased accuracy and earlier
diagnosis of GA (because detecting cRORA is sometimes
challenging, particularly in early cases), as well as increased
speed of workflow (because scrolling through many B-scans
is time-consuming). In addition, the method’s ability to
localize GA to the most relevant B-scans (and affected re-
gions) has several advantages: in addition to saving time, it
assists the physician with disease characterization (e.g.,
assessing central involvement) and interpretability (to
ensure the physician agrees with the diagnosis). For other
health care professionals such as optometrists, detecting GA
would prompt referral to retinal specialists; this will become
Table 3. Ablation Study of Med-XAI-Net o

Method

Accuracy
(95% Confidence

Interval)

Area under the Receiver
Operating Characteristic Curve
(95% Confidence Interval)

Region attention 0.920 (0.904e0.937) 0.942 (0.925e0.958)
Image attention 0.732 (0.621e0.842) 0.791 (0.700e0.890)
Dual attention* 0.915 (0.905e0.928) 0.935 (0.917e0.953)

*Denotes Med-XAI-Net using both region-attention and image-attention layer

6

increasingly important as therapies to slow GA enlargement
become approved and widely available. In addition, outside
routine clinical practice, the proposed method could be
applied at scale to large datasets of OCT scans. This could
be used, for example, to estimate the prevalence and inci-
dence of GA in population-based or other epidemiologic
studies or to identify individuals from datasets in a clinical
setting who are eligible for a particular clinical trial or a
licensed therapy.

This potential clinical applicability may differ partially
from that of methods described in some recent studies. For
example, the studies described above, based on GA annota-
tions at the B-scan level27 or AMD-related features at the pixel
level,28 may have overlapping but partially distinct potential
clinical applicability. In particular, these methods allow for
GA segmentation or quantification, which is advantageous in
n Spectral Domain OCT Volume Scans

F1 Score
(95% Confidence

Interval)

Sensitivity
(95% Confidence

Interval)

Specificity
(95% Confidence

Interval)

0.829 (0.800e0.858) 0.820 (0.783e0.857) 0.953 (0.942e0.964)
0.584 (0.439e0.730) 0.704 (0.602e0.805) 0.734 (0.616e0.860)
0.823 (0.799e0.846) 0.828 (0.784e0.872) 0.946 (0.933e0.959)

s.
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some clinical or research scenarios. For example, they may
allow estimation of GA enlargement over time (an important
end point in clinical trials), and so may be particularly useful
in the reading center and academic settings. Overall, we
consider that these 2 sets of methods may be complementary
in their applicability.

Limitations and Future Work

One potential limitation of Med-XAI-Net arises from the
imbalance of the volume scans in the dataset, where volume
scans without GA outnumber those with GA. This may have
contributed to the relatively lower sensitivity (Table 1). This
limitation might be addressed by using 2 different
augmentation methods (e.g., the translation method used
in this study, together with another method, such as
AutoAugment43 with rotation and shearing) to augment
volume scans and increase the number of volume scans
with GA or by generating soft labels for volume scans
with GA so as to leverage their diagnosis information.

The second limitation of Med-XAI-Net is relatively
worse performance on GA localization (demonstrated by the
lower performance of ophthalmologists on classifying GA
presence or absence from 1 region selected by the model).
One contributing factor may be that, in these relatively large
B-scan images, areas without GA are likely to outnumber
substantially those with GA, which makes this task rela-
tively difficult. Additionally, areas without GA may be
learned easily and unconsciously as noisy features, which
could lower the GA classification performance. One
possible solution is to use preprocessing image techniques
to enhance the most relevant regions for GA detection or
denoising methods to alleviate the effects of irrelevant re-
gions before feeding images to the network.

Finally, Med-XAI-Net is validated only for GA diag-
nosis using SD OCT volume scans in this work because of
the limitation of available data sources. It would be inter-
esting in future studies to apply Med-XAI-Net to different
diseases and various imaging methods to investigate its
potential generalization capability further. We also
recommend that other groups evaluate Med-XAI-Net for
GA diagnosis from SD OCT volume scans from multiple
diverse sources.

An important aspect in the future will be optimization of
the operating point, based on the ROC curve, to maximize
clinical applicability for particular task and setting. Addi-
tionally, in the future, it would be promising to extend Med-
XAI-Net to 3-dimensional CNNs to explore the possibility
of obtaining better classification and interpretability per-
formance. Also, we aim to improve the model performance
further by incorporating multiple other techniques, such as
augmentation, soft labels, and preprocessing image tech-
niques. Moreover, we plan to apply Med-XAI-Net to AMD
diagnosis based on multimodal imaging, that is, by using
SD OCT scans and color fundus photographs in
combination.
Footnotes and Disclosures
Originally received: March 12, 2021.
Final revision: July 2, 2021.
Accepted: July 2, 2021.
Available online: July 13, 2021. Manuscript no. D-21-00041.
1 National Center for Biotechnology Information, National Library of
Medicine, National Institutes of Health, Bethesda, Maryland.
2 Division of Epidemiology and Clinical Applications, National Eye Insti-
tute, National Institutes of Health, Bethesda, Maryland.

*Both authors contributed equally as first authors.

Disclosure(s):
All authors have completed and submitted the ICMJE disclosures form.

The author(s) have made the following disclosure(s): T.D.L.K.: Patent e
Coinventor on a patent application “Methods and Systems for Predicting
Rates of Progression of Age-Related Macular Degeneration”

This work was supported by the Intramural Research Program of the Na-
tional Library of Medicine and the National Eye Institute, National In-
stitutes of Health, Bethesda, Maryland.

Emily Chew and Catherine Cukras, members of the editorial board of this
journal, were recused from the peer-review process of this article and had
no access to information regarding its peer-review.

HUMAN SUBJECTS: Human subjects were included in this study. The
human ethics committees at Devers Eye Institute, Duke Eye Center, Emory
Eye Center, and the National Eye Institute approved the study. All research
adhered to the tenets of the Declaration of Helsinki. All participants pro-
vided informed consent.

No animal subjects were included in this study.

Author Contributions:

Conception and design: Chew, Lu
Analysis and interpretation: Shi, Keenan, Chen, Thavikulwat, Broadhead,
Bhandari, Cukras

Data collection: Shi, Keenan, De Silva, Chew

Obtained funding: N/A; Study was performed as part of regular employ-
ment duties at National Center for Biotechnology Information, National
Library of Medicine, National Instistutes of Health, and Division of
Epidemiology and Clinical Applications, National Eye Institute, National
Institutes of Health. No additional funding was provided.

Overall responsibility: Shi, Keenan, Lu

Abbreviations and Acronyms:
AMD ¼ age-related macular degeneration; AREDS2 ¼ Age-Related Eye
Disease Study 2; AUC ¼ area under curve; CAM ¼ class activation
mapping; CFP ¼ color fundus photograph; CNN ¼ convolutional neural
network; cRORA ¼ complete retinal pigment epithelium and outer retinal
atrophy; GA ¼ geographic atrophy; Grad-CAM ¼ gradient-weighted class
activation mapping; I3D ¼ Inflated 3D Convnet; PR ¼ precision-recall;
PR-AUC ¼ area under PR curve; ROC ¼ receiver operating characteristic;
RPE ¼ retinal pigment epithelium; SD ¼ spectral-domain;
XAI ¼ explainable artificial intelligence.

Keywords:
Deep learning, GA detection, Interpretable, OCT.

Correspondence:
Emily Y. Chew, MD, National Eye Institute, National Institutes of Health,
9000 Rockville Pike, Bethesda, MD 20892. E-mail: echew@nei.nih.gov;
and Zhiyong Lu, PhD, National Center for Biotechnology Information,
National Library of Medicine, National Institutes of Health, 8600 Rockville
Pike, Bethesda, MD 20894. E-mail: zhiyong.lu@nih.gov.
7

mailto:echew@nei.nih.gov
mailto:zhiyong.lu@nih.gov


Ophthalmology Science Volume 1, Number 3, September 2021
References
1. Steinmetz JD, Bourne RR, Briant PS, et al. Causes of
blindness and vision impairment in 2020 and trends over 30
years, and prevalence of avoidable blindness in relation to
VISION 2020: the Right to Sight: an analysis for the Global
Burden of Disease Study. Lancet Glob Health. 2021;9(2):
e144ee160.

2. Blair CJ. Geographic atrophy of the retinal pigment epithe-
lium: a manifestation of senile macular degeneration. Arch
Ophthalmol. 1975;93:19e25.

3. Wong WL, Su X, Li X, et al. Global prevalence of age-related
macular degeneration and disease burden projection for 2020
and 2040: a systematic review and meta-analysis. Lancet Glob
Health. 2014;2(2):106e116.

4. Bhutto I, Gerard L. Understanding age-related macular
degeneration (AMD): relationships between the photoreceptor/
retinal pigment epithelium/Bruch’s membrane/choriocapillaris
complex. Mol Aspects Med. 2012;33:295e317.

5. Guymer RH, Rosenfeld PJ, Curcio CA, et al. Incomplete
retinal pigment epithelial and outer retinal atrophy in age-
related macular degeneration: classification of atrophy
meeting report 4. Ophthalmology. 2020;127:394e409.

6. Shen LL, Sun M, Ahluwalia A, et al. Relationship of topo-
graphic distribution of geographic atrophy to visual acuity in
nonexudative age-related macular degeneration. Ophthalmol
Retina. 2020 Nov 17;S2468-6530(20):30446e2. https://doi.
org/10.1016/j.oret.2020.11.003. Online ahead of print.

7. Ammar MJ, Hsu J, Chiang A, et al. Age-related macular
degeneration therapy: a review. Curr Opin Ophthalmol.
2020;31(3):215e221.

8. Shen LL, Sun M, Ahluwalia A, et al. Natural history of central
sparing in geographic atrophy secondary to non-exudative age-
related macular degeneration. Br J Ophthalmol; 2020 Dec 23;
bjophthalmol-2020-317636. https://doi.org/10.1136/bjoph-
thalmol-2020-317636. Online ahead of print.

9. Age-Related Eye Disease Study Research Group. The Age-
Related Eye Disease Study system for classifying age-related
macular degeneration from stereoscopic color fundus photo-
graphs: the Age-Related Eye Disease Study report number 6.
Am J Ophthalmol. 2001;132(5):668e681.

10. De Boer JF, Cense B, Park BH, et al. Improved signal-to-
noise ratio in spectral-domain compared with time-domain
optical coherence tomography. Opt Lett. 2003;28:
2067e2069.

11. Sadda SR, Guymer R, Holz FG, et al. Consensus definition for
atrophy associated with age-related macular degeneration on
OCT: classification of atrophy report 3. Ophthalmology.
2018;125(4):537e548.

12. Spaide RF, Jaffe GJ, Sarraf D, et al. Consensus nomenclature
for reporting neovascular age-related macular degeneration
data: consensus on neovascular age-related macular degener-
ation nomenclature study group. Ophthalmology. 2020;127(5):
616e636.

13. Arslan J, Samarasinghe S, Benke KK, et al. Artificial intelli-
gence algorithms for analysis of geographic atrophy: a review
and evaluation. Transl Vis Sci Technol. 2020;9(2):57.

14. Keenan TD, Dharssi S, Peng Y, et al. A deep learning
approach for automated detection of geographic atrophy from
color fundus photographs. Ophthalmology. 2019;126(11):
1533e1540.
8

15. Peng Y, Dharssi S, Chen Q, et al. DeepSeeNet: a deep learning
model for automated classification of patient-based age-related
macular degeneration severity from color fundus photographs.
Ophthalmology. 2019;126(4):565e575.

16. Chen Q, Peng Y, Keenan TD, et al. A multi-task deep learning
model for the classification of age-related macular degenera-
tion. AMIA Jt Summits Trans Sci Proc. 2019;(2019):505e514.

17. Chen Q, Keenan TD, Allot A, et al. Multi-modal, multi-task,
multi-attention (M3) deep learning detection of reticular
pseudodrusen: 1 towards automated and accessible classifica-
tion of age-related macular degeneration. J Am Med Inform
Assoc. 2021;28(6):1135e1148.

18. Keenan TD, Chen Q, Peng Y, et al. Deep learning automated
detection of reticular pseudodrusen from fundus auto-
fluorescence images or color fundus photographs in AREDS2.
Ophthalmology. 2020;127(12):1674e1687.

19. Chen Q, de Sisternes L, Leng T, et al. Semi-automatic
geographic atrophy segmentation for SD-OCT images. Biomed
Opt Exp. 2013;4:2729e2750.

20. Hu Z, Medioni GG, Hernandez M, et al. Segmentation of the
geographic atrophy in spectral-domain optical coherence to-
mography and fundus autofluorescence images. Invest Oph-
thalmol Vis Sci. 2013;54:8375e8383.

21. Niu S, de Sisternes L, Cheng Q, et al. Automated geographic
atrophy segmentation for SD-OCT images using region-based
CV model via local similarity factor. Biomed Opt Exp. 2016;7:
581e600.

22. Fang L, Cunefare D, Wang C, et al. Automatic segmentation
of nine retinal layer boundaries in OCT images of non-
exudative AMD patients using deep learning and graph
search. Biomed Opt Exp. 2017;8(5):2732e2744.

23. Ji Z, Chen Q, Niu S, et al. Beyond retinal layers: a deep voting
model for automated geographic atrophy segmentation in SD-
OCT images. Transl Vis Sci Technol. 2018;7:1.

24. Xu R, Niu S, Chen Q, et al. Automated geographic atrophy
segmentation for SD-OCT images based on two-stage learning
model. Comput Biol Med. 2019;105:102e111.

25. Xu R, Niu S, Gao K, Chen Y. Multi-path 3D convolution neural
network for automated geographic atrophy segmentation in SD-
OCT images. In: International Conference on Intelligent
Computing. Cham: Springer; 2018:493e503.

26. Wu M, Cai X, Chen Q, et al. Geographic atrophy segmentation
in SD-OCT images using synthesized fundus autofluorescence
imaging. Comput Methods Programs Biomed. 2019;182,
105e101.

27. Liefers B, Colijn JM, Gonzalez-Gonzalo C, et al. A deep learning
model for segmentation of geographic atrophy to study its long-
term natural history. Ophthalmology. 2020;127(8):1086e1096.

28. Liefers B, González-Gonzalo C, Klaver C, et al. Dense seg-
mentation in selected dimensions: application to retinal optical
coherence tomography. International Conference on Medical
Imaging with Deep Learning. PMLR. 2019:337e346.

29. Das V, Prabhakararao E, Dandapat S, Bora PK. B-Scan
attentive CNN for the classification of retinal optical coherence
tomography volumes. IEEE Signal Process Lett. 2020;27:
1025e1029.

30. Wang X, Tang F, Chen H, et al. UD-MIL: uncertainty-driven
deep multiple instance learning for OCT image classification.
IEEE J Biomed Health Inform. 2020;24(12):3431e3442.

http://refhub.elsevier.com/S2666-9145(21)00036-1/sref1
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref1
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref1
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref1
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref1
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref1
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref1
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref2
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref2
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref2
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref2
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref3
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref3
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref3
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref3
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref3
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref4
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref4
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref4
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref4
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref4
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref5
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref5
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref5
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref5
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref5
https://doi.org/10.1016/j.oret.2020.11.003
https://doi.org/10.1016/j.oret.2020.11.003
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref7
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref7
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref7
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref7
https://doi.org/10.1136/bjophthalmol-2020-317636
https://doi.org/10.1136/bjophthalmol-2020-317636
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref9
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref9
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref9
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref9
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref9
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref9
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref10
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref10
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref10
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref10
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref10
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref11
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref11
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref11
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref11
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref11
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref12
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref12
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref12
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref12
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref12
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref12
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref13
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref13
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref13
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref14
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref14
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref14
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref14
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref14
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref15
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref15
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref15
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref15
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref15
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref16
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref16
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref16
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref16
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref17
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref17
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref17
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref17
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref17
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref17
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref18
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref18
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref18
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref18
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref18
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref19
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref19
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref19
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref19
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref20
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref20
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref20
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref20
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref20
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref21
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref21
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref21
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref21
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref21
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref22
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref22
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref22
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref22
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref22
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref23
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref23
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref23
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref24
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref24
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref24
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref24
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref25
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref25
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref25
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref25
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref25
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref26
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref26
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref26
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref26
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref26
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref27
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref27
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref27
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref27
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref28
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref28
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref28
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref28
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref28
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref29
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref29
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref29
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref29
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref29
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref30
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref30
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref30
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref30


Shi et al � Deep Learning Detection of Geographic Atrophy
31. Selvaraju RR, Cogswell M, Das A, Vedantam R, et al. Grad-
cam: visual explanations from deep networks via gradient-based
localization. IEEE International Conference on Computer
Vision. 2017:618e626.

32. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A.
Learning deep features for discriminative localization. IEEE
Conference on Computer Vision and Pattern Recognition.
2016:2921e2929.

33. Shi X, Xing F, Xie Y, et al. Loss-based attention for deep
multiple instance learning. AAAI Conference on Artificial In-
telligence. 2020;34(04):5742e5749.

34. Shi X, Xing F, Xu K, et al. Loss-based attention for inter-
preting image-level prediction of convolutional neural net-
works. IEEE Trans Image Process. 2021;30:1662e1674.

35. Leuschen JN, Schuman SG, Winter KP, et al. Spectral-domain
optical coherence tomography characteristics of intermediate age-
related macular degeneration. Ophthalmology. 2013;120(3):
140e150.

36. AREDS2 Research Group, Chew EY, Clemons T,
SanGiovanni JP, et al. The age-related eye disease study 2
(AREDS2): study design and baseline characteristics (AREDS2
report number 1). Ophthalmology. 2012;119(11):2282e2289.
37. Christenbury JG, Folgar FA, O’Connell RV, et al. Progression
of intermediate age-related macular degeneration with prolif-
eration and inner retinal migration of hyperreflective foci.
Ophthalmology. 2013;120(5):1038e1045.

38. Carreira J, Zisserman A. Quo vadis, action recognition? a new
model and the kinetics dataset. IEEE Conference on Computer
Vision and Pattern Recognition. 2017:6299e6308.

39. Ioffe S, Szegedy C. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. Interna-
tional Conference on Machine Learning. 2015:448e456.

40. He K, Zhang X, Ren S, Sun J. Deep residual learning for
image recognition. IEEE Conference on Computer Vision and
Pattern Recognition. 2016:770e778.

41. Ilse M, Tomczak J, Welling M. Attention-based deep multiple
instance learning. International Conference on Machine
Learning. 2018:2127e2136.

42. Pappas N, Andrei P. Explicit document modeling through
weighted multiple-instance learning. Journal of Artificial In-
telligence Research. 2017;58:591e626.

43. Cubuk ED, Zoph B, Mane D, et al. Autoaugment: learning
augmentation strategies from data. IEEE Conference on Com-
puter Vision and Pattern Recognition. 2019:113e123.
9

http://refhub.elsevier.com/S2666-9145(21)00036-1/sref31
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref31
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref31
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref31
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref31
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref43
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref43
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref43
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref43
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref43
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref32
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref32
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref32
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref32
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref33
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref33
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref33
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref33
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref34
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref34
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref34
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref34
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref34
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref35
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref35
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref35
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref35
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref35
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref36
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref36
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref36
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref36
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref36
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref37
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref37
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref37
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref37
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref38
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref38
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref38
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref38
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref39
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref39
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref39
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref39
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref40
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref40
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref40
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref40
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref41
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref41
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref41
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref41
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref42
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref42
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref42
http://refhub.elsevier.com/S2666-9145(21)00036-1/sref42

	Improving Interpretability in Machine Diagnosis
	Methods
	Image Datasets for Training and Testing
	Composition of Med-XAI-Net
	Performance Evaluation and Comparison

	Results
	Performance of Med-XAI-Net in Identifying the Presence or Absence of Geographic Atrophy in Spectral-Domain OCT Volume Scans
	Interpretability: the Performance of Med-XAI-Net in Identifying the Representative B-Scans and Localizing of Geographic Atrophy
	Which Attention Module Is More Important?

	Discussion
	Limitations and Future Work

	References


