
biology

Editorial

Computational Biology: A New Frontier in Applied Biology

Milan Toma 1,* and Riccardo Concu 2,*

����������
�������

Citation: Toma, M.; Concu, R.

Computational Biology: A New

Frontier in Applied Biology. Biology

2021, 10, 374. https://doi.org/

10.3390/biology10050374

Received: 21 April 2021

Accepted: 25 April 2021

Published: 27 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Serota Academic Center (Room 138), New York Institute of Technology, Department of Osteopathic
Manipulative Medicine, College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000,
Old Westbury, NY 11568, USA

2 Faculty of Science, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
* Correspondence: tomamil@tomamil.eu (M.T.); riccardo.concu@fc.up.pt (R.C.)

All living things are related to one another. Hence, the science of biology is compre-
hensive in scope. Biology, i.e., studying the structure, function, growth, origin, evolution,
and distribution of living organisms is a vast and eclectic field. The science of biology is
divided into different branches. Some divisions define up to 25 different branches, e.g., cell
biology, genetics, immunology, molecular biology, biotechnology, biophysics, biomathe-
matics, anatomy, etc. Needless to say, computational biology is not one of the branches.
While computational biology largely relies on biomathematics, mathematics alone can be
divided into pure versus applied. Hence, we refuse to link computational biology with the
biomathematics branch of biology directly. Any of the 25 different branches can be studied
both experimentally and computationally. Computational algorithms and models serve to
extend our understanding of how organisms work from subcellular to whole organism
level (Figure 1).

From a single organelle to the entire biosphere, living organisms are parts of a highly
structured hierarchy. Some cells contain aggregates of macromolecules surrounded by
membranes, called organelles (articles [1–4] in this special issue fall under this category).
All living things are made of cells [5–8]. In larger organisms, cells combine to make tis-
sues [9]. Organs are collections of tissues grouped together, performing a standard func-
tion [10–13]. Organisms are individual living entities. All the individuals of a species living
within a specific area are collectively called a population [14]. An ecosystem consists of all
the living things together with the non-living parts of that environment. The biosphere is
the collection of all ecosystems. Furthermore, again, every entity in this hierarchy can be
studied using computational algorithms and models. This special issue contains articles
contributing to almost every entity (see individual references in Figure 1). The 14 articles,
totaling 314 pages, in this issue, have been co-authored by 74 researchers from 12 countries.

Not long ago, biologists did not have access to vast amounts of data. Recent advance-
ments in technology are enabling us to generate and store an incredible amount of data.
However, our ability to decipher data is slower than our ability to generate them. Thus,
an increasing amount of unknown data is stacking up in databases such as the protein
data bank. Due to this, by framing biomedical problems as computational problems, using
tools adapted from computer science, mathematics, statistics, physics, chemistry, and other
quantitative disciplines, scientists use those data to develop analytical methods, algorithms,
and models for interpreting biological information. However, achieving comprehensive
predictive models of biological systems requires these models to be understandable and
reproducible. Unfortunately, a few existing models are reproducible, as we lack the data
sources utilized and assumptions/equations used to build the models. To address these
issues, the Center for Reproducible Biomedical Modeling aims to “accelerate the develop-
ment of comprehensive predictive models by enhancing the understandability, reusability,
and reproducibility of biomedical modeling”.
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Figure 1. From a single organelle to the entire biosphere, living organisms are parts of a highly
structured hierarchy.

To standardize computational techniques used to assess the safety of medical devices,
a worldwide benchmark study, namely the FDA’s “Critical Path” project, has been or-
ganized. The benchmark flow model used for that study consisted of a nozzle with a
concentrator and sudden expansion, see the schematic in Figure 2. Over 40 groups (self-
ascribed as beginner, intermediate, or expert) delivered their results. The graph in Figure 2
shows the best and worst fitting results from each group compared to experimental results
from three labs. The results of the FDA study show that the computational results need
to be validated even when produced by experts. It can be seen, in Figure 2, that even the
worst ‘beginner’ is better than the worst ‘expert’. A rigorous approach to the development
of complex modeling software packages is necessary. The modeling and analysis software
packages must be reliable.

Figure 2. Results from the FDA’s “Critical Path” project to validate computational methods. The best
and worst fitting results are shown from each (self-ascribed) category.
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A review of computational biology has to include the pioneer of the field, Alan Turing
(23 June 1912–7 June 1954). He is celebrated as the godfather of modern computing.
However, what remains a little known fact about his work is his contribution to the field of
biology. Turing studied morphogenesis—the biological process by which organisms take
their shape. He developed one of the first mathematical models of how biological shapes
emerge. Turing published only one paper on morphogenesis 2 years before his death, and
more of his work on the subject was published posthumously in the third volume of his
collected works. Turing defined some of the mathematical rules that govern biology, and
with that, he assumed that there were similarities between how machines and biological
organisms compute. There is much more work to be done in exploring such questions.
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