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Phonocardiography is a non-invasive technique for the detection of fetal heart sounds
(fHSs). In this study, analysis of fetal phonocardiograph (fPCG) signals, in order to achieve
fetal heartbeat segmentation, is proposed. The proposed approach (namely WT–FD) is
a wavelet transform (WT)-based method that combines fractal dimension (FD) analysis
in the WT domain for the extraction of fHSs from the underlying noise. Its adoption in
this field stems from its successful use in the fields of lung and bowel sounds de-noising
analysis. The efficiency of the WT–FD method in fHS extraction has been evaluated with
19 simulated fHS signals, created for the present study, with additive noise up to (3 dB),
along with the simulated fPCGs database available at PhysioBank. Results have shown
promising performance in the identification of the correct location and morphology of
the fHSs, reaching an overall accuracy of 89% justifying the efficacy of the method. The
WT–FD approach effectively extracts the fHS signals from the noisy background, paving
the way for testing it in real fHSs and clearly contributing to better evaluation of the fetal
heart functionality.

Keywords: fetal heart rate, fetal heart sound, fetal phonocardiogram, wavelet transform, fractal dimension
thresholding

INTRODUCTION

Fetal heart rate (fHR) observation is important for proper fetal well-being assessment during the
period of pregnancy. Electronic fetal monitoring (EFM) is a significant tool for the obstetrician,
in order to perform various tests at different stages of gestation to estimate the fetal health. The
typical examination until the 28th week of pregnancy is composed of continuous measurements
of the fetus growth, while at the stage of 29–40weeks, the monitoring of fetal movement, fetal
respiration, fHR, and others (Adithya et al., 2017) are included. In current practice, the examination
of the fetus is performed by means of ultrasonic-based equipment such as Doppler ultrasound and
cardiotocogram (Nassit and Berbia, 2015).

Although Doppler ultrasound and cardiotocogram are the typical fetal observation devices, these
techniques present some limitations, mainly because of the cost of the monitoring devices and the
complexity of their use, demanding an expert during data acquisition. Moreover, it has not been
established that the frequent and long-term exposure to ultrasound energy has no effect on either
the fetus or the mother (Salvesen, 2002).

Existing standards of fetal monitoring estimate the fetus and the mother physiology with
repetitive examinations. However, complications may occur during pregnancy, i.e., fetal deaths,
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preterm delivery, hypoxia, and other, which have no specific pre-
vision. Even though the literature is not robust about the risks and
their relation to the EFM, long-term fHR monitoring has proven
to be an effective approach for better accuracy in the clinical
examination of the fetus (Martin, 1998).

A passive alternative for long-term monitoring of the fetus
is the fetal heart auscultation. It is a non-invasive method that
records the vibroacoustic signals from the abdominal surface. The
acoustic signal produced by the fetal heart sound (fHS) can be
visually depicted in the fetal phonocardiograph (fPCG). We can
separate the fetal heartbeat into two sub-beats, the systolic beat S1
and the diastolic beat S2, which follows S1. The S1 and the S2 sub-
beats are generated by the vibratory components of the fetal heart
valves closure. The S2 sub-beats present smoother morphology
than the S1, making harder the detection of their location. A heart
cycle consists of the S1 and S2 sub-beats.

The research of fPCG signals aims to segment the S1 and S2
sub-beats, in order to study the wavelet morphology of the fHSs
and the fHR variability. Long-termmonitoring of the fHSs reveals
information about the fetus growth and functionality. Although
there is not enough knowledge about fHSmorphology, in order to
indicate any pathological conditions, the study of the fPCG signals
have shown promising results to the extension of the EFM and the
physical examination of the fetus (Adithya et al., 2017).

Auscultation is a low-cost and non-invasive method as it cap-
tures the acoustic signal of the fHSs. Moreover, the phonocardio-
gram device is a flexible method that does not need an expert
to record the signals. The mother can take long-term recordings
during the day or night and afterward, the doctor can exam-
ine the signals and have a more complete overview of the fetus
functionality.

Nevertheless, fetal auscultation hasmany challenges. Because of
the place of the fetus in the maternal abdominal, the fPCG signals
are loaded with noise from various sources such as maternal heart
sounds, digestive sounds, maternal and fetus respiration move-
ments, external noise, and others (Várady et al., 2003; Cesarelli
et al., 2012). In the noisy fPCG signals, the fetal heartbeats are
often masked by other components, consequently it is difficult to
detect without applying robust signal processing methods.

Throughout the years, various signal processing approaches for
de-noising the fPCG signal have been examined and proposed
(Unser and Aldroubi, 1996; Messer et al., 2001; Várady et al.,
2003; Xiu-Min and Gui-Tao, 2009; Chourasia and Mittra, 2010;
Chourasia et al., 2011, 2014). Among them, Khadra et al. (1991)
were the first to suggest the wavelet transform (WT) as a useful
tool for the analysis of heart sounds. Following, many researchers
concentrated on the study of wavelet-based techniques for these
signals. Vaisman et al. (2012) proposed the WT as a de-noising
tool for the determination of the fHR. At the same time, Kovács
et al. (2011) used autocorrelation technique, WT, and matching
pursuit for the evaluation of fHS. Recently, Chourasia and Tiwari
(2013) designed a new wavelet basis function for de-noising the
fPCG signals.

The present study was motivated from a previously proposed
method of Hadjileontiadis for the separation of lung and bowel
sounds from the background noise (Hadjileontiadis, 2005). The
latter technique uses a scheme of WT for de-noising the signals

and also fractal dimension (FD) analysis for the detection of
lung and bowel sounds. The so-called WT–FD filter introduces
an alternative way to the enhancement of bioacoustic signals,
applicable to any separation problem involving non-stationary
transient signals mixed with uncorrelated stationary background
noise (Hadjileontiadis, 2005).

In this study, the WT–FD method is suggested for the case of
fPCG signals, to effectively locate and extract the fetal heartbeat
from the underlying noise. Due to the highly noisy environment
and the low acoustic energy of the fetal heartbeat, WT is an effi-
cient method that decomposes the signal into multiple levels for
the subtraction of the unwanted stationary noise. Moreover, the
method is flexible since it uses short windows at high frequencies
and long windows at low frequencies making the wavelet function
more similar to the waveforms of the signal. Furthermore, FD
analysis is frequently used in biomedical signal processing. There
are studies of FD performance at electroencephalograms for the
detection of the onset of epileptic seizures and also at electrocar-
diogram signals for the classification of arrhythmia with satisfying
results (Mishra and Raghav, 2010; Polychronaki et al., 2010).

The rest of the paper is formed as follows. Section “Mathe-
matical Background” describes the mathematical background of
WT and FD definitions, while Section “The WT-FD Method”
presents the proposed method. Section “Implementation and
Evaluation Issues” describes the databases that the method was
tested and the general indices that used for its evaluation.
Finally, Section “Results” confers some experimental results,
which evaluate the efficiency of WT-FD algorithm in fPCG sig-
nals, and Section “Concluding Remarks” concludes the paper with
suggestions for future work.

MATHEMATICAL BACKGROUND

Wavelet Transform
Wavelets are families of functions ψa ,b(t) generated from a single-
base wavelet ψ(t) called the “mother wavelet,” by dilations and
translations (Hadjileontiadis and Panas, 1998; Olkkonen, 2011),
i.e.,

ψa,b (t) =
1√
a

ψ
(
t − b
a

)
, a > 0, b ∈ R, (1)

where a is the dilation (scale) parameter and b is the translation
parameter.

In the past few decades, wavelet analysis has been proved to be
an important tool in biomedical engineering. The use of WT in
fPCG signals is driven by the nature of the signals itself. Explosive
peaks in the time domain produce large coefficients over the
wavelet scales, while the noisy background dies out swiftly with
increasing scale. In WT, the signal is decomposed into coarse and
detail information using a pair of finite impulse response filters
(and their adjoins), which are low-pass and high-pass, respectively
(Hadjileontiadis, 2005). The process can be described as a tree,
which at each step decomposes the low-pass filter into further
lower and higher frequency coefficients. Thus, the original signal
is decomposed into coefficients of lower resolution, and the high
frequency coefficients are not analyzed any further. This scheme
is a wavelet-basedmultiresolution decomposition, and it is known
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as Mallat algorithm (Mallat and Peyré, 2009). The procedure that
uses the coarse and the detail coefficients and yields back to the
original signal is multiresolution reconstruction.

In the proposed de-noising method, the decomposition–
reconstruction scheme was based on the orthonormal bases and
the quadrature mirror filters introduced by Daubechies (1988).
This wavelet family was chosen because of the morphology of the
mother wavelet, comparatively the waveforms of the fPCG and the
testing of other wavelet families.

Fractal Dimension
Fractals are mathematical sets, which describe many natural
phenomena with geometrical complexity (Mandelbrot, 1982;
Esteller et al., 2001). The term “fractal dimension” can more
generally refer to any of the dimensions commonly used for
fractals characterization (e.g., capacity dimension, correlation
dimension, information dimension, Lyapunov dimension, and
Minkowski–Bouligand dimension) (Hadjileontiadis, 2005). More
accurately, the FD is a priceless tool that reflects the signal com-
plexity in the time domain. Here, FD was adopted as a means to
detect the most important WT coefficients that correspond to the
fetal heartbeat in the WT domain, resulting, simultaneously, in
significant computational savings.

The FD technique is performed using a sliding window of
W= int(0.05·Fs) samples length, where int(·) indicates the integer
part of the argument, the constant is empirically set at 0.05 justi-
fying the efficient performance of the algorithm, and Fs denotes
the sampling frequency of the signal. It is noticed that when theW
window is small, toomany false FD peaks are generated and when
it is big, the estimated FD is smoothed so the algorithm chooses
the false peaks.

Let the processing signal be an N-sample vector. Then, theW-
sample window is one-sample shifted along the N-sample input
vector in order to obtain point-to-point values of the estimated
FD. Every estimated FD obtained with the sliding window is
assigned to its midpoint. In this way, the length of the final
sequence of the FD(i) is lower than N. This length is extended
to comply with the N-sample length of the original input vector,
assigning the FD(1) and FD(N −W + 1) estimated values to the
first and last half of theW − 1 missing values, respectively. In this
study, we used the Katz’s definition of FD as it is proposed by
Hadjileontiadis and Rekanos (2003) for the detection of explosive
lung and bowel sounds.

According to Katz (1988), the FD of a curve defined by a
sequence of N points is estimated by

FD =
log10(n)

log10
(

d
Lc

)
+log10(n)

, (2)

where Lc is the total length of the curve, realized as the sum of
distances between successive points, i.e.,

Lc =
N−1∑
i=1

dist(i,i+1), (3)

where dist(i,j) is the distance between the i and j points of the
curve; d is the diameter estimated as

d = max[dist(i,j)], i ̸= j, i, j ∈ [1,N], (4)

for curves that do not cross themselves; usually, the d diameter is
estimated as the distance between the first point of the sequence
and the point of the sequence that provides the farthest distance,
i.e.,

d = max[dist(1, i)], i, j ∈ [2,N], (5)

and ns is the number of steps in the curve, defined as

ns =
Lc
α

, (6)

where α denotes the average step, i.e., the average distance
between successive points.

THE WT–FD METHOD

WT–FD Iterative Procedure
The WT–FD method is an iterative procedure performed in
order to achieve the best separation of fetal heartbeat from the
superimposed noise. The amplitude normalized N-sample input
vector X[n] (n= 1, . . .,N), is subjected to the WT–FD technique
and is separated into two parts, i.e., Xk

S [n] and Xk
U [n], the non-

stationary desired signal and the stationary background noise,
respectively. After that, the process continues iteratively with the
vector Xk

U [n] serving as a new X[n] input signal to the next iter-
ation, and the resulted vectors across all L iterations, i.e., X[n]1:L,
are used for the final reconstruction (Hadjileontiadis, 2005). The
iterative procedure stops when the following stopping criterion is
satisfied:

STC =
∣∣∣E{

Xk−1
U [n]2

}
− E

{
Xk
U[n]2

}∣∣∣ < ε,

k-th iteration, n = 1, . . . ,N, (7)

where E{·} denotes the expected value. The parameter ε is a small
positive number (0 < ε ≪ 1.0) that corresponds to the desired
accuracy in procedure. The initial value of X0

U [n] is considered to
be equal to 0.When the STC criterion is satisfied after L iterations,
the final reconstruction of the signal is achieved with the Xk

S [n]
vectors as follows:

XREC [n] =
L∑

k=1

Xk
S[n], n = 1, . . . ,N, (8)

A schematic representation and further details about the
WT–FD filter can be found in Hadjileontiadis (2005).

WT Coefficient Estimation and Selection
In this study, the Daubechies 4 wavelet family (Daubechies,
1988) has been chosen for de-noising the signal. As described in
Section “Wavelet Transform,” WT decomposes the input fPCG
signal X[n] (n= 1, . . .,N) into R detail coefficients WTm[n]
(m= 1, . . .,R). The number R of the adjustment resolution scales
is estimated by log2 N. An example of an fPCG signal is presented
in Figures 1A–H, where the original signal is decomposed into
seven levels. It is clearly depicted that the first WT level contains
only noise and the last three do not contain any important com-
ponents of the signal. Hence, from the R estimated coefficients
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FIGURE 1 | Wavelet transform (WT) decomposition on a simulated fetal
phonocardiograph signal. (A) The original signal X [n]. (B–H) The seven
decomposed levels of the input signal.

the algorithm selects those including important information and
leaves out those including background noise, as described next.

First, from theR estimatedWTresolution levels, the firstD ones
are discarded according to the following criterion:

D = min
{

λ : η′
1 − η′

λ+1 ≤ 0.4
}
, (9)

and from the J= (R−D) coefficients, the firstM ones are selected
according to the following criterion (Hadjileontiadis, 2007):

M = min
{

λ :
∣∣η′

λ
∣∣ > p∧ ∣∣η′

λ+1
∣∣ ≤ p∧ η′′

λ > 0
}
, (10)

with

ηλ = 1−
∑λ

i=1E{WTi(n)2}∑J
i=1E{WTi(n)2}

, λ = 1, 2, . . . , J n = 1, 2, . . . ,N,

(11)

where η′
λ and η′′

λ denote, respectively, the first and second
derivatives of ηλ with respect to λ, p is a small number close to
0 that serves as a threshold, which accounts for the fluctuation of
the first derivative around 0, and E{·} denotes the expected value;
here, p was empirically set equal to 0.01.

FD-Based S1 and S2 Selection
The fHS segmentation is performing using the FD method across
the selectedWTj[n] (j= 1, . . .,M)WT level. Specifically, the win-
dowing Katz definition of FD as it is described in Section “Fractal
Dimension” is performed at every selected coefficient. Then, the
estimated FDi

j [n] (i-th iteration, j-th selected coefficient) are
fed to the FD-peak peeling algorithm (FD-PPA), as it is proposed
by Hadjileontiadis (2005), in order to automatically detect the FDi

j
peaks. Through a self-adjusted iterative procedure, the FD-PPA
iteratively “peels” the estimated FD signal, gradually gathering
those parts that construct its peaks, resulting in the FDPPij [n]
sequence as it is shown in Figures 2A–C. Hence, the algorithm
aims to search for the lower peaks, such as the S2 fetus heartbeats,
which correspond to the low amplitude coefficients.

In the present study, each WTj[n] (j= 1, . . .,M) coefficient is
separated in smaller epochs for better FD assessment. Therefore,
the FD estimation is more accurate considering the lower peaks.
The normal duration of a fetal heart cycle is 430ms and, con-
sequently, a mean value for each epoch is at 430ms in order to
contain at least one S1 and one S2 heartbeat. Every epoch is fed in
the FD-PPA iteration procedure and then reunited in the WTj[n]
(j= 1, . . .,M) coefficient estimation.

The FD-PPA iteration procedure starts with a threshold opera-
tion based on the SD of the vector FDi

j [n] as follows:

pFDi
j =

{
FDi

j, FDi
j > μi + σi

1.0, elsewhere
, i = 1, . . . , L1; j = 1, . . . ,M,

(12)
where μi = mean(FDi

j) is the mean value of the FDi
j vector,

σi = std(FDi
j) is the SD of the FDi

j vector, and L1 is the number of
the self-adjusted iterations. Thus, the vector zi = FDi

j − pFDi
j +

μi is created, and 1.0 is the minimum value of the estimated
FD sequence. The iterative procedure stops when the following
stopping criterion is satisfied:

SCi =
∣∣∣∣E{(

zi
)2

}
− E

{(
zi−1

)2
}∣∣∣∣ < acc, i = 1, ..., L1, (13)

where E{·}, as in the former stopping criterion, denotes the
expected value, the parameter acc is a small positive number
(0< acc≪ 1.0) that corresponds to the desired accuracy in the
procedure, and the initial value of z0 is equal to 0. When the
stopping criterion is not satisfied, the vector FDi

j is replaced by
the vector zi, and it continues the iterative procedure. When the
stopping criterion is satisfied, the FD-PPA generates the FDPPkj
sequence of the j-th WT coefficient as follows:

FDPPk
j =

L1∑
i=1

pFDi − (L1 − 1), k = 1, ..., L; j = 1, ...,M, (14)
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FIGURE 2 | A working example of the production procedure of the binary
thresholds SBTH1

3 and NBTH1
3 derived from the application of the wavelet

transform (WT)–fractal dimension (FD) filter to a case of fetal
phonocardiograph recording. These results refer to scale j= 3 and iteration
k= 1 during the application of the WT–FD filter to the input signal. (A) WT3,
the third WT coefficient, (B) FD1

3, the estimated FD using Katz’s definition by
Eq. 2, (C) FDPP1

3, the output of the FD-peak peeling algorithm, (D) SBTH1
3,

the signal binary threshold, and (E) NBTH1
3, the noise binary threshold.

where L is the iteration number of the procedure that is described
in Section “WT–FD Iterative Procedure.” After the FD-PPA
implementation, the small peaks that do not correspond to any
sound and their duration is less than int(0.015Fs), and their nor-
malized amplitude less than 0.25 are removed. Again, int(·) indi-
cates the integer part of the argument, the constant is empirically
set at 0.015, and Fs denotes the sampling frequency of the signal.
Subsequently, the FDPPkj sequence is generated and thereafter two
binary thresholds are constructed, as shown in Figures 2D,E. The
first binary threshold, i.e., SBTHk

j is used for segmenting the WT
coefficients that are related to the desired signal, while the second
one, i.e., NBTHk

j is used for segmenting the WT coefficients that
are related to the background noise. These two binary thresholds
are defined as follows:

SBTHk
j =

{
1, FDPPkj ̸= 1
0, FDPPkj = 1

, (15)

NBTHk
j =

[
1 − SBTHk

j

]
, k = 1, ..., L; j = 1, ...,M, (16)

The multiplication of the SBTHk
j with the WT coefficient gives

a set of de-noised signals that create the Xk
S [n] vectors as defined

in Section “WT–FD Iterative Procedure,” while the multiplication
of the NBTHk

j with the WT coefficients gives the set of the
Xk
U [n]. Figures 2A–E gives an example where a working scheme

of the proposed method is presented on the third WT level of an
input signal. It shows that the FD method successfully detects the
location of the sounds by using the binary sequences, and it sep-
arates the non-stationary bioacoustics signal from the stationary
background noise.

In this study, the final goal is to segment the fHS and separate
the S1 from the S2 beats. The decision between S1 and S2 is based
on the fact that in a cardiac cycle the diastolic duration is longer
than the systolic one (Papadaniil and Hadjileontiadis, 2014). For
that reason, the following inequality is checked:

S(2i + 1) − S(2i) < S(2i + 3) − S(2i + 2), (17)

where S(l) is a vector that is created by the binary threshold
SBTHk

j , and it contains the locations of the start and the end
of every fetal heartbeat. Moreover, i= 1, . . ., (N1/2)− 2, where
N1 is the length of the S(l) vector. If Eq. 17 is true, the inter-
val [S(2i+ 1):S(2i+ 2)] corresponds to S2, otherwise, it corre-
sponds to S1. The first and the last heartbeat of the signal are
not determined from this inequality. Hence, they need to be
separately defending. For i= 1, if Eq. 17 is true, then the sec-
ond sound [S(4):S(5)] is S2 and the first sound [S(1):S(2)] is S1.
Respectively, for i= (N1/2)− 2, if Eq. 17 is true, the last sound
[S(N1 − 1):S(N1)] is defined as S1.

A criterion of each estimated fetal heartbeat amplitude and the
distance between fetal heart cycles is also considered for better
decision between S1 and S2 beat. In the literature, the mean
amplitude of a fetal S1 beat is equal to 0.7 (Cesarelli et al., 2012),
and the distance between fetal heart cycles, i.e., between S2 and the
following S1, depends on the fHR. The smaller distance between
fetal heart cycles is in case of tachycardia and is about 140ms.
Thus, for the decision between S1 and S2 beat, the S1 estimated
beat must surpass the 0.5 normalized amplitude and the S2, S1
inter-distance must be outdistance within 130ms.

IMPLEMENTATION AND EVALUATION
ISSUES

The analysis of this study was applied on a personal computer
using Matlab R2015a and tested on simulated databases. Every
input signal was tested for 10 s considering Fs = 1,000Hz, i.e.,
10,000 samples.

For the purposes of this research and the algorithmic develop-
ment of the WT–FD method, a database with fPCG signals was
created. Each signal contains simulated S1 and S2 auscultation
sounds created by Hadjileontiadis using the model of Chen et al.
(1997) and Xu et al. (2001) and adjusted to the duration of fetal
heartbeat. The inter-distance between S1 and S2 heart sounds
is given by the expression SSID= 210− 0.5 ·fHR according to
Kovacs et al. (2000). Moreover, in order to represent the noise
presence, additive white Gaussian noise was used, resulting in
signal-to-noise-ratio (SNR) within the range of SNR= [8, 3] dB.
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The SNR values were computed according to the following steps;
measure the power of the signal (Ps), convert the given SNR in
decibels (SNRdB) to linear scale according to SNRlinear = 10

SNRdB
10 ,

and finally create the noise vector from Gaussian distribution of
specific noise variance according to noise =

√
PS

SNRlinear
· random,

where random is a vector of normally distributed random num-
bers with the signal length.

The database consists of signals with different heart condi-
tions corresponding to cases such as tachycardia, bradycardia,
and arrhythmia. Specifically, after the 20th week of gestation, the
fHR is stabilized between the 110 and the 160 bpm. Thus, for
the normal heartbeat signals, the fHR was set at 140 bpm, for
the bradycardia signals at 110 bpm, for the tachycardia signals at
180 bpm, and for cases of arrhythmia a range of 80–200 bpm was
considered. Hence, many signals with different conditions and
different values of additive white Gaussian noise were created and
used for testing the present study.

Furthermore, for better assessment of the WT–FD technique,
the method was tested on the simulated fPCGs database avail-
able via PhysioBank.1 PhysioBank is a large archive of digital
recordings of physiological signals and related data for use by the
biomedical research community (Goldberger et al., 2000). The
simulated fPCG database was created by Cesarelli et al. (2012)
and Ruffo et al. (2010). This data set is a series of synthetic
fPCG signals related to different fetal states and recording con-
ditions. Simulated fPCG were generated as a sequence of frames,
each of which includes simulated S1 and S2 signals, corrupted
by noise. These signals are qualified by a range of SNR val-
ues that were computed in decibels according to the following
formula:

SNR = 10log10

(
Ps
Pn

)
, (18)

where Ps and Pn are the power of fHS and the power of the
noise, respectively. The noise source was simulated by generating
maternal and fetal noise, maternal first heart sound, white Gaus-
sian noise, environmental noises, and limited duration impulses
considering as sensor noises. The epoch lengths were set equal to
430 and 400ms for the analysis of the PCG drawn from the two

1https://physionet.org/physiobank/database/simfpcgdb/.

databases, respectively, using in both databases a window length
of 50 samples.

General Evaluation Indices
The effectiveness of the WT–FD technique was tested via three
general evaluation indices. The first QP index calculates the effi-
ciency of the algorithm in the correct detection of the S1 and S2
fetal heartbeat and its performance in the detection of locations
that are not related with existing sounds. The QP index is defined
as follows:

QP = 100
√

SC
SO

SC
SP

, (19)

where SO is the number of sounds that every record contains,
SP is the number of sounds that the proposed algorithm detects,
and SC is the number of the SP sounds matching the SO sounds.
Since the signals are simulated, the location of the existing sounds
is specific, i.e., the SO number. For the SC number, the fHS was
assumed to have been correctly detectedwhen the estimated peaks
lied in the intervals [S(2i+ 1):S(2i+ 2)], i.e., the start and end of
each existing heart sound.

Furthermore, the second DR index indicates the percentage of
the sounds that theWT–FD algorithm correctly detects out of the
total number of sounds that it detects. The DR index is defined as
follows:

DR =
SC
SP

100. (20)

Conclusively, the third SF index indicates the percentage of the
sounds that the algorithm detects correctly out of the real fHS that
every record contains. The SF index is defined as follows:

SF =
SC
SO

100. (21)

The above three indices were calculated for the evaluation of
the testing WT–FD method, and the results are presented in
Section “Results”.

RESULTS

As mentioned in Section “General Evaluation Indices,” the WT–
FD technique was tested on two simulated databases of fPCG sig-
nals. The results of this assessment are presented inTables 1 and 2

TABLE 1 | Performance of the wavelet transform–fractal dimension filter for cases of simulated fetal phonocardiograph signals created by Hadjileontiadis.

Fetal heart rate Signal-to-noise-ratio S1, S2 S1 S2

QP% DR% SF% QP% DR% SF% QP% DR% SF%

140 8 100 100 100 100 100 100 100 100 100
5 100 100 100 100 100 100 100 100 100
3 100 100 100 100 100 100 100 100 100

110 8 97.3 100 94.7 100 100 100 94.6 100 89.5
5 97.3 100 94.7 100 100 100 94.6 100 89.5
3 98.7 100 97.3 100 100 100 97.3 100 94.7

180 8 97.5 100 95 98.3 100 96.7 96.6 100 93.3
5 97.5 100 95 98.3 100 96.7 96.6 100 93.3
3 95.6 98.2 93.3 96.7 96.7 96.7 94.9 100 90

Arrhythmia 8 92.8 100 86.4 97.7 100 95.5 87.9 100 77.3
5 94.1 100 88.6 97.7 100 95.5 90.5 100 81.8
3 92 100 84.1 97.7 100 95.5 85.3 100 72.7
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TABLE 2 | Performance of the wavelet transform–fractal dimension filter for signals of PhysioBank.

Signal-to-noise-ratio S1, S2 S1 S2

10log10

(
Ps
Pn

)
QP% DR% SF% QP% DR% SF% QP% DR% SF%

−6.6 94.9 100 90 100 100 100 89.4 100 80
−11.3 96.6 100 93.3 100 100 100 93 100 86.7
−15.7 87.8 92.6 83.3 93 100 86.7 82.8 85.7 80
−17.2 88.1 89.7 86.7 93 100 86.7 83.9 81.2 86.7
−22.1 68.9 67.7 70 89.4 100 80 53.3 47.4 60
−24.4 66 93.3 46.7 85.6 100 73.3 38.7 75 20
−26.3 62 82.4 46.7 77.5 100 60 45.6 62.5 33.3

where theQP,DR, and SF indices are tabulated, providing a means
for the evaluation of the performance of the WT–FD algorithm
for the detection of the fetal S1 and S2 heartbeat and also each
fHS separately.

In particular, Table 1 presents the cases of 12 simulated fPCG
signals created for the present study and consists 4 different fHRs
and 3 different SNR values (white Gaussian noise). From Table 1
it is clear that the WT–FD method is efficient for multiple condi-
tions. The QP index indicates that in all cases of fHR the WT–FD
correctly predicts almost all the observed sounds in different SNR
values up to 3 dB. Specifically, in cases of normal fHR (140 bpm),
the algorithm has mean performance 100%. In cases of tachy-
cardia (180 bpm), bradycardia (110 bpm), and arrhythmia, the
efficiency of the method is slightly lower although it is sufficiently
effective in the detection of the S1 beat locations.

Moreover, Table 2 presents the cases of seven simulated fPCG
signals fromPhysioBankwith different SNR values. Results for the
cases of normal fHR with a range of SNR noise lying in [−26.3,
−6.6 dB] demonstrate that the WT–FD algorithm segments and
detects almost all the observed heart sounds and has a mean
accuracy 81%. However, it is clear that the lower the SNR value,
the harder it is for the WT–FD to segment and select the correct
S2 fetal heartbeat. Very low SNR (less than −22.1 dB) makes the
S2 sound difficult to distinguish from the noise. The DR index
declares that, despite the fact that the algorithm misses a few
heartbeats, it does not detect false locations. Most of the detected
sounds are assigned to real fetal heartbeat locations. Furthermore,
it is notable that all the detected S1 beat locations refer to real
sounds.

Figure 3 shows the efficiency of the WT–FD technique to
recognize the fHS in signals with unexpected noise presence.
Figure 3A corresponds to the X[n] unprocessed signal, and
Figure 3B corresponds to the XREC[n] segmented reconstructed
signal. In X[n] signal it is obvious that there is a noisy segment,
which ismarkedwith an arrow, thatmasked the S2 heart sound. In
the XREC[n] signal it is clear that theWT–FD successfully extracts
the sound.

The proposed WT–FD approach was also tested in real fPCG
signals from a small pilot study, involving recordings from three
pregnant women. The fPCG signals were recorded using vibra-
tion sensors (cost $1 each) embedded in high definition 3D-
printed plastic harnesses. Each harness holds a ceramic piezo
vibration sensor (35mm diameter) on the maternal abdomen
with rubber-made cushion to minimize the shear noise. The 3D-
printed harness is designed with precise parameters that rigidly

FIGURE 3 | Experimental result from the application of the wavelet
transform–fractal dimension scheme to simulated fetal phonocardiograph
signal. (A) X [n] represents a section of 5,000 samples of a normal heart rate
case with unexpected robust noise. (B) XREC[n] corresponds to the
normalized treated signal without the overlap of noise. The arrows indicate the
location of the S2 sound that the algorithm efficiently reveals.

mount the piezo sensor. Each sensor picks fPCG signals through
a coaxial cable having very high insulating resistance. Power lab
data acquisition system by AD instrument2 was used to record the
abdominal phonograms at a sampling frequency of fs = 1,000Hz.

A characteristic example of one channel fPCG recording (time
section of 3 s) with maternal heart rate of 96 bpm and fHR of
145 bpm is shown in Figure 4A. From the latter, it is clear that the
fPCG signal is modulated by noise from various sources, and the
most intense interferences are the mother’s respiratory and heart
sounds. Figure 4B shows the fourth level of the estimated WT
coefficients from the eight level WT decomposition. TheWT–FD
method selects these WT coefficients that include information
regarding the signal of interest, i.e., fHSs, based on the criterion
(Eq. 9). For the real fPCG data processing, the constant of the

2http://www.adinstruments.com.
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FIGURE 4 | Analysis results when wavelet transform (WT)–fractal dimension
(FD) filter is applied to a part of real data. (A) A time section of 3 s of the real
fetal phonocardiograph recording, with maternal heart rate of 96 bpm and
fetal heart rate of 145 bpm. (B) The fourth level of the estimated WT
coefficients selected for the detection of the fetal heart sounds (fHSs). (C) The
result of the de-noised fHS signal after the final WT–FD analysis with S1 and
S2 denoting the first and second fHS, respectively.

criterionwas set at 0.001, leaving out the first three decomposition
levels and including only those with embedded fHSs. Finally,
Figure 4C depicts the estimated fHS signal, i.e., the detected S1
and S2 fHSs, marked with (S1) and (S2), respectively, as the final
output from the proposed WT–FD method. Note that, in some
cases [Figure 4C around (0.5–1.5 s)], three S2 fHSs were missed
by the WT–FD filter due to their lower intensity, compared to the
neighboring S1 ones and the local background noise. Neverthe-
less, when comparing the original recording of Figure 4Awith the
outputted fHS signal from the WT–FD approach in Figure 4C, a
clear contribution to the enhancement of the fHS signal from its
original recording is evident.

It should be noted that the fHSs are not perfectly periodic due
to the heart rate variability. It can be seen that, despite the noisy
signal, the WT–FD method successfully identifies the fHSs and
their time location and duration, giving the physicians the means

to estimate the fHSs and the fHR. The wavelet morphology of
the sounds could vary with different pathophysiological condi-
tions. This is of great importance when the fHSs are continuously
recorded for long-term analysis.

CONCLUDING REMARKS

The fPCG signals are of low amplitude and loaded with heavy
noise. The sources of the noise, i.e., maternal sounds, fetal move-
ment, sound produced by the transducer, and other, are overlap-
ping the main fHS. The literature in the area of fetal auscultation
is not strict about the intensity of background noise and the inten-
sities of S1 and S2 heartbeat, because of the different auscultation
devices but also due to the different gestation age. Nevertheless,
it is possible to argue that the amplitude of the stationary back-
groundnoise did not fully overlap the fHS, and that the SNRvalues
that have been tested in the present study were sufficient samples
of heavily loaded signals. However, as it was shown by the testing
results, the WT–FD scheme is quite satisfactory in the analysis
of the fHS. This first approach of the research in fPCG signals
reveals sufficient information, which indicates that this technique
can be a promising fHS segmentation tool. Furthermore, there are
perspectives for low-cost and continuous recordings in homecare
setups and diagnosis of conditions related, for example, to fetus
maturation or specific abnormalities.

Future work will focus upon the extension of WT–FD to real
recorded signals for a better review of fetal functionality and
the fetal heart cycle. Moreover, multichannel recordings could
be considered, taking into account the spatial orientation of the
fetus and the proximity to the mother’s heart sound noise. As
phonocardiography has been an important field in the research
area related to the fetus for some time, efficient characterization of
fetal heartbeat could contribute to the automated determination
of fetus parameters. In this vein, the determination of multiple
fetus health datamay reveal new aspects, which could improve the
safety of pregnancies.
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