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Abstract

Background: Increased serum cystatin C (CysC) can predict the onset of type 2 diabetes 
(T2D). Meanwhile, impaired pancreatic α- and β-cell functions get involved in the 
pathophysiological processes of T2D. So this study was to explore the relationships 
between serum CysC levels and pancreatic α- and β-cell functions in T2D.
Methods: In this cross-sectional observational study, a total of 2634 patients with T2D 
were consecutively recruited. Each recruited patient received a serum CysC test and 
oral glucose tolerance test for synchronous detection of serum C-peptide and plasma 
glucagon. As components of pancreatic β-cell function, insulin secretion and sensitivity 
indices were evaluated by C-peptide area under the curve (AUC-CP) and C-peptide-
substituted Matsuda’s index (Matsuda-CP), respectively. Fasting glucagon (F-GLA) and 
post-challenge glucagon calculated by glucagon area under the curve (AUC-GLA) were 
used to assess pancreatic α-cell function. These skewed indices and were further natural 
log-transformed (ln).
Results: With quartiles of serum CysC levels ascending, AUC-CP, F-GLA and AUC-GLA were 
increased, while Matsuda-CP was decreased (P for trend <0.001). Moreover, serum CysC 
levels were positively related to lnAUC-CP, lnF-GLA and lnAUC-GLA (r = 0.241, 0.131 and 
0.208, respectively, P < 0.001), and inversely related to lnMatsuda-CP (r = –0.195,  
P  < 0.001). Furthermore, after controlling for other relevant variables via multivariable 
linear regression analysis, serum CysC levels were identified to account for lnAUC-CP  
(β = 0.178, t = 10.518, P  < 0.001), lnMatsuda-CP (β = –0.137, t = –7.118, P  < 0.001), lnF-GLA 
(β = 0.049, t = 2.263, P = 0.024) and lnAUC-GLA (β = 0.121, t = 5.730, P  < 0.001).
Conclusions: Increased serum CysC levels may be partly responsible for increased insulin 
secretion from β-cells, decreased systemic insulin sensitivity, and elevated fasting and 
postprandial glucagon secretion from α-cells in T2D.
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Introduction

In the last few decades, type 2 diabetes (T2D) is increasingly 
recognized as a serious, worldwide public health 
concern, and this has attracted a surge of interests in the 
pathogenesis of T2D. The critical pathogenesis is mainly 
due to inadequate compensatory insulin secretion from 
pancreatic β-cells when they counteract insulin resistance 
(1, 2). In addition, numerous findings highlighted that 
abnormal α-cell secretion may take part in the progression 
and exacerbation of glycemic disturbances, which is 
featured by fasting hyperglucagonemia and reduced 
suppression of glucagon after food intake (3, 4). Thus, 
both pancreatic α- and β-cell dysfunctions get involved in 
the pathophysiological processes of T2D (5). Currently, 
much effort is being made to seek modifiable risk factors 
of pancreatic α- and β-cell dysfunctions, which may help 
orientate the formulation of appropriate and effective 
treatment strategies to ameliorate diabetes and subsequent 
diabetes-related prognosis.

Cystatin C (CysC) is small molecular weight protein of 
approximately 13.3 kDa that is synthesized and secreted by 
all nucleated cells in every human tissue, including kidney, 
liver, pancreas, intestine, etc. (6, 7). Due to its free filtration 
through the glomerulus and then complete reabsorption 
and degradation by proximal tubular cells without 
secretion (8, 9), serum CysC is considered as a sensitive 
biomarker for early kidney dysfunction. In addition to be 
an ubiquitously expressed measuring substance, CysC has 
been recognized as a functional protein that directly linked 
to many pathophysiological processes through multiple 
mechanisms. It is involved in immunological regulation 
(antigen procession, cytokines synthesis and apoptosis), 
autophagy, bone remodeling, atherosclerosis, tumor 
metastasis, as well as roles in inflammation and cerebral 
amyloid angiopathy (10, 11).

Actually, CysC is a disease-associated protein, and 
alteration in CysC levels may suggest important clinical 
implications. Serum CysC levels were reported to be 
associated, in a dose-dependent manner, with an increased 
risk of coronary artery diseases, cerebrovascular accidents 
and mortality from all causes in the general population (12, 
13, 14). Moreover, increased serum CysC levels have been 
well established to account for common complications in 
diabetic population, such as diabetic kidney disease (15), 
diabetic retinopathy (16), diabetic peripheral neuropathy 
(17), diabetic foot ulceration (18) and cardiovascular 
diseases (19, 20). Additionally, there is accumulative 
evidence that elevated serum CysC levels are responsible 
for incidence of metabolic syndrome and T2D (21, 22, 23). 

Those metabolic diseases and their related complications 
are always accompanied by a background of pancreatic 
α- and β-cell dysfunctions. Therefore, it is reasonable to 
speculate that CysC overexpression may be central to the 
T2D pathogenesis. However, no relevant literature has 
systematically investigated the associations of serum CysC 
levels with pancreatic α- and β-cell functions in T2D.

Therefore, the present study is performed to explore 
the relationship between increased serum CysC levels and 
responses of pancreatic α- and β-cells in T2D.

Methods

Study design and patient recruitment

The present study is a part of the Diabetes Clinical 
Research Center Project that authorized and funded by 
the Nantong Science and Technology Bureau. We used 
a cross-sectional observational design to conduct this 
study. The study design was reviewed and approved by the 
Human Study Review Committee of Affiliated Hospital 2 
of Nantong University. At the recruitment stage, we placed 
a notification at the Endocrinology Department of our 
hospital to recruit patients for this study from January 
2016 to February 2021. Eligible patients were between 25 
and 75 years of age, diagnosed with T2D according to the 
reference published by American Diabetes Association 
in 2015 (24). Patients would be excluded if they had the 
following conditions: (i) presence of diabetes-associated 
autoantibodies; (ii) previous malignancies; (iii) severe 
cardiovascular diseases, such as myocardial infarction; (iv) 
ischemic and hemorrhagic stroke; (v) chronic liver diseases, 
such as viral hepatitis and alcoholic hepatitis; (vi) chronic 
kidney diseases, and estimated glomerular filtration 
rate(eGFR)<60 mL/min/1.73 m2; (vii) hyperthyroidism or 
hypothyroidism; (viii) current treatment with systemic 
corticosteroids; (ix) recent use of glucose cotransporter 2 
inhibitors (SGLT-2Is); (x) connective tissue diseases. At last, 
complete data from 2634 eligible patients were qualified 
for this cross-sectional study. The study conduction was 
adhered to the Declaration of Helsinki involving research 
of human subjects, and all patients signed an informed 
consent when admitted to the study.

Clinical data collection

Experienced physicians were trained to collect clinical data 
from all patients. These data included demographic data 
(such as age, sex and blood pressure), medical history (such 
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as diabetes duration, history of hypertension and smoking), 
prescription information (such as glucose-lowering 
therapies and statins treatments), and biochemical 
measurements. Glucose-lowering therapies were acquired 
by searching the electronic medical record system and 
then were categorized into subclasses, which included 
insulin injections, sulfonylureas (SUs), metformin, 
thiazolidinediones (TZDs), α-glucosidase inhibitors (AGIs), 
dipeptidyl peptidase-4 inhibitors (DPP-4Is), SGLT-2Is and 
glucagon-like peptide-1 receptor agonists (GLP-1RAs).

Fasting venous blood samples were taken to detect 
biochemical indices, such as serum CysC levels, hepatic 
function index, creatinine, uric acid (UA), lipid profiles, 
whole blood glycosylated hemoglobin A1c (HbA1c), 
etc. The serum CysC was measured by latex-enhanced 
immunoturbidimetry in an automated biochemical 
analyzer (Model 7600, Hitachi). The renal function index, 
eGFR, was assessed by the equation from the Modification 
of Diet in Renal Disease study (25), that is eGFRM.

Assessment of pancreatic α- and β-cell functions

Each patient was undergone an oral glucose tolerance 
test using 75 g anhydrous glucose early in the morning 
under fasting status. Venous blood samples were drawn 
at 0, 30, 60, 120, and 180 min for synchronous detection 
of serum glucose, serum C-peptide and plasma glucagon. 
Insulin was substituted by C-peptide in the β-cell function 
indices to avoid interference by exogenous insulin. As 
components of pancreatic β-cell functions, β-cell secretion 
and insulin sensitivity indices were evaluated by C-peptide 
area under curve (AUC-CP) (26) and C-peptide-substituted 
Matsuda’s index (Matsuda-CP) (27), respectively. Fasting 
glucagon (F-GLA) and post-challenge glucagon calculated 
by glucagon area under the curve (AUC-GLA) were applied 
to evaluate pancreatic α-cell function. C-peptide was 
measured with the chemiluminescence in an immunoassay 
analyzer (DxI 800, Beckman Coulter), and glucagon was 
measured with the RIA in an automated γ-counter (GC-
1200, USTC Zonkia).

Statistical analysis

Clinical variables of the patients are presented for the 
total and four subgroups of first, second, third and 
fourth quartile (Q1, Q2, Q3 and Q4) of serum CysC levels  
(Table 1). Descriptive statistics for the data, including 
mean with s.d., median with 25–75% interquartile range, 
and frequency with percentage, were performed according 
to the data type and distribution. Islet α- and β-cell 

function indices were non-normally distributed data, and 
were natural-logarithm transformed, such as lnAUC-CP, 
lnMatsuda-CP, lnF-GLA and lnAUC-GLA. One-way ANOVA 
with linear polynomial contrasts, Jonckheere-Terpstra test 
and chi-squared test with linear-by-linear association were 
performed to assess the trends of corresponding data type 
in four subgroups.

Moreover, we applied Pearson’s correlation analysis to 
assess the correlation of serum CysC levels with pancreatic α- 
and β-cell function indices (Fig. 1). Considering that HbA1c, 
eGFRM and glucose-lowering therapies may have impacts 
on these correlations, the partial correlation analysis was 
applied to achieve the actual associations of serum CysC 
levels with lnAUC-CP, lnMatsuda-CP, lnF-GLA and lnAUC-
GLA by adjusting for HbA1c, eGFRM and glucose-lowering 
therapies (Fig. 2). Furthermore, we applied multivariable 
linear regression analysis to determine whether serum 
CysC levels had an independent effect on pancreatic α- 
and β-cell function indices (lnAUC-CP, lnMatsuda-CP, 
lnF-GLA and lnAUC-GLA) by gradually adjusting effects of 
other clinically relevant variables in Model 1, Model 2 and  
Model 3 (Table 2).

We used standard version of SPSS 19.0 for Windows 
(IBM Co.) to input and analyze the clinical variables. 
During statistical analysis, statistical significance was 
identified if P value less than 0.05.

Results

Clinical characteristics of patients

Table 1 has displayed the clinical characteristics of the 
patients with T2D. The serum CysC levels of all recruited 
patients were 0.93 ± 0.36 mg/L, with a range of 0.1−4.5 
mg/L. The ranges of the serum CysC quartiles were were 
0.1–0.7 mg/L (Q1), 0.8–0.9 mg/L (Q2), 1.0–1.1 mg/L (Q3) 
and 1.2–4.5 mg/L (Q4), respectively. From Q1, Q2, Q3 to 
Q4 of serum CysC levels, AUC-CP, F-GLA and AUC-GLA 
were increased, while Matsuda-CP was decreased (P for 
trend <0.001). Moreover, with ascending quartiles of serum 
CysC levels, age, BMI, systolic blood pressure, diabetic 
duration, aspartate aminotransferase, triglycerides, UA, 
hypertension prevalence and statins treatments were 
significantly increased, while the ratio of female, total 
cholesterol, HDL, eGFRM and HbA1c were decreased, but 
diastolic blood pressure, alanine aminotransferase and 
LDL did not exhibit any difference between the quartiles of 
CysC levels. As to the glucose-lowering therapies, lifestyle 
intervention alone and frequency of AGIs taken were 
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increased, while MET, TZDs and DPP-4Is were decreased, 
when the quartiles of serum CysC increased; but insulin 
injections, SUs and GLP-1RAs were comparable between 
the quartiles of CysC levels.

Correlations between serum CysC levels and 
indices of α- and β-cell functions

Pearson’s correlation analysis showed that lnAUC-CP, 
lnF-GLA and lnAUC-GLA had positive correlations with 
serum CysC levels (r = 0.241, 0.131 and 0.208, respectively, 
P < 0.001), while lnMatsuda-CP was in negative correlation 
with serum CysC levels (r = –0.195, P  < 0.001). And graphic 
representation of the relationships is shown in Fig. 1. 
Additionally, after controlling for the impacts of HbA1c, 
eGFRM and glucose-lowering therapies by the partial 
correlation analyses, lnAUC-CP, lnF-GLA and lnAUC-
GLA still remained positively related to serum CysC levels 
(r = 0.247, 0.138 and 0.183, respectively, P < 0.001), and 
lnMatsuda-CP still remained negatively related to serum 
CysC levels (r = –0.185, P  < 0.001). Graphic representation 
of the relationships is also shown in Fig. 2.

Considering the close correlation between serum 
CysC and kidney function, we made a partial correlation 
analysis to adjust for eGFR only. We found that serum 

CysC levels still remained associated with AUC-CP, 
Matsuda-CP, F-GLA and AUC-GLA (r = 0.181, –0.147, 0.128 
and 0.177, respectively, P < 0.001) after adjusting for eGFR 
(Supplementary Fig. 1, see section on supplementary 
materials given at the end of this article).

Among the recruited T2D patients, 10.4% (n  = 273) 
were lifestyle intervention alone (without antidiabetic 
agents). When we restricted our analysis in these T2D 
patients without antidiabetic agents (n  = 273), we found 
serum CysC levels were correlated with AUC-CP (r = 0.273, 
P  < 0.001), Matsuda-CP (r = –0.277, P  < 0.001), and AUC-
GLA (r = 0.227, P  < 0.001), but not F-GLA (r = 0.086,  = 0.156) 
(Supplementary Fig. 2). Furthermore, after adjusting for 
eGFRM by the partial correlation analysis, we found serum 
CysC levels were correlated with all α- and β-cell function 
indices in these T2D patients without antidiabetic 
agents, that is, AUC-CP (r = 0.266, P  < 0.001), Matsuda-CP  
(r = –0.269, P  < 0.001), F-GLA (r = 0.129, P = 0.033) and 
AUC-GLA (r = 0.214, P  < 0.001) (Supplementary Fig. 3).

Analyses to explore the effects of serum CysC 
levels on outcomes of α- and β-cell function indices

Table 2 exhibited the independent effects of serum CysC 
levels on consequences of pancreatic β-cell function 

Figure 1
Scatter plots for relationships between serum CysC levels and pancreatic α- and β-cell function indices (A) lnAUC-CP; (B) lnMatsuda-CP; (C) lnF-GLA; (D) 
lnAUC-GLA.
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(lnAUC-CP and lnMatsuda-CP) and α-cell function (lnF-
GLA and lnAUC-GLA) by multivariable linear regression 
analysis. In the crude Model 0, serum CysC levels were 
significantly associated with lnAUC-CP (β = 0.241, 
t = 12.747, P  < 0.001 and R2 = 0.058), lnMatsuda-CP (β 
= –0.195, t = –10.206, P  < 0.001 and R2 = 0.038), lnF-GLA 
(β = 0.131, t = 6.782, P  < 0.001 and R2 = 0.017), lnAUC-
GLA (β = 0.208, t = 10.921, P  < 0.001 and R2 = 0.043). After 
controlling for other clinical relevant variables in model 
1, model 2 and model 3, the adjusted R2 was exhibited to 
be progressively increased from model 0 to model 3. In 
the completely adjusted Model 3, serum CysC levels were 
exhibited to remain independently account for lnAUC-CP 
(β = 0.178, t = 10.518, P  < 0.001, partial R2 = 2.89% and 
total R2 = 54.7%), lnMatsuda-CP (β = –0.137, t = –7.118,  
P  < 0.001, partial R2 = 2.16% and total R2 = 41.3%), lnF-GLA 
(β = 0.049, t = 2.263, P = 0.024, partial R2 = 0.24%, and total 
R2 = 30.1%), lnAUC-GLA (β = 0.121, t = 5.730, P  < 0.001, 
partial R2 = 1.46% and total R2 = 32.8%).

Therefore, after adjusting for other clinical relevant 
variables, serum CysC levels may independently explain 
2.89% variation of AUC-CP, explain 2.16% variation of 
Matsuda-CP, explain 0.24% variation of F-GLA, and 1.46% 
variation of AUC-GLA. Insulin secretion index, AUC-CP, 
may be more involved in the serum concentration of CysC 
when compare to other α- and β-cell function indices.

Discussion

In the present study, we explore the relationship between 
serum CysC levels and pancreatic α- and β-cell functions 
in 2634 patients with T2D. The main findings of our study 
were as follows: first, with quartiles of serum CysC levels 
ascending, AUC-CP, F-GLA and AUC-GLA were increased, 
while Matsuda-CP was decreased; second, after controlling 
for other various clinical variables, serum CysC levels were 
positively and independently responsible for AUC-CP, 
F-GLA and AUC-GLA, and negatively and independently 
responsible for Matsuda-CP; third, serum CysC levels may 
independently explain 2.89% variation of AUC-CP, explain 
2.16% variation of Matsuda-CP, explain 0.24% variation 
of F-GLA, and 1.46% variation of AUC-GLA; fourth, 
insulin secretion index (AUC-CP) may be more involved 
in the serum concentration of CysC when compare to 
other α- and β-cell function indices. In brief, serum CysC 
levels are closely connected to pancreatic α-cell and β-cell 
dysfunctions.

CysC serves as a functional protein that directly 
plays pleiotropic roles in many pathophysiological 
processes in the human body, let alone a marker for 
early kidney dysfunction. There are always two-sided 
natures of everything, and this is also true for CysC 
levels. On one hand, increased serum CysC levels have 

Figure 2
Scatter plots for relationships between serum CysC levels and pancreatic α- and β-cell function indices partially adjusted for HbA1c, eGFRM and glucose-
lowering therapies (A) lnAUC-CP; (B) lnMatsuda-CP; (C) lnF-GLA; (D) lnAUC-GLA.
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been demonstrated to be associated with several adverse 
consequences, such as overweight (28), obesity (29), 
metabolic syndrome (21), hypertension (30), Hashimoto’s 
thyroiditis (31), cancer prognosis (10), progression to 
pre-diabetes (22), and incidence of diabetes (23). What’s 
more, serum CysC levels were dose dependent and 
positively related to cardio-cerebrovascular risks of the 
general population (13, 32) and diabetic complications 
in the population with T2D (15, 16, 17, 18, 20). On the 
other hand, CysC-mediated neuroprotective effects had 
also been found in preclinical models of the disease.  
Reduced serum CysC levels are highly associated with 

Alzheimer’s disease and maybe an independent prediction 
marker for Alzheimer’s disease (33). Upregulation of CysC 
expression is identified to be a potential therapeutic 
target for Parkinson’s disease (34). Approach to increase 
CysC is also a potential candidate against stroke through 
preserving lysosomal membranes integrity (35, 36). In 
our present study, increased serum CysC levels were 
closely associated with greater BMI and the prevalence of 
hypertension in patients with T2D. Additionally, increased 
serum CysC levels were also shown to be associated 
with indices of pancreatic α- and β-cell dysfunctions in  
those patients.

Table 2 Multivariable linear regression models exhibiting the effects of serum CysC levels on outcomes of pancreatic α- and 
β-cell function.

Models B (95% CI) β t P
Partial R2 

for CysC (%)
Total R2 for 
model (%)

ln AUC-CP
 Model 0: crude 0.472 (0.399 to 0.544) 0.241 12.747 <0.001 5.81 5.81
 Model 1: age, sex, BMI, SBP, DBP, 

diabetes duration, hypertension  
and statins

0.494 (0.422 to 0.565) 0.253 13.579 <0.001 6.60 22.0

 Model 2: model 1 + ALT, AST, lipid 
profiles, UA, eGFRM, F-GLA and 
AUC-GLA

0.322 (0.242 to 0.403) 0.160 7.856 <0.001 2.46 28.3

 Model 3: model 2 + HbA1c and  
glucose-lowering therapies

0.357 (0.290 to 0.423) 0.178 10.518 <0.001 2.89 54.7

ln Matsuda-CP
 Model 0: crude –0.317 (–0.378 to –0.256) –0.195 –10.206 <0.001 3.81 3.81
 Model 1: age, sex, BMI, SBP, DBP, 

diabetes duration, hypertension  
and statins

–0.318 (–0.378 to –0.258) –0.196 –10.328 <0.001 3.96 19.5

 Model 2: model 1 + ALT, AST, lipid 
profiles, UA, eGFRM, F-GLA and 
AUC-GLA

–0.191 (–0.259 to –0.123) –0.114 –5.504 <0.001 1.21 26.4

 Model 3: model 2 + HbA1c and  
glucose-lowering therapies

–0.231 (–0.294 to –0.167) –0.137 –7.118 <0.001 2.16 41.3

ln F-GLA
 Model 0: crude 0.211 (0.150 to 0.272) 0.131 6.782 <0.001 1.72 1.72
 Model 1: age, sex, BMI, SBP, DBP, 

diabetes duration, hypertension  
and statins

0.213 (0.148 to 0.279) 0.133 6.371 <0.001 1.54 2.12

 Model 2: model 1 + ALT, AST, lipid 
profiles, UA, eGFRM, AUC-CP, 
Matsuda-CP and AUC-GLA

0.065 (–0.001 to 0.132) 0.040 1.932 0.053 0.16 28.5

 Model 3: model 2 + HbA1c and  
glucose-lowering therapies

0.081 (0.011 to 0.151) 0.049 2.263 0.024 0.24 30.1

ln AUC-GLA
 Model 0: crude 0.252 (0.207 to 0.297) 0.208 10.921 <0.001 4.33 4.33
 Model 1: age, sex, BMI, SBP, DBP, 

diabetes duration, hypertension  
and statins

0.260 (0.211 to 0.309) 0.215 10.450 <0.001 4.04 5.18

 Model 2: model 1 + ALT, AST, lipid 
profiles, UA, eGFRM, AUC-CP, 
Matsuda-CP and F-GLA

0.152 (0.103 to 0.201) 0.122 6.064 <0.001 1.49 31.6

 Model 3: model 2 + HbA1c and  
glucose-lowering therapies

0.151 (0.100 to 0.203) 0.121 5.730 <0.001 1.46 32.8

AUC-CP: C-peptide area under curve; AUC-GLA: glucagon area under the curve; ; F-GLA: Fasting glucagon; Matsuda-CP: C-peptide-substituted Matsuda’s index .
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Now that increased serum CysC levels are initially 
linked to obesity-related diseases, and can predict the 
incidence of pre-diabetes and diabetes, it is very likely 
that CysC overexpression plays a central role in the 
pathophysiological processes of T2D. A previous study by 
Uruska et al. (37) reported that higher levels of serum CysC 
were indicative of a higher degree of insulin resistance 
evaluated by glucose disposal rate in type 1 diabetes. 
Reutens and colleagues (38) demonstrated that both 
central adiposity and insulin resistance partially mediated 
the relationship between increased serum CysC levels 
and the progression of T2D. Lee et al. (39) also found that 
there were independent relationships between increased 
serum CysC levels, insulin resistance and inflammation 
biomarkers, which may interpret the linkage between 
serum CysC levels and CVD in T2D independent of kidney 
function. Moreover, Yokoyama et al. (40) conducted a study 
in 40 patients with T2D, and they revealed that serum CysC 
levels were positively correlated with postprandial insulin 
secretion after antidiabetic treatment (insulin-stimulated 
mitiglinide therapy) independent of postprandial glucose 
levels. In our present study, we observed that increased 
serum CysC levels were responsible for blunted insulin 
sensitivity evaluated by Matsuda-CP and increased insulin 
secretion of β-cells evaluated by AUC-CP in patients with 
T2D. Matsuda-CP is a surrogate indicator of the overall 
insulin sensitivity that can efficiently assess the sensitivity 
of the visceral and peripheral tissues to insulin (41), 
and AUC-CP is a reliable indicator for measurement of 
post-challenge β-cell secretion function (26). Therefore, 
serum CysC presented a bidirectional regulatory effect on 
pancreatic β-cell function. Increased serum CysC levels 
seemed to on one hand decrease systemic insulin sensitivity 
and on the other hand increase insulin secretion from 
β-cells in patients with T2D.

There are some possible mechanisms for increased 
CysC expression linked to aggravated insulin resistance and 
increased insulin secretion from β-cells. It is widely accepted 
that the pathogenesis of insulin resistance is involved with 
ectopic lipid accumulation and systemic inflammation (42). 
CysC mRNA expression and CysC release by subcutaneous 
and omental adipose tissue increased two- to three-fold 
in obese when compared to these in nonobese subjects 
(43). Meanwhile, systemic inflammation indicators, such 
as interleukin-6, tumor necrosis factor alpha (TNF-α) and 
C-reactive protein, are closely related to serum CysC levels 
(14, 30, 44, 45). These evidences suggested that increased 
CysC expression directly participated in the pathogenesis 
of insulin resistance. At the same time, insulin resistance 
may in turn induce a compensatory insulin secretory 

response. Moreover, CysC exerted dual neuronal–vascular 
roles in promoting neuronal survival and angiogenesis by 
the regulation of the secreted protein vascular endothelial 
growth factor (VEGF) in the Parkinson’s disease model 
(34). VEGF is abundantly expressed in islet β-cells, serving 
as an essential modulator of the islet microvasculature (46). 
CysC may promote β-cells survival and islet angiogenesis 
by the regulation of VEGF-mediated pathways. These 
evidences supported that increased CysC may facilitate 
insulin secretion from β-cells.

Up to now, no previous study has examined the 
association between serum CysC levels and pancreatic 
islet α-cell function. Our study found that increased 
serum CysC levels were associated with elevated fasting 
and post-challenge glucagon levels (F-GLA and AUC-
GLA, respectively) in patients with T2D. Increased CysC 
expression may contribute directly to the pathogenesis 
of insulin resistance, which subsequently leads to fasting 
hyperglucagonemia, less early glucagon suppression and 
elevated postload 2-h plasma glucagon levels (3, 47, 48). 
In addition, increased CysC concentration may induce an 
inflammatory response by enhancing TNF-α expression 
(30, 49), and inflammation may in turn lead to β-cell 
dedifferentiation (50, 51, 52), characterized by loss of 
β-cell identity and expression of glucagon in these β-cells 
(53). Moreover, our previous study has demonstrated 
that fatty acid-binding protein 4, an inflammatory factor 
primarily originated from adipose tissue, was positively 
associated with fasting and postprandial glucagon levels in 
T2D (54). Collectively, our present study and the relevant 
literatures indicated that increased serum CysC levels may 
be contributed to the elevated fasting and postprandial 
glucagon in patients with T2D.

We do need to address several limitations of the 
present study. First, we used a cross-sectional observational 
design to conduct this study. Consequently, causality may 
not be inferred between increased serum CysC levels and 
responses of pancreatic α- and β-cells in T2D. We need a 
longitudinal study to improve this defect. Second, our study 
is confined to the cases in a single center, and the finding 
may have limited generalizability. Third, our present study 
only revealed the clinical relevance, so basic research was 
needed to investigate the role of CysC expression in the 
pathophysiological processes of T2D.

Conclusions

In summary, increased serum CysC levels may be 
independently responsible for increased insulin secretion 
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from β-cells, decreased systemic insulin sensitivity, and 
elevated fasting and postprandial glucagon secretion from 
α-cells in T2D, which indicate that increased serum CysC 
levels may take part in the impaired pancreatic α- and β-cell 
functions in patients with T2D.
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