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ABSTRACT
Background. Insulin dysregulation (ID) is an equine endocrine disorder, which is often
accompanied by obesity and variousmetabolic perturbations. The relationship between
weight variations and fluctuations of the insulin response to oral glucose tests (OGT) as
well as the metabolic impact of ID have been described previously. The present study
seeks to characterize the concomitant metabolic impact of variations in the insulin
response and bodyweight during repeated OGTs using a metabolomics approach.
Methods. Nineteen Icelandic horses were subjected to fiveOGTs over one year and their
bodyweight, insulin and metabolic response were monitored. Analysis of metabolite
concentrations depending on time (during the OGT), relative bodyweight (rWeight;
defined as the bodyweight at one OGT divided by the mean bodyweight across all
OGTs) and relative insulin response (rAUCins; defined accordingly from the area under
the insulin curve during OGT) was performed using linear models. Additionally, the
pathways significantly associated with time, rWeight and rAUCins were identified by
rotation set testing.
Results. The results suggested that weight gain and worsening of ID activate distinct
metabolic pathways. The metabolic profile associated with weight gain indicated an
increased activation of arginase, while the pathways associated with time and rAUCins
were consistent with the expected effect of glucose and insulin, respectively. Overall,
more metabolites were significantly associated with rWeight than with rAUCins.

Subjects Biochemistry, Veterinary Medicine, Zoology
Keywords Equine metabolic syndrome, Insulin dysregulation, Oral glucose test, Obesity,
Metabolomics, Pathway analysis

INTRODUCTION
Insulin dysregulation (ID) is an equine endocrine disorder encompassing insulin resistance
(IR) and basal or post-prandial hyperinsulinemia (HI), which predisposes horses for a
crippling hoof condition called laminitis (Frank & Tadros, 2014). The oral glucose test
(OGT) can be used to diagnose and quantify ID as it seizes both its enteric and systemic
component (De Laat, McGree & Sillence, 2015; Bertin & Laat, 2017).

The impact of weight gain or weight loss on IR and ID has been described numerous
times (Van Weyenberg et al., 2008; Carter et al., 2009; Morgan, Keen & McGowan, 2016;
Bamford et al., 2019), substantiating obesity as a major risk factor for ID (Geor & Harris,
2009; Morgan, McGowan & Mcgowan, 2014) and establishing dietary energy restrictions
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and exercise programs as main requirements for the management of patients with this
condition (Durham et al., 2019).

Because of its central role in energy metabolism, insulin is tied to many molecule
classes. For example, amino acids have long been known to exert a regulatory
function on β-cells and increase insulin secretion whereas insulin regulates protein
synthesis (Floyd et al., 1966; Felig, 1975;Kimball, Vary & Jefferson, 1994). Some amino acids
and derived biogenic amines or even broader classes of lipids (e.g., phosphatidylcholines,
lysophosphatidylcholines and sphingomyelins) have been associated with specific
pathomechanisms of metabolic conditions (Newsholme et al., 2007; Holland et al., 2008;
McKnight et al., 2010). Therefore, metabolomics approaches covering this broad range
of molecules have been used for the identification of candidate biomarkers and to
investigate the pathophysiology of such conditions or their risk factors (Pallares-Méndez
et al., 2016; Lent-Schochet et al., 2019). In contrast to hypothesis-driven approaches, such
high-throughput methods aim to describe the studied systems in a global way, including
their often complex interactions and capable of discovering unmapped pathways (Kell &
Oliver, 2004).

Similar methods have been used in horses with ID, suggesting, for example, an impact
of ID on the tricarboxylic acid cycle (Jacob et al., 2018). Previous experiments using the
same assay were successful in identifying potential biomarkers of ID but did not include
predictors related to bodyweight (Kenéz Warnken, Feige & Huber, 2018; Delarocque et al.,
2020b). Besides the effect of weight gain on the lipidome (Blaue et al., 2019; Coleman et
al., 2019), little is known about the relationship between obesity and the metabolome in
horses. Since the relationship between variations in body weight and IR or ID is well known,
an impact of such variations on the metabolites affected by ID is likely. The description
of the respectively affected pathways could lead to new hypotheses for the treatment of
these conditions. As a result, the objective of this retrospective study was to investigate the
interplay between weight variations and changes in the insulin and metabolic response to
repeated OGTs in an inductive framework. The main hypothesis was that weight gain and
worsening of ID have a distinct metabolic impact during OGT.

MATERIALS & METHODS
The data presented here were obtained from blood samples collected as part of a
study describing the relationship between weight variations and insulin response to an
OGT (Delarocque et al., 2020a). The study was approved by the State Office for Consumer
Protection and Food Safety (LAVES) in accordance with the German Animal Welfare Law
(File #33.8–42502–04-17/2646).

Horses
Nineteen university-owned Icelandic horses of mixed metabolic status from two herds
were enrolled in this project. One group included five horses (1 stallion, 4 geldings; median
age: 17 years, range: 9–17 years), while the other comprised fourteen horses (11 mares, 3
geldings; median age: 21 years, range: 14–29 years). Both groups had access to neighboring
pastures and were fed hay from the same batches.
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Oral glucose tests
Five OGT were conducted at even intervals over one year. The horses were weighed using
a mobile weighing scale (accuracy: 1%, resolution: 1 kg, precision: 2 kg) 9 to 16 days prior
to each test. The horses were fasted for 12 h. In the morning (8:00–9:00 a.m.), a jugular
vein catheter was aseptically placed for blood collection. After a basal blood sample had
been drawn, 0.5 g/kg bwt glucose was administered via a nasogastric tube. Further blood
samples were collected 30, 60, 120, 180 and 240 min later. After collection, the samples
were separated into potassium EDTA and Z serum clot activator vacuum tubes (Greiner
Bio-One International GmbH, Frickenhausen, Germany). The EDTA tubes were chilled at
4 ◦C, while the serum tubes were left to clot at room temperature. They were centrifuged
at 4,000 g for 10 min within 6 h, for the plasma and serum supernatants to be collected,
aliquoted and stored at –80 ◦C until further analysis.

Insulin measurements
Serum insulin concentrations were measured in duplicate at the end of the experimental
phase using an equine-optimized ELISA (Mercodia Equine Insulin ELISA; Mercodia AB,
Sylveniusgatan 8A, Uppsala, Sweden; inter-assay coefficient of variation: 7.7%) previously
validated for use in horses.

Metabolomic assay
Metabolomic profiling of the 0 and 120 min plasma samples was performed at the
Fraunhofer Institute of Toxicology and Experimental Medicine ITEM, Hanover, Germany,
using the AbsoluteIDQ p180 Kit (Biocrates life sciences AG, Innsbruck, Austria). This
assay includes up to 188 metabolites related to glycolysis, oxidative processes, lipid
degradation and inflammatory signaling. Amino acids and biogenic amines were measured
by liquid chromatography-tandem mass spectrometry while acylcarnitines, hexoses,
phosphatidylcholines (PCs), lysophosphatidylcholines (LysoPCs) and sphingomyelins
(SMs) were quantified using flow injection analysis-tandem mass spectrometry.

Statistical analysis
Statistical analysis was performed with R 4.0.0 (R Core Team, 2020). Metabolites with
over 50% of values below the limit of detection were discarded. Remaining values below
limit of detection were set to limit of detection/2. Missing values were imputed by the
k-nearest neighbors method (Hastie et al., 1999). Measurement batches were aligned using
the QC-RLSC method (Dunn et al., 2011). Metabolites with a coefficient of variation over
20% within the quality control samples were removed from further analysis. Substance
class summaries of metabolite concentrations and the kynurenine to tryptophan ratio
were computed. Values were then log2-transformed, adjusted for measurement and
experimental (OGT replicates) batches using the ‘removeBatchEffect’ function from the
‘limma’ package (Ritchie et al., 2015), auto-scaled and quantile-normalized (Bolstad et al.,
2003).

The relative weight (rWeight; weight at one OGT divided by the mean weight across
all OGTs) and relative area under the insulin curve over time (rAUCins; defined similarly)
were used as predictors of metabolite concentrations alongside the time of the OGT in a
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mixed linear model adjusted for group, age and sex using the ‘limma’ package to investigate
the metabolic impact of weight variations and the insulin response.

Metabolite set enrichment analysis (MSEA) was performed using the ‘mroast’ function
from the ‘limma’ package. According to the definition of Goeman & Bühlmann (2007),
this function provides a self-contained set test relying on the principle of rotation
applicable to linear models (Wu et al., 2010). Metabolite identifiers were obtained from
the human metabolome database (Wishart et al., 2018) and associated with metabolic
pathway identifiers from the small molecule pathway database (Jewison et al., 2014).
Long-chain phospholipid concentrations in the p180 assay can represent the sum of
several physiologically close isomers. In such cases, the first best match from the human
metabolome database was kept as a metabolite identifier. Only pathways including at least
three distinct metabolites from the cleaned dataset were kept for analysis.

P-values were adjusted for multiple comparisons using the method of Benjamini–
Hochberg (Benjamini & Hochberg, 1995). Statistical significance was set at 0.05 (after
adjustment for multiplicity).

RESULTS
Clinical parameters
The evolution of the insulin response to the OGT and bodyweight during the study period
was described previously (Delarocque et al., 2020a). Briefly, the variations in bodyweight
were similar in both groups with an overall median maximal weight difference of 43 kg
(11%) while the variations in the insulin response differed. On the small pasture a median
maximal variation of the AUCins of 68% was observed, while horses on the large pasture
had a median maximal variation of 123%.

Despite a general trend of weight loss over the study period, the horses gained weight
between two successive OGTs in 29% of the cases. The insulin response and bodyweight
of the horses at each OGT are provided as an additional file (Table S1).

None of the horses developed laminitis or showed any other clinical abnormalities
throughout the study.

Data preparation
Substance class summaries and the kynurenine/tryptophan ratio were added to the 188
metabolites measured by the Biocrates AbsoluteIDQ p180 Kit, resulting in 194 features.
After preprocessing, 116 features were still present, as summarized in Table 1.

Nineteen horses were each subjected to five OGTs, for each of which two timepoints
were considered in the metabolome, resulting in 190 samples.

Linear models
The impact of the time during the OGT, rWeight and rAUCins on the metabolite
concentrations was investigated using linear models. The first factor describes the time
course of metabolite concentrations during the OGT, the second one represents the impact
of variations in bodyweight and the third one shows the influence of changes in the insulin
response.
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Table 1 Metabolites available before and after data pre-processing. Summarized values are the
sums of plasma concentrations of metabolites by groups (e.g., sum of acylcarnitines) or ratios like the
kynurenine:tryptohphan-ratio, which is of interest in the scope of inflammatory processes.

Class Before pre-processing After pre-processing

Acylcarnitines 40 1
Amino acids 21 20
Biogenic amines 21 11
Glycerophospholipids 90 65
Sphingolipids 15 13
Sugars 1 1
Summarized values 6 5
Total 194 116

The number of metabolites significantly associated with each of the factors of interest
from the linear model are displayed in Fig. 1. The greatest number of metabolites was
associated with rWeight, followed by the effect of time during the OGT. Many metabolites
were affected by more than one of these factors but not necessarily in the same direction
(i.e., a metabolite might have been negatively associated with rWeight and positively
associated with rAUCins, as shown in Fig. 2). The five metabolites affected by all three
factors were arginine (Arg), serine (Ser) and the PCs: PC aa C32:1, PC aa C34:3 and PC aa
C34:4. Most of the metabolites affected by both rWeight and time were PCs as well. The
sum of hexoses is essentially representative of glucose during the OGT and was positively
associated withrAUCins and time.

Figure 2 visualizes the metabolic impact of rWeight (A) and rAUCins (B) at each time
point using heatmaps.While all metabolites significantly associatedwith rAUCins are shown
(Fig. 2B), only the top 20 metabolites significantly associated with rWeight are presented
(Fig. 2A). Overall, the same patterns are visible at 0 and 120 min, however, the gradient
was more pronounced at one of the timepoints for some metabolites (e.g., ornithine
(Orn) concentrations increased with rWeight at both timepoints, however, this was more
pronounced before oral glucose loading [0 min]). The metabolites predominantly affected
were glycerophospholipids. The effect of rAUCins on this class was exclusively negative and
partly opposite to the effect rWeight (e.g., PC aa C36:5). It should be noted that the fold
changes, indicating the changes in normalized metabolite concentrations for each unit of
rWeight of rAUCins, cannot be directly compared since they are on different scales.

Asymmetric dimethylarginine (ADMA) was negatively associated with rAUCins. By
contrast, the amino acids arginine, serine and alanine (Ala) were positively correlated with
this factor. Interestingly, arginine displayed a negative association with rWeight, alongside
phenylalanine (Phe), trans-4-hydroxyproline (t4-OH-Pro) and four SMs.

Metabolite set enrichment analysis
Seventeen pathways contained three or more metabolites and were available for MSEA. As
presented in Fig. 3, all pathways were significantly, mostly negatively, associated with the
effect of time in the OGT. While all pathways were significantly associated with rWeight
as well, this effect is more ambiguous, with fewer pathways displaying an obvious positive
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Figure 1 Venn diagram of the metabolites significantly associated with the factors of interest in the
linear model. Each circle represents one factor of interest. The number within each region stands for the
numbers of metabolites significantly associated with one or more of these factors according to the circles
overlapping. As an example, two metabolites were significantly associated with both rAUCins and rWeight,
although the direction of association can vary (positive or negative).

Full-size DOI: 10.7717/peerj.10764/fig-1

or negative association. Nevertheless, the metabolism of alanine, glutamate, histidine and
purine appeared to be positively associated with rWeight (i.e., more active upon weight
gain). As for rAUCins, it had a positive impact on metabolites from the glucose-alanine and
urea cycle and a pattern compatible with the Warburg effect. Overall, the effect of rWeight
and rAUCins were opposed to the effect of time.

DISCUSSION
The metabolic response of 19 horses to five OGTs was investigated while considering
the impact of changes in bodyweight and the insulin response. The underlying aim
was to illustrate and distinguish the impact of weight gain and an aggravation of
ID on the metabolism. Univariate analysis highlighted the impact of these effects on
glycerophospholipids. The effects of the relative weight and insulin response in MSEA
were opposed to the effect of time in the OGT, which describes the immediate metabolic
response induced by the glucose bolus.

Metabolic impact of variations in bodyweight
Variations in bodyweight were represented by the rWeight, which allowed one to compare
the evolution of bodyweight between horses. Positive associations between metabolite
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-4.73
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ADMA -0.359 0.033
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PC aa C36:5
PC aa C36:6
PC aa C34:3
PC aa C34:4
PC ae C42:2
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-0.321
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-0.366
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0.012
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0.038
0.012
0.017
0.030

Feature log FC P-valueLow ¬ rAUCins ® High Low ¬ rAUCins ® High

B

Relative
concentrations

0 0.5 1

Figure 2 Heatmaps of the metabolite concentrations significantly associated with rWeight (A) and
rAUCins (B). Only the top 20 metabolites are shown for rWeight. The samples are arranged by increasing
rWeight or rAUCins and grouped by the time point of the OGT. This allows one to observe if the impact of
the variables of interest is the same at both time points and prevents the effect of rWeight or rAUCins to be
masked by the effect of time (e.g., as would be the case for sugars [H1]).

Full-size DOI: 10.7717/peerj.10764/fig-2

concentrations and the rWeight can be interpreted as the metabolic impact of weight gain
irrespective of its cause (the same being true for negative associations and weight loss).
The quality of feed inducing weight gain affects the extent of ID (Bamford et al., 2016).
Moreover, weight loss achieved by dietary restrictions and exercise can provide additional
metabolic benefits compared to dietary restrictions alone (Carter et al., 2010; Moore,
Siciliano & Pratt-Phillips, 2019; Bamford et al., 2019). Because physical activity energy
expenditure and energy intake were not measured, the effect attributed to weight gain or
loss in this retrospective study can result from any or both components. Additionally, the
metabolic response to the OGT may vary depending on the proportions of metabolically
active tissues (e.g., muscle mass versus adipose tissue) and their functional integrity (e.g.,
adipose tissue dysfunction). Neither parameter was assessed in the present study, but both
might be affected by variations in bodyweight (Blaue et al., 2019; Reynolds et al., 2019).
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3 Number of metabolites
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Figure 3 Impact of the three factors of interest from the linear model on the 17 pathways included in
MSEA. Time is mostly associated with a decrease in metabolic activity, while the other two factors coun-
terbalance this effect.

Full-size DOI: 10.7717/peerj.10764/fig-3

The metabolites PC aa C32:0, PC ae C36:2, PC ae C36:4, PC ae C36:5 and PC ae
C38:6 have been previously reported to be negatively associated with the body mass
index in humans (Wallace et al., 2014), while the metabolites SM C18:0, SM (OH) C22:2,
t4-OH-Pro and SM C26:1 were decreased in type 2 diabetes mellitus (Allalou et al., 2016;
Isherwood et al., 2017), showing good agreement with the results from the present study.
It should be noted that the studies on diabetes mellitus included individuals with a mean
body mass index over 30 or a higher mean body mass index in the diabetes group, which
was compared to an obese/overweight group, so that a contribution of obesity to the effects
observed is possible. Nevertheless, opposite patterns were also described for PC ae C36:2
(Wallace et al., 2014) and SM C18:0 (Hanamatsu et al., 2014). Overall, the similarity of the
metabolites associated with obesity in humans and horses suggests the presence of common
pathophysiological processes across species.

Decreased t4-OH-Pro has previously been associated with ID in horses (Kenéz Warnken,
Feige & Huber, 2018), however, the impact of obesity was not analyzed. Since obesity is a
major risk factor for ID, the present results appear to be compatible with the previous
findings. Since proline hydroxylation requires the antioxidant ascorbic acid, it was
hypothesized that hydroxyproline is an indirect marker of oxidative stress in several species
(Kenéz Warnken, Feige & Huber, 2018; Lent-Schochet et al., 2019; Zhang et al., 2020). In
addition to indicating oxidative stress, a decrease of t4-OH-Pro upon weight gain might
arise from a lack of ascorbic acid secondarily to oxidative processes and result in the
production of structurally unstable collagen, which could weaken the lamellar basement
membrane. On the other hand, there is contradictory evidence regarding the association
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of HI or obesity and oxidative stress (Treiber et al., 2009; Pleasant et al., 2013; Banse et al.,
2015).

The alanine metabolism was positively associated with weight gain, however alanine
itself was not, so that the remaining metabolites are more representative of purine or,
more probably, glutamate metabolism. Both glutamate and glutamate metabolism were
significantly associated with rWeight. Monosodium l-glutamate was shown to suppress
weight gain in rats, possibly by increasing the energy expenditure (Kondoh & Torii, 2008).
Moreover, it was reported to increase satiety and reduce voluntary energy intake in humans
(Kondoh & Torii, 2008). Therefore, the present findings could indicate a regulatory effect
of glutamate metabolism upon weight gain.

Similarly, the impact of rWeight on beta-alanine and histidine metabolism, mainly
mediated by glutamate, histidine and carnosine, might result from an adaptation to an
increased lipogenesis (Mong, Chao & Yin, 2011).

Variations in arginine concentrations are attributable to its metabolization (among
others into nitric oxide (NO), creatinine, ornithine and citrulline), the level of protein
synthesis and turnover, de novo synthesis and dietary uptake (Morris, 2016). Nevertheless,
based on the present results, it cannot be determined whichmechanisms are associated with
rWeight and rAUCins, respectively, or if these mechanisms are a cause or a consequence
of ID or weight gain. Arginine has a potent vasodilatory effect mediated by NO (Bode-
Böger, 2006). Therefore, it is interesting that vascular dysfunction has previously been
associated with endocrinopathic laminitis (Morgan et al., 2016), which is the main clinical
consequence of ID.

While arginine was strongly negatively associated with rWeight, the opposite was true
for ornithine. This implies an inverse association between rWeight and the Arg:Orn ratio,
which was reported to be negatively associated with arginase activity (Kashyap et al., 2008;
Kövamees, Shemyakin & Pernow, 2016) since Arg is the immediate precursor of Orn in the
arginase pathway (Morris, 2016). An increased arginase activity, which is supported by the
present results, would result in competitive inhibition of NO synthetase, which could, in
turn, affect endothelial function (Sourij et al., 2011).

Metabolic impact of changes in the insulin response
Changes in the insulin response were assessed using the rAUCins, which is the total insulin
response approximated by the area under the insulin curve during the OGT (AUCins),
relative to the horse’s mean total insulin response. This measure makes the evolution of the
insulin response comparable across horses. An increase in rAUCins indicates a worsening
of ID.

Arginine was positively associated with an increased insulin response (log2 fold-change
= 0.39); however, in absolute numbers, this relationshipwasmuchweaker than the negative
relationship between rWeight and arginine (log2 fold-change = −8.59). While the scales
of rWeight and rAUCins differ, the difference between the absolute fold changes remains
obvious even when adjusted for the relationship reported previously between rWeight and
rAUCins, where the impact of rWeight on rAUCins was fivefold (Delarocque et al., 2020a).
As weight gain is often associated with an aggravation of ID (Carter et al., 2010), the impact

Delarocque et al. (2021), PeerJ, DOI 10.7717/peerj.10764 9/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.10764


of rWeight on arginine might prevail on the effect of rAUCins when only one of these
measures is accounted for in the statistical model. Conversely, this result highlights that
different metabolic mechanisms appear to be triggered by weight gain and worsening of
ID.

Arginine is also known as an insulin secretagogue (Floyd et al., 1966), which might
explain why arginine was positively associated with rAUCins and negatively associated with
rWeight.

The rAUCins was also negatively associated with ADMA. However, the relevance for the
pathomechanism of ID or laminitis remains unknown as this molecule inhibits nitric oxide
synthesis (Bode-Böger, 2006).

The opposite impact of time and rAUCins on the urea cycle is consistent with previous
reports (Hamberg & Vilstrup, 1994). As expected, the induced hyperglycemia is associated
with a decrease in products of the urea cycle, while HI is not. The positive effect of rAUCins

on urea cycle metabolites might be mediated by a reduction of hyperglycemia, which would
imply an adequate insulin sensitivity of the liver even in insulin dysregulated horses.

Considerations on data analysis
Although rWeight has previously been reported to be linearly associated with rAUCins, it
should be acknowledged that the correlation between the two was essentially conditional
on the Group (see Methods/Animals) (Delarocque et al., 2020a). While the model was
adjusted for the effect of Group, the predictors were not. The raw correlation between
rWeight and rAUCins was moderate (r = 0.44), but the coefficients associated with the
predictors determined for eachmetabolite were barely affected by the exclusion of the other
variable of interest from the model (Fig. S1). As a result, the model used in the present
study does not appear to have been affected by collinearity.

It is necessary to map the metabolites to known pathways in order to perform MSEA.
This presupposes sufficient knowledge of both the pathways and the metabolites, but this
presumption is not fulfilled equally for all metabolites (in contrast to most genes). As an
example, glycerophospholipids were largely impacted by both rWeight and rAUCins but
unrepresented in MSEA, which could represent a form of bias.

CONCLUSIONS
The results supported a pro-inflammatory impact of weight gain and suggested that it
affects glutamate metabolism. The arginine concentrations were affected in opposite ways
by rWeight and rAUCins, potentially inducing vascular dysfunction but also involved
in the modulation of the insulin response. Both glutamate and arginine can easily be
supplemented orally, warranting the exploration of new adjunct dietary approaches to
hamper ID in future studies.
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