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Background: At present, few studies have reported the metabolic profiles of lung tissue in
patients with COPD. Our study attempted to analyze the lung metabolome in male COPD
patients and to screen the overlapping biomarkers of the lung and plasma metabolomes.

Methods:We performed untargeted metabolomic analysis of normal lung tissue from two
independent sets (the discovery set: 20 male COPD patients and 20 controls and the
replication set: 47 male COPD patients and 27 controls) and of plasma samples from 80
male subjects containing 40 COPD patients and 40 controls.

Results:We found glycerophospholipids (GPs) and Amino acids were the primary classes
of differential metabolites betweenmale COPD patients and controls. The disorders of GPs
metabolism and the valine, leucine and isoleucine biosynthesis metabolism pathways were
identified in lung discovery set and then also validated in the lung replication set. Combining
lung tissue and plasma metabolome, Phytosphingosine and L-tryptophan were two
overlapping metabolites biomarkers. Binary logistic regression suggested that
phytosphingosine together with L-tryptophan was closely associated with male COPD
and showed strong diagnostic power with an AUC of 0.911 (95% CI: 0.8460-0.9765).

Conclusion: Our study revealed the metabolic perturbations of lung tissues from male
COPD patients. The detected disorders of GPs and amino acids may provide an insight
into the pathological mechanism of COPD. Phytosphingosine and L-tryptophan were two
novel metabolic biomarkers for differentiating COPD patients and controls.
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a chronic
inflammatory disease of the airway. With high mortality and
morbidity, it has caused a huge global burden and would be the
third leading cause of death worldwide (Quaderi and Hurst,
2018). COPD is a heterogeneous disease with complicated
pathogenic mechanism which has not been fully elucidated. In
prior researches, whole genome sequencing, transcriptomics and
proteomics have been widely utilized for biomarker screening and
molecular mechanism research (Kan et al., 2017). A large number
of genes and protein molecules have been determined to be
associated with COPD (Stockley et al., 2019). Metabolites have
also been implicated in various pathological processes in recent
years (Johnson et al., 2016). Metabolites associated with diseases
not only work as the promising biomarker for disease screening,
but also provide an insight into the pathogenesis of disease
(Arakaki et al., 2008). Therefore, researches identifying
promising metabolite biomarkers to screen patients with
COPD and to elucidate the pathogenic mechanisms associated
with metabolites are warranted.

Metabolomic, the profiling of metabolites, is an emerging
approach to identifying metabolite biomarkers and discovering
the perturbed metabolic pathways that may help to elucidate the
mechanisms governing COPD development (Johnson et al.,
2016). Untargeted metabolomics can measure the widest array
of metabolites in a clinical sample and has been implemented in
recent years to uncover changes in metabolic pathways and
identify novel biomarkers in many different diseases (Chen
et al., 2019; Puchalska et al., 2019; Bunning et al., 2020; Liu
et al., 2020; Thome et al., 2020). Metabolic disorders have also
been identified in COPD patients. Previous studies have focused
on the metabolism profiling of plasma (Paige et al., 2011), exhaled
breath condensate (EBC) (Kilk et al., 2018), bronchoalveolar
lavage fluid (BALF) (Yu et al., 2019), and induced sputum
(Telenga et al., 2014) of patients or plasma and serum from
the mouse model of emphysema or bronchitis caused by cigarette
smoke (CS) (Cruickshank-Quinn et al., 2014; Ren et al., 2016). It
is worth noting that samples in those studies could not reflect the
metabolism of lung directly and the differential metabolites have
not been validated in another independent set. Lung tissue from
COPD patients is a more direct reflection of metabolism of the
lung, however, has been rarely study. Though a recent study with
a limited sample size reported the metabolomic of para-cancer
tissue from lung cancer patients with COPD (Li et al., 2020), more
studies with normal tissue away from lung nodules with a larger
sample size are necessary.

Considering that lung tissue is a direct reflection of the
metabolism of lung cells and has been rarely explored and the
prevalence of COPD in men is more than twice that of women
(Fang et al., 2018), we collected two independent sets of lung
tissues from male COPD patients and controls to perform
untargeted metabolomics analysis. We attempted to screen and
further validate the differential metabolites associated with male
COPD and disordered metabolic pathways. Furthermore, we also
performed plasma metabolomic analysis to determine the
overlapping metabolites between plasma and lung tissue; these

metabolites would be more precise biomarkers to effectively
discern COPD patients from controls.

MATERIALS AND METHODS

Patient Sample Collection
All samples were collected from Tongji Hospital of Tongji
Medical College, Huazhong University of Science and
Technology, Wuhan, Hubei, China. we obtained approval
from the ethics committee of Tongji Hospital, Huazhong
University of Science and Technology, Wuhan, Hubei, China,
and each subject signed an informed consent form before the
collection of samples.

For the lung discovery set, lung tissues were collected from 20
male patients with COPD and 20 controls. For the lung validation
set, lung tissues were collected from 47 male patients with COPD
and 27 controls. All subjects with lung tissue collected had
undergone a surgical operation for lung nodules after
undergoing pulmonary function testing. Specimens were
dissected at a distance of more than 5 cm from the tumor.
Furthermore, the collection of plasma samples was also
implemented in 40 patients and 40 controls (20 patients and
20 controls were the same subjects as subjects in the lung
discovery set, while the other 20 patients and 20 controls were
collected from a follow-up cohort study in Hankou, Wuhan,
China). In our study, COPD was diagnosed according to the
global initiative for chronic obstructive pulmonary disease
(GOLD). Subjects with respiratory infection or other chronic
pulmonary diseases (asthmas, bronchiectasis and interstitial lung
diseases (ILDs)), having systemic steroid use within the previous
4 weeks, or who had a history of other cancers were excluded.
All samples collected were stored in a freezer at a temperature
of −80°C until use.

Sample Pretreatment for LC-MS
50 mg of each lung tissue was weighted out and 200 μL extracting
solution (extracting solution is 80% methanol containing
L-Phenylalanine-D8, L-Valine-D8, Taurine (1, 2-13C2), 2-
Chloro-L-phenylalanine as internal standard. The
concentrations of internal standards were 5 μg/ml) was added
to it. The mixture was homogenized six times, 1 min at 60 Hz for
each time. Then the mixture was centrifugalized at 10,000 rpm,
4°C for 15 min. The supernatant was transferred to sampler vials
for detected. 100 μL of each plasma sample was taken out and
400 μL extracting solution was added to it. The mixture was
mixed by vortex mixer for 5 min and centrifuged at 13,000 rpm,
4°C for 15 min. The supernatant was transferred to sampler vials
for detected. An in-house quality control (QC) was prepared by
mixing equal volume of each sample.

LC-MS Analysis
A 1290 InfinityⅡUHPLC system coupled with a 6545 UHD and
Accurate-Mass Q-TOF/MS was used for LC-MS analysis (Agilent
Technologies, CA, USA). Considering that different
chromatographic columns have different sensitivities to detect
metabolites, two different chromatographic columns have been
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used to screen more metabolites associated with COPD in our
study. And the two chromatographic columns used were Waters
XBridge UPLC BEH T3 (2.1 × 100 mm, 2.5 μm) and Waters
XBridge UPLC BEH Amide (2.1 × 100 mm, 2.5 μm). For Waters
XBridge UPLC BEH T3: Mobile phase A was 0.1% formic acid.
Mobile phase B consisted of acetonitrile solution with 0.1%
formic acid. The flow rate was 0.4 ml/min, the column
temperature was 25°C and the injection volume is 4 μL.
Gradient elution condition was set as follows: 0-2 min, 2% B;
2-13 min, 2-98% B; 13-15 min, 98% B. Post time was set as 6 min
for system balance. For Waters XBridge UPLC BEH Amide:
Mobile phase A was composed of 0.1% formic acid and
10 mM ammonium formate. Mobile phase B consisted of
acetonitrile solution with 0.1% formic acid. The flow rate was
0.4 ml/min, the column temperature was 25°C and the injection
volume was 4 μL. The gradient elution was set as follows: 0-1 min,
95% B; 1-3 min, 95–85% B; 3-13 min, 85–60% B. Post time was set
as 5 min for system balance.

Mass spectrometry was operated in both positive and negative
ion modes. The parameters optimized were as follows: Capillary
voltage in positive and negative mode was 4 and 3.5 kV,
respectively, drying gas flow was 101/min, gas temperature
was 325°C, nebulizer pressure was 20 psig, fragmentor voltage
was 120 V, skimmer voltage was 45 V and mass range was
50–1100 m/z. Reference ions were used during MS acquisition
process to ensure mass accuracy. Reference ions in positive ion
mode: 121.0509, 922.0098. Negative ion mode: 112.9856,
1033.9981.

Acquired raw data were converted to the mz.data format by
Agilent Masshunter Qualitative Analysis B.07.00 software
(Agilent Technologies, USA). In the R software platform, the
XCMS program was used for peak identification, retention time
correction, and automatic integration pretreatment. Next, the
data were subjected to internal standard normalization and
weight normalization. Visualization matrices containing the
sample name, m/z-RT pair and peak area were obtained.
Putative metabolite annotation was performed using the
Human Metabolome Database (HMDB), METLIN and
PUBCHEM Database, and output matched to an in-house
accurate mass/retention time library of reference standards
(Wishart et al., 2013; Naz et al., 2017).

Statistical Analysis
The Baseline characteristics of the study subjects were
collected and described. Student’s t-test for continuous
variables and a chi-square test for categorical variables were
implemented to uncover the differences in fundamental
characteristics of study subjects. With p-values < 0.05
serving as the threshold for significance, statistical analyses
were performed using GraphPad Prism 8.0.1.

For metabolic profiling data, multivariable analysis,
orthogonal partial least squares-discriminant analysis (OPLS-
DA), was conducted using SIMCA-P software (version 14.1,
Umetrics, Umea Sweden). OPLS-DA is a supervised
multivariable analysis technique. Variable importance in
projection (VIP) scores of OPLS-DA above 1.0 allied with
Student’s t-test (The Benjamini–Hochberg false discovery rate

(FDR) method was used for multiple testing adjustment, FDR
<0.05) were commonly utilized to identify metabolites with
differential expression between patients with COPD and
controls. Furthermore, the cumulative modeled variation in
the X and Y matrix (R2 X and R2 Y) and the cross-validated
predictive ability Q2 (cum) values were used to assess the quality
of the models. ANOVA of the cross-validated residuals (CV-
ANOVA, p < 0.05) was performed to evaluate the reliability of the
OPLS-DA model.

Logistic regression analysis was employed to combine the
predictive ability of overlapping metabolite biomarkers, which
was subsequently evaluated using receiver operating curve (ROC)
plots (forward stepwise selection with a significance threshold of
0.10 for removal). Pathway analysis was performed using the
analysis platform Metaboanalyst (http://www.metaboanalyst.ca/
MetaboAnalyst/). Volcano plots, expression heatmaps and
correlation heatmaps were generated using R version 4.0.2
(https://www.r-project.org/). Venn diagram Venn diagrams
were drawn on the websites (http://bioinformatics.psb.ugent.
be/webtools/Venn/). All other statistical diagrams were drawn
using GraphPad Prism 8.0.1.

RESULTS

Basic Characteristics of Study Subjects
Our study contained three independent sets with a total of 114
lung tissues and 80 plasma samples. The discovery set included 20
male COPD patients and 20 controls; the replication set included
47 male COPD patients and 27 controls. The plasma set consisted
of male 40 COPD patients and 40 controls. The basic
characteristics of the study subjects in the three sets are
presented in Table 1. No matter in which set, there were no
significant differences in sex, age, BMI or smoking status between
COPD patients and controls, while there were significant
differences in FEV1% predicted and FEV1/FVC% except for a
little difference of age in discovery set.

Metabolic Profiles of Lung Tissue and
Plasma in COPD Patients
We first performed nontargeted metabolomics analysis on the
discovery lung set, 2207 and 2227 features were detected with the
T3 and amide methods, respectively. To expand the sample size to
further verify the perturbations of lung tissue metabolism and to
test the reproducibility of the data, an independent lung
replication set was subsequently incorporated into the analysis.
Next, 1357 and 2464 features were calculated in the T3 and amide
methods of the replication set, respectively. Finally, to screen the
overlapping metabolite biomarkers in the plasma and lung
metabolome, we also included another plasma set for analysis.
A total of 4426 features were discovered through the T3 (2457)
and amide (1969) methods.

Next, we performed orthogonal partial least squares-
discriminant analysis (OPLS-DA) on the data of the
discovery set. OPLS-DA score plots exhibited a good
separation between COPD patients and controls, with a
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p-value less than 0.05 in the CV-ANOVA test suggesting the
reliability of the models (Figures 1A–D). The same
phenomenon was observed in both the replication and

plasma sets. The permutation tests were carried out in all
(O)PLS-DA models of the three sets, and the results showed
that the models were reliable without overfitting (Table 2).

TABLE 1 | Fundamental Characteristics of Study Subjects.

Discovery set (lung tissue) Plasma set Replication set (lung tissue)

control (n = 20) COPD (n = 20) p value control
(n = 40)

COPD (n = 40) p value control
(n = 27)

COPD (n = 47) p value

Age (Y) 56 (50–63) 61 (56–65) p =
0.023

59 (54–65) 62 (57–68) p = 0.11 62.3
(59.4–65.3)

66.6
(57.7–75.5)

p =
0.573

Gender (Man/Woman) 20/0 20/0 NA 40/0 40/0 NA 27/0 47/0 NA

Non-smokers/ex-
smokers/smokers

3/3/14 3/7/10 p =
0.398

3/9/28 3/16/21 p =
0.327

10/5/17 7/10/34 p =
0.432

BMI 23 (21–26) 23 (21–26) p = 0.9 24 (19–28) 23 (19–28) p = 0.44 27 (26–28) 26 (25–27) p =
0.356

FEV1/FVC% 79 (66–92) 61 (54–68) p <
0.001

77 (71–82) 55 (43–67) p <
0.001

77 (74–81) 64 (56–68) p <
0.001

FVC 3.7(3.3–4.2) 3.4 (3.1–4.2) p = 0.45 3.7 (3.5–4.2) 3.5 (3.2–4.0) p = 0.07 3.6 (3.2–4.3) 3.8 (3.3–4.3) p =
0.833

FVC% predicted 84.5(80.4–97.6) 87.1
(79.6–100.2)

p = 0.84 90.8
(83.5–100.9)

89.4
(79.6–100.5)

p =
0.125

102.0 (93.0-
110.5)

104.0
(93.3–120.6)

p =
0.624

FEV1 2.9 (2.6–3.4) 2.1 (1.8–2.6) p <
0.001

2.9 (2.7–3.3) 2.1 (1.6–2.5) p <
0.001

2.8 (2.5–3.2) 2.4 (1.9–2.7) p <
0.001

FEV1% predicted 91 (77–105) 71 (58–85) p <
0.001

102 (85–119) 67 (45–88) p <
0.001

100 (91–107) 80 (63–97) p <
0.001

Data are presented as n or s n or median (interquartile range). BMI, body mass index; COPD, chronic obstructive pulmonary disease; FEV1: forced expiratory volume in 1 s; FVC: forced
vital capacity; NA, not available.

FIGURE 1 | The OPLS-DA model for classifying COPD patients versus controls displayed significant group deviation in Discovery set. (A) The score plot of the
amide method in negative mode. (B) The score plot of the amide method in positive mode. (C) The score plot of the T3 method in negative. (D) The score plot of the T3
method in positive mode. (E) The heatmap showed 52 differentially abundant metabolites of the COPD patients compared with the controls in discovery set, the red color
indicated higher expression level in COPD and the blue color indicated lower expression level in COPD. OPLS-DA, orthogonal partial least squares-discriminant
analysis. COPD, chronic obstructive pulmonary disease.
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Differential Metabolites Associated With
COPD in Both theDiscovery and Replication
Sets
The union of the differential compounds in T3 and amide methods
serves as the final metabolites associated with COPD. In the discovery
set, 52 significantly different metabolites between COPD patients and
controls were identified. The heatmap showed 52 differential
metabolites (Figure 1E). The main superclasses (Figure 2A) of 52
metabolites were 66% lipids and lipid-like molecules (primarily
containing 58% glycerophospholipids (Figure 2B), 21% fatty acyls
and 15% sphingolipids), 10% organic acids and derivatives (60%
Carboxylic acids and derivatives) (Figure 2C).

Unsurprisingly, the replication set obtained the same findings in
the discovery set. A total of 371 metabolites associated with COPD
were finally identified. Among these metabolites, lipids and lipid-
like molecules (34%) were the primary superclass, other
superclasses mainly contained organic acids and derivatives
(30%) and organonitrogen compounds (6%) (Figure 2D).
Glycerophospholipids (59%) were the main class of lipids and
lipid-like molecules (Figure 2E). Other classes were 20% fatty acyls
and 11% prenol lipids. Eighty percent of organic acids and their
derivatives were carboxylic acids and derivatives (Figure 2F). In
the replication set, 28 subclasses of amino acids and 24 subclasses
of glycerophospholipids were significantly changed in COPD.
Among them, notably, almost all amino acids were elevated
(Figure 3A). 19 glycerophospholipids were upregulated, while
only five of 24 were reduced (Figure 3B). The heatmap showed
the expression of glycerophospholipids and amino acids
(Figure 3C). In COPD patients, spearman correlation analysis
showed that both different subclasses of glycerophospholipids and
amino acids presented a positive correlation (Figures 3D,E). In
addition, we performed Spearman correlation analysis on the
relative expression of glycerophospholipids and amino acids
with some critical clinical indicators. However, the correlations
between these groups were not highly significant (Supplementary
Figure S1 and Supplementary Table S1).

Pathway Analysis
Fifty-two distinguished metabolites from the discovery set were first
utilized to perform pathway analysis. Consequently, multiple
metabolic pathways, including sphingolipid metabolism,
glycerophospholipid metabolism and valine, leucine and isoleucine
biosynthesis pathways, were significantly (p < 0.05 with FDR <0.1)
perturbed (Figure 4A,B). For validation, pathway analysis of the
validation set was also performed. Six metabolic pathways with
perturbations were eventually detected, and two of them (namely,
glycerophospholipid metabolism and the valine, leucine and
isoleucine biosynthesis pathways) were consistent with the
discovery set (Figures 4C,D). Comprehensive information on the
detected pathways was provided in Tables 3, 4.

Overlapping Candidate Metabolite
Biomarkers in Lung Tissue and Plasma
For the plasma set, 134 differentially expressed metabolites were
detected. A Venn diagram demonstrated two overlappingT
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metabolites (phytosphingosine and L-tryptophan) in the discovery,
plasma and replication sets (Figure 5A and Supplementary Table
S2). The relative expression of phytosphingosine (Figures 5B–D) and
L-tryptophan (Figures 5E–G) in three different sets was shown. The
variable importance in projection (VIP) score, fold change (FC) and
FDR of two overlapping metabolites were presented (Table 5).

Subsequently, the diagnostic performance of the two
candidates was evaluated by area under the curve (AUC) of
the receiver operating curve (ROC) analysis (Figure 5H).
Phytosphingosine exhibited a strong predictive performance
(AUC = 0.8931, 95% CI: 0.8224-0.9639) with 87.5% sensitivity
and 80% specificity. The AUC value of L-tryptophan was 0.69
(95% CI: 0.5711-0.8064) with 67.5% sensitivity and 67.5%
specificity. Furthermore, the combination of two metabolites
distinguished COPD and controls more effectively than any
single biomarker candidate, which yielded a severe AUC of
0.911 (95% CI: 0.8460-0.9765) with 90.0% sensitivity and
85.0% specificity (Table 6).

DISCUSSION

In our study, we performed untargeted metabolomics in lung
tissue of male COPD patients. We found that several classes of

metabolites, including glycerophospholipids (GPs), amino acids
and fatty acyls, were abnormally expressed. Pathway analysis
suggested that many abnormal metabolic pathways were
associated with male COPD. Among these pathways,
glycerophospholipid metabolism and valine, leucine and
isoleucine biosynthesis pathways were disordered in both the
discovery and replication set. Besides, we also tested another
independent plasma set to screen the overlapping biomarkers
between the lung tissue and plasma. We subsequently screened
out two overlapping metabolites containing phytosphingosine
and L-tryptophan, which showed a high diagnostic performance
for discriminating early male COPD patients from controls.

Metabolomic profiling is an emerging tool for detecting
differential metabolites, disrupted pathways related to diseases
and potential biomarkers. It has also been evaluated in COPD
patients. However, most of those studies focused on the
metabolome of plasma, exhaled breath condensate (EBC),
bronchoalveolar lavage fluid (BALF) or induced sputum in
COPD patients and did not validate their findings with a
replication set (Kilk et al., 2018); (Paige et al., 2011); (Ran
et al., 2019); (Telenga et al., 2014); (Yu et al., 2019). Lung cells
can reflect the metabolic profiling of patients with COPD more
directly, while the normal lung tissue from COPD patients has
rarely been calculated to date. Sex can influence the metabolism

FIGURE 2 | Composition of the differential metabolites in the discovery set and replication set. (A,D) The superclasses of all metabolites. (B,E) Lipids and lipid-like
molecules and organic acids and their derivatives were the most common superclasses. (C,F) Glycerophospholipids and amino acids were the main classes. The
primary pie shows the composition of lipids and lipid-like molecules and organic acids and derivatives, and the secondary pie displays the component category of
glycerophospholipids and amino acids. The superclass, class and subclass of metabolites were acquired from the Human Metabolome Database. GPs,
glycerophospholipids; PCs, glycerophosphocholines; PGs, glycerophosphoglycerols; PIs, glycerophosphoinositols; PEs, glycerophosphoethanolamines; amino acids:
amino acids, peptides and analogs.
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(Darst et al., 2019). A nationwide prevalence study revealed that
the prevalence of COPD inmen is more than twice that of women
(Fang et al., 2018). Recent studies also reported that the difference
in metabolic profiles between male and female COPD patients
(Gillenwater et al., 2021); (Naz et al., 2017). Therefore, lung tissue
from male COPD patients in two independent set were collected
to perform metabolomic analysis: a discovery set to detect and a
replication set to validate. What’s more, we also analyzed
metabolomic profiling of plasma to screen the overlapping
metabolites biomarkers.

Glycerophospholipids (GPs), the most abundant
phospholipids and one of the primary lipid types in cell
membranes, consist of such lipids as
phosphatidylethanolamine (PE), phosphatidylcholine (PC),
phosphatidylglycerol (PG), phosphatidylserine (PS),
phosphatidylinositol (PI), phosphatidic acid (PA),
phosphatidylglycerophosphate (PGP) and CDP-diacylglycerol
(CDP-DG) (Kimura et al., 2016). Predictably, these lipids play
critical roles in lipid metabolism and health (van der Veen et al.,
2017). The metabolism of GPs showed in Figure 6A. In recent

studies, the perturbation of GPs has been observed in other
diseases, such as osteoporosis (Mei et al., 2020; Bellissimo
et al., 2021), type 2 diabetes (Lai et al., 2020; Schillemans
et al., 2021), pleural effusion (Luo et al., 2020) or
environmental microplastics (Zhao et al., 2021). In our study,
three decreased PEs, nine increased PCs and eight elevated PEs
were identified. How these abnormal GPs are involved in the
pathological mechanism of COPD is currently unclear. A study
reported that loss of PE induces mitochondrial dysfunction and
oxidative stress (Heden et al., 2019). PE-deficient mice produced
more H2O2, and mitochondrial PE deficiency is harmful to their
metabolic and contractile functions, causing ventilatory failure
and lethality. Another study showed that the increased PC levels
may be caused by cigarette smoking and may participate in
oxidative stress (Wang-Sattler et al., 2008; Li et al., 2016). In
addition, it also reported that the destruction of the CDP-
ethanolamine pathway for PE synthesis is related to cellular
senescence (Wu et al., 2019) and the human T cell response
could be triggered by PGs mediated by CD1b (Shahine et al.,
2017). COPD is a chronic inflammatory disease associated with

FIGURE 3 | Significantly changed metabolism of GPs and amino acids in COPD in the replication set. Histogram of significant metabolites of glycerophospholipids
(A) and amino acids (B). The y-axis shows the metabolites, while the x-axis shows the value of log2 (fold change). (C) The heatmap shows differential GPs and amino
acids of the COPD patients compared with the controls. Spearman correlation heatmap of (D) amino acids and (E) glycerophospholipids. The larger the circle and the
darker the color indicate the greater the correlation coefficient. The circle is not displayed when the correlation is not significant. GPs, glycerophospholipids; PCs,
glycerophosphocholines; PGs, glycerophosphoglycerols; PIs, glycerophosphoinositols; PEs, glycerophosphoethanolamines; amino acids: amino acids, peptides and
analogs.
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oxidative stress and cellular senescence (Birch et al., 2018). These
evidences suggest that GPs may be related to COPD by
participating in oxidative stress and inflammation, but this
requires further verification.

In addition, both the discovery and validation sets showed
perturbations in the class of amino acids by lung metabolomics
analysis in our study. Meanwhile, disorders of the valine, leucine
and isoleucine biosynthesis pathways have also been identified
and validated (Figure 6B). Amino acids are essential nutrients

and pivotal determinants of cell proliferation and stress responses
(Shao et al., 2018). Not surprisingly, perturbations in amino acid
metabolism have been identified in many diseases (Abooshahab
et al., 2020; Gallagher et al., 2020; Xuan et al., 2020). Similar
perturbations are observed in COPD. Plasma or serum amino
acid levels are related to energy metabolism and inflammation in
COPD, and their disturbances suggest that COPD is a wasting
disease with protein degradation (Pouw et al., 1998; Engelen et al.,
2007; Ubhi et al., 2012; Ruzsics et al., 2016). Throughmetabolome

FIGURE 4 |Metabolome view of pathway impact analysis obtained from differential metabolites in COPD. Significantly altered pathways in discovery set (A,B) and
in replication set (C,D). The color and size of each circle are based on p-values (yellow: higher p-values and red: lower p-values) and pathway impact values (the larger the
circle, the higher the impact score) calculated from the topological analysis, respectively. Pathways were considered significantly changed if adjusted p-value (FDR) <
0.05. *Significantly changed pathways in the recovery or replication set. #Significantly changed pathways in both the recovery and replication sets. FDR, False
discovery rate.

TABLE 3 | Pathway analysis showed that metabolic pathways significantly altered in COPD patients against Controls in Discovery set.

Recovery set

Total cmpda Hitsb Raw pc FDRd Impact

Sphingolipid metabolism 21 5 0.00000791 0.0006403 0.20284

Glycerophospholipid metabolism 36 5 0.0001264 0.0042698 0.30734

Valine, leucine and isoleucine biosynthesis 8 3 0.00015249 0.0042698 0

Aminoacyl-tRNA biosynthesis 48 5 0.00051012 0.010713 0.16667

Valine, leucine and isoleucine degradation 40 3 0.019719 0.31195 0.01084

Histidine metabolism 16 2 0.022282 0.31195 0.31147

Ether lipid metabolism 20 2 0.034034 0.40841 0

dCOPD, chronic obstructive pulmonary disease; aTotal Cmpd: total number of compounds in the pathway; bHit, actually matched number from the data; cRaw p, p value calculated from
the enrichment analysis; FDR, p value adjusted using False Discovery Rate.
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TABLE 4 | Pathway analysis of COPD patients against Controls in Replication set.

Replication set

Total Cmpda Hitsb Raw pc FDRd Impact

Aminoacyl-tRNA biosynthesis 48 13 6.77E-10 5.69E-08 0

Histidine metabolism 16 4 0.001311 0.033588 0.40983

Valine, leucine and isoleucine biosynthesis 8 3 0.001579 0.033588 0

Alanine, aspartate and glutamate metabolism 28 5 0.001599 0.033588 0.53446

Glycerophospholipid metabolism 36 5 0.005047 0.082213 0.21631

Phenylalanine, tyrosine and tryptophan biosynthesis 4 2 0.005872 0.082213 1

Arginine biosynthesis 14 3 0.00895 0.1074 0.11675

Nitrogen metabolism 6 2 0.014083 0.13144 0

D-Glutamine and D-glutamate metabolism 6 2 0.014083 0.13144 0.5

Pantothenate and CoA biosynthesis 19 3 0.021269 0.17866 0.00714

beta-Alanine metabolism 21 3 0.027902 0.21307 0

Arginine and proline metabolism 38 4 0.031523 0.22066 0.21189

Phenylalanine metabolism 10 2 0.038903 0.25137 0.35714

dCOPD, chronic obstructive pulmonary disease; aTotal Cmpd, total number of compounds in the pathway; bHit,actually matched number from the data; cRaw p, p value calculated from
the enrichment analysis; FDR, p value adjusted using False Discovery Rate.

FIGURE 5 | Overlapping candidate metabolite biomarkers in three sets. (A) Venn diagram demonstrating overlap and unique differential metabolites for the
discovery, plasma and replication sets. Relative expression of phytosphingosine (B–D) and L-tryptophan (E–G) in the discovery, plasma and replication sets. (H)
Evaluation of the diagnostic value of the overlapping metabolites by logistic regression model, and receiver operating curve (ROC) analysis and area under the
curve (AUC).
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analysis of lung tissue, we first discovered the elevated branched
chain amino acids (BCAAs) including leucine and isoleucine.
BCAAs, as essential amino acids for mammals, are synthesized in
bacteria, plants, and fungi but not in animals (Neinast et al.,
2019; Bowerman et al., 2020). In lungs of COPD patients,
abnormal bacterial diversity has been reported (Bowerman
et al., 2020); (Pragman et al., 2012; Ren et al., 2018; Wang
et al., 2019), which we speculated might partially interpreted
the upregulated BCAAs in lungs. Notably, BCAAs also can be
transported into the cells from extracellular medium by amino
transporters and then be catabolized in a series of enzymatic
reactions (Neinast et al., 2019); (Taylor, 2014). Anyhow,
whether the disrupted bacterial diversity, the abnormal

expression of amino transporters or key enzymatic
associated with BCAAs catabolism contribute to the
increased BCAAs needs further exploration.

Moreover, a large proportion of differential metabolites were
fatty acyls. Most differential fatty acyls were acylcarnitines;
among them, all acylcarnitines associated with L-carnitine were
downregulated in the discovery set, and 5 of 6 acylcarnitines were
decreased in the replication set. The carnitine shuttle, which
refers to L-carnitine, acylcarnitines, CD36 and carnitine acyl
transferase Ⅰ/Ⅱ, participates in the translocation of acyl-CoA
from the cytoplasm to mitochondria and has an intimate
relationship with β-oxidation. The imbalance of oxidation/
antioxidation contributes to COPD occurrences (Rahman and

TABLE 5 | Overlapping metabolites in lung between Discovery set and replication set.

Lipid names Discovery set Replication set Plasma set

VIP FC (COPD/control) FDR VIP FC (COPD/control) FDR VIP FC(COPD/control) FDR

Phytosphingosine 1.73 1.26 0.031 2.91 2.97 0.041 2.38 1.98 <0.0001
L-Tryptophan 1.87 1.64 0.031 1.13 1.55 0.032 1.72 0.86 0.008

FC, fold change; COPD, chronic obstructive pulmonary disease.

TABLE 6 | The diagnosis value of the overlapping metabolite biomarkers.

Cut-point Sensitivity (%) Specificity (%) AUC (95%CI) p Value

Phytosphingosine >1.324 87.5 80 0.8931(0.8224–0.9639) <0.0001
L-Tryptophan <0.213 67.5 67.5 0.69(0.5711–0.8064) 0.0037
2 Metabolites >0.456 90.0 85.0 0.911(0.8460–0.9765) <0.0001

SEN, sensitivity; SPE, specificity; AUC, area under the curve; 95%CI, 95% confidence interval. 2 metabolites, phytosphingosine and L-Tryptophan.

FIGURE 6 | Several metabolic pathways with perturbations were calculated in our study. Perturbation of (A) glycerophospholipid metabolism and (B) amino acid
metabolism. TCA cycle, tricarboxylic acid cycle; 5-HT, 5-hydroxytryptamine; 5-HIAA, 5-hydroxyindoleacetic acid. PE: phosphatidylethanolamines; DAG, diacylglycerol;
PC, phosphatidylcholine; PS, phosphatidylserine; PG, glycerophosphoglycerols; PI, glycerophosphoinositols; PA, phosphatidic acid.
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Adcock, 2006). The decreased acylcarnitines may break the
balance of β-oxidation, which enhances the development of
COPD. As previous studies reported, the progress of the
carnitine shuttle was disrupted, and a relatively low level of
L-carnitine was identified in the lung, serum and BALF in
mice exposed to CS (Agarwal et al., 2014; Conlon et al., 2016).
Exogenous carnitine supplementation exhibited antioxidant
ability (Vanella et al., 2017). In our study, we validated the
abnormality of the carnitine shuttle in the lungs of COPD
patients, which might play a role in the development of
COPD by being involved in oxidative stress.

COPD is a heterogeneous disease for which few screening
biomarkers using omics approaches are available2. In our study,
we finally screened two overlapping metabolites combining three
independent sets as new promising biomarkers.
Phytosphingosine alone displayed a strong ability to diagnose
COPD with an AUC of 0.8931 (95% CI: 0.8224-0.9639), while
L-tryptophan was moderately efficient in discriminating COPD
with 0.69 AUC (95% CI: 0.5711-0.8064). The combined
diagnostic efficiency of the two metabolites was more optimal
(AUC = 0.911, 95% CI: 0.8460-0.9765). This satisfactory
diagnostic potential may provide some guidance significance
for clinically distinguishing COPD patients from controls in
the future. Lung tissue is a direct, effective and accurate
approach for evaluating the metabolic profiles of lung of
COPD patient. While plasma, a comprehensive reflection of
body metabolism, is a convenient, non-invasive but indirect
way to explain the metabolic profiles of lung. In our study,
phytosphingosine and L-tryptophan were two overlapping
differential metabolites in plasma and lung tissue. Since most
COPD cases in our study are relatively mild/moderate, we hold
that phytosphingosine and L-tryptophan were two indicators for
early screening of COPD patients.

Phytosphingosine (PHS) were increased in both plasma and
lung tissue. PHS belongs to sphingolipids and exists in plants,
yeast, and other mammalian tissues. In yeast and mammalian
cells, it can be metabolized to odd-numbered fatty acids and
incorporated into glycerophospholipids (Kondo et al., 2014). PHS
has been reported to be associated with associated with apoptosis,
migration, and inflammation. It enhanced apoptotic cell death in
cancer cells through ROS-dependent and -independent AIF
release or caspase 8 activation and bax translocation (Park
et al., 2003; Park et al., 2005). Takahashi, M., et al. showed
that phytosphingosine interacted with CD300b to promote
neutrophil recruitment in the way of zymosan-induced, nitric
oxide–dependent (Takahashi et al., 2019).Other two studies
revealed that PHS and its derivatives ameliorated skin
inflammation (Kim et al., 2006; Kim et al., 2014).
Furthermore, PHS can activate the endoplasmic reticulum
(ER) stress surveillance (ERSU) pathway (Breslow, 2013),
which prevented inheritance of stressed ER (Babour et al.,
2010; Piña and Niwa, 2015). Reasonably, we speculated PHS
may be associated with COPD by affecting apoptosis,
inflammation or ER stress. L-tryptophan (L-Trp) is an
essential amino acid. Disruptions in L-tryptophan metabolism
are reported in several neurological, metabolic, psychiatric,
intestinal disorders and cancers, which is also considered as a

pharmacological target in clinical practice (Platten et al., 2019;
Modoux et al., 2021). The increased L-Trp in lung tissue and
decreased L-Trp in plasma have been found in our study and the
increased plasma L-Trp is consisting with previous studies (Wendt
et al., 2016; Naz et al., 2019). L-Trp can be metabolized by
indoleamine 2,3-dioxygenase (IDO), a rate-limiting enzyme in the
kynurenine pathway (Cervenka et al., 2017). Interestingly, the
reduced sputum IDO activity and expression while the increased
serum IDO activity and expression have been reported
(Maneechotesuwan et al., 2013; Naz et al., 2019), which may
partially explain the divergent change of L-Trp between lung
tissue and plasma. Nonetheless, more exploration and underlying
mechanisms about the paradoxical changes of L-Trp and IDO in
plasma and lung tissue are needed. All in all, PHS and L-Trp are not
only the promising metabolite biomarkers to discern COPD from
controls but also potential molecular that contributed to the
pathogenesis of COPD.

There were several limitations in our study. Firstly, only male
patients were enrolled in our study. Women with COPD are less
usual than men with COPD but still common (with the
prevalence of 8.1% (95% CI [6.8–9.3]) (Fang et al., 2018). The
metabolic pattern of lung tissue in women with COPD needs
further clarification to provide more awareness of the
pathogenesis. Secondly, we did not divide the controls into
non-smokers and smokers according to smoking status due to
the scarcity of the number of samples. However, we ensured that
there was no difference in smoking status between the COPD
patients and the controls (Table 1). Further study with a larger of
samples should be performed to compare the metabolic profiles
of lung tissue in non-smokers, smokers and COPD patients.
Finally, considering the instability of untargeted methods, our
results also need more studies and targeted metabolomic analysis
to further validate.

CONCLUSION

In summary, we characterized the metabolic profile of lung tissue
from COPD patients. The metabolite profiles of COPD patients
were different from those of controls. Additionally,
glycerophospholipid metabolism and the valine, leucine and
isoleucine biosynthesis pathways were significantly disrupted
in COPD patients. Furthermore, we also investigated two
metabolites, phytosphingosine and L-tryptophan, as
overlapping metabolite biomarkers in three sets. Our results
demonstrated that the abnormality of metabolic profiling and
the perturbed pathways can help to elucidate the pathological
mechanisms underlying COPD, and the screened metabolite
biomarkers can effectively discriminate COPD samples from
controls. These results may help to establish a foundation for
future research attempting to characterize and treat COPD.
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