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Abstract: We report the electrical characterization and field emission properties of MoS2 bilayers
deposited on a SiO2/Si substrate. Current–voltage characteristics are measured in the back-gate
transistor configuration, with Ti contacts patterned by electron beam lithography. We confirm
the n-type character of as-grown MoS2 and we report normally-on field-effect transistors.
Local characterization of field emission is performed inside a scanning electron microscope chamber
with piezo-controlled tungsten tips working as the anode and the cathode. We demonstrate that
an electric field of ∼ 200 V/µm is able to extract current from the flat part of MoS2 bilayers,
which can therefore be conveniently exploited for field emission applications even in low field
enhancement configurations. We show that a Fowler–Nordheim model, modified to account for
electron confinement in two-dimensional (2D) materials, fully describes the emission process.
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1. Introduction

Over the past decade, graphene and graphene-like materials have attracted a lot of attention.
Due to its two-dimensional (2D) nature and several extraordinary properties, such as high mobility
and current carrying capability, chemical stability, and mechanical robustness, graphene in particular
has been the most commonly chosen material for new electronic devices [1,2]. However, the absence
of an intrinsic bandgap has hampered its application as a transistor channel [3,4] and has paved the
way for the study of alternative 2D materials with semiconducting behavior, such as the transition
metal dichalcogenides (TMDs) [5,6]. The TMD family, which comprises MX2 compounds where M is
a transition metal (Mo, W, etc.) and X a chalcogen (S, Se, Te), is gaining popularity in scientific and
engineering research. In particular, molybdenum disulfide (MoS2) is intensively studied for its ease of
fabrication and direct bandgap suitable for optoelectronic applications [7–10].

Similarly to graphene, MoS2 can be mechanically exfoliated from a bulk material and transferred
onto a substrate [6]; however, single-crystal and large-scale flakes with a controlled number of layers are
more easily produced by chemical vapor deposition (CVD) [11]. MoS2 presents a structure consisting
of a hexagonal plane of Mo atoms sandwiched between two planes of S atoms. Each layer is bonded
to another one by van der Waals interactions to form the bulk structure. MoS2 is considered a good
candidate for electronic and optoelectronic applications because it offers control on the width of the
energy bandgap through the number of layers [12], even though its mobility is typically only a few
tens cm2V−1s−1 [8]. Indeed, multilayer MoS2 shows an indirect bandgap of 1.2 eV which increases
with the decreasing number of layers, becoming direct and of 1.8–1.9 eV for monolayers. The presence
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of an energy gap enables MoS2 transistors with a high on/off ratio (> 107) [13] and low subthreshold
swing (below 70 mV/decade) [14]; moreover, a field effect mobility of about 200 cm2V−1s−1 has
been experimentally achieved [15]. Additional features such as high photoresponsivity [10,16] and
spin–orbit splitting [17] have been investigated, opening the route for applicability of MoS2 for
optoelectronic and spintronic devices [10,18].

In this paper, we characterize the transport properties of bilayer MoS2 field-effect transistors
(FET) in the back-gate configuration. Furthermore, taking advantage of contacted MoS2 flakes, we
investigate their local field emission behavior. Compared with monolayers, bilayers are less affected
by ambient exposure [19] and tend to form smaller Schottky barriers with metal contacts [20]; thus,
they are more suitable for field emission applications.

Field emission (FE) is a quantum mechanical phenomenon in which electrons, extracted from a
conductor or a semiconductor surface upon application of an intense electric field, flow in vacuum from
a cathode to an anode. Classic field emission theory was developed by Fowler and Nordheim [21] for
planar electrodes, but it is usually also applied to electrodes forming sharp tips [22]. Actually, tips with
small radius of curvature enable enhancement of the local electric field, thereby requiring a reduced
anode-to-cathode field for electron extraction [23]. Nanostructures, such as nanoparticles [24,25],
nanowires [26], and nanotubes [23,27–30] or 2D materials [31,32], for their intrinsically sharp edges and
high aspect ratio, are natural field emission sources. Indeed, semiconducting or metallic nanostructured
materials have been considered for FE applications in vacuum electronics [33], flat panel displays [34],
electron microscopy [35], X-ray tubes [36,37], etc.

To date, FE from MoS2 has been very poorly characterized. There are few works concerning field
emission measurements on MoS2 nanostructures, like single- and multilayer flakes, nanoflowers, and
films that are edge-terminated vertically aligned (ETVA) [38]. It has also been reported that ultra-thin
ETVA-MoS2 films present FE characteristics comparable to those of carbon-based structures [39–41].

Here, we measure FE current from the flat part of MoS2 bilayers at a turn-on field of 230 V/µm.
Despite the fact that we operate under no field enhancement condition, we find a local electric
field magnified by a factor of 10 at the cathode–anode distance d = 75 nm and find that the field
amplification factor increases linearly with d. Remarkably, we show that FE from MoS2 bilayers follows
a modified Fowler–Nordheim (FN) model recently proposed to include the effect of the confinement in
2D materials [42]. We highlight that, to the best of our knowledge, field emission from MoS2 bilayers
has not been reported before. Our study, demonstrating its suitability as a field emitter, aims to exploit
MoS2 in vacuum electronics, thus extending its use as an electrode in heterojunctions and channel in
field-effect transistors.

2. Materials and Methods

The MoS2 flakes were grown by CVD at 750 K (using S and MoO3 as precursors) on p-doped Si
substrate covered by 300 nm of SiO2. The process yielded mainly bilayers and multilayers randomly
distributed on the substrate. From scanning electron microscope (SEM, LEO 1530, Zeiss, Oberkochen,
Germany) imaging, we often found traces of unreacted MoO3 precursor on the flake, as shown
in Figure 1a, which displays a typical back-gated field-effect transistor with Ti/Au metal leads.
Such residuals can affect the carrier mobility. A schematic of the device, consisting of a TLM structure
(Transfer Length Method) with back gate, is reported in Figure 1b.

We used the silicon substrate as a common back gate and metal leads, patterned by standard
electron beam lithography and a lift-off process, as drain and source. The metal leads are made of
Ti (20 nm) and Au (130 nm) deposited as contact and cover layers, respectively.

MoS2 flakes were characterized by Raman spectroscopy before device fabrication in order to
identify the number of layers. The Raman spectrum reported in Figure 1c shows two identifying peaks:
A1g associated with the out-of-plane vibration of sulfur atoms and E1

2g resulting from the in-plane
vibrations of Mo and S atoms [43]. The two peaks are separated by 21 cm−1, indicating bilayer flakes.
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Micro-Raman spectroscopy mapping evidenced uniform thickness across the whole flakes; in few
cases, we observed thinning in localized regions.
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Figure 1. (a) SEM image of a Ti/Au contacted MoS2 flake; (b) Schematic cross section of the field-effect
device; (c) Raman spectrum of the flake.

In the following, the transistor characterization refers to contacts 4 (drain) and 5 (source),
as marked in Figure 1a, i.e., to the device with the shortest channel, which is the most interesting
from an application perspective. The distance between the two contacts, i.e., the channel length, is
L = 0.57 µm, while the channel width is W ≈ 11.4 µm.

Electrical measurements were performed using a Keithley 4200 SCS (source measurement unit,
Tektronix, Beaverton, OR, USA) connected to a Janis ST-500 (Janis Research Company, ST-500, Woburn,
MA, USA) probe station at room temperature and pressure of ∼ 3 mbar.

Field emission measurements were carried out at a pressure < 10−6 mbar in a SEM vacuum
chamber endowed with two piezo-controlled tungsten tips (W-tips) with nanometric resolution.

Considering that the presence of impurities and precursor residues could alter the emission
process from MoS2, we chose emitting areas that were cleaner and more homogeneous. We did not
observe significant differences in these zones and we report only one dataset in the following. We also
tried field emission from regions covered by MoO3, but we did not observe any signal. This is likely
due to the 6.6 eV high work function of MoO3 [44].

3. Results

3.1. Transistor Characterization

Figure 2 reports the electrical transport characterization of the back-gate MoS2 transistor.
The output characteristics Ids − Vds (Figure 2a) were measured from −80 V to 10 V at gate voltage
steps of 10 V. A channel resistance decrease, resulting in higher current, is observed for gate voltage,
Vgs, varying from negative to positive voltages. This is further evidenced by the transfer Ids − Vgs

characteristics, shown in Figure 2b for a given drain–source bias voltage (Vds = 0.5 V).
The transfer curve discloses an n-type behavior with normally on channel at Vgs = 0 V.

The off-state of the transistor is reached below the negative gate voltage of −80 V that we safely
adopted as the lower limit for Vgs to prevent SiO2 gate dielectric leakage or breakdown. The limited
range of Vgs results in the apparent low on/off ratio of the transistor, which is essentially not turned
off over the sweeping interval. Nevertheless, the measured portion of transfer curve is enough to
estimate the threshold voltage. Given that Ids ∝

(
Vgs − Vth

)
, the threshold voltage corresponds to

the x-axis intercept of the straight-line fitting of the current in linear scale and results in Vth ≈ −70 V.
We calculate the subthreshold swing as SS = dVgs/d

(
logIds

)
= 20 V/decade using the transfer blue
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curve. The high value of SS, which is likely overestimated due to the fitting region being too close to
Vth, is expected because of the low-efficiency back-gate configuration with thick gate oxide.

Remarkably, the prevailing on-state over a wide Vgs range and the n-type doping suggest that the
MoS2 flake can be suitable for electron extraction, i.e., for field emission applications.
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We also evaluate the field-effect mobility from the slope of the transfer characteristic (black curve)
via the following formula:

µ =
dIds
dVgs

L
W·Cox·Vds

(1)

where Cox = εox/dox is the oxide capacitance; and εox and dox are the SiO2 permittivity and thickness,
respectively. For 300 nm SiO2, Cox = 11 nFcm−2 [45]. The obtained mobility, 0.046 cm2V−1s−1,
is on the low side of the range typically reported for uncovered MoS2—0.05 cm2V−1s−1 to
100 cm2V−1s−1 [8,33,46,47]. Our value for the field-effect mobility could be slightly underestimated
because it does not exclude the effect of the contact resistances [48], which increase the total resistance
of the sample and the probability of electron scattering. The low mobility is caused by the mentioned
process residues, the long exposure to air, and the likely presence of defects in crystal structure.

3.2. Field Emission Measurements

FE experimentation on a selected flake, shown in Figure 3a, was performed inside the SEM
chamber by placing one of the two available W-tips on the metal electrode contacting the flake
(cathode) and positioning the other tip (anode) at a variable distance d from the flake, as displayed in
Figure 3b.
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Considering that the MoS2 flake is n-doped and that the sharp edge originates a high electric field
amplification, we expect easy extraction of electrons from the edge of the flake upon application of a
voltage. Nevertheless, exposure to air, flake oxidation, and the higher concentration of process residues
at the edge make it harder to extract electrons from the flake boundary. On the other hand, due to a
better surface quality (less contaminants) in the inner flat part of the flake, and taking advantage of the
fine positioning control of our W-tip, we performed field emission characterization supported by SEM
imaging from an internal, flat portion of the flake. FE from the flat part of MoS2 bilayers has not yet
been reported in literature and constitutes an interesting way to complete the ongoing investigation
of the field emission properties of MoS2. Similarly, FE measurements on graphene initially gave
indication that emitting current was achievable only from edges [49], but it was later demonstrated
that FE currents could be extracted from the inner flat part of a graphene flake under application of an
electric field of a few hundred V/µm [50].

In Figure 4a,b, we show I − V curves in semilogarithmic and linear scale, respectively, at different
anode–cathode distances (i.e., at variable separation between the W-tip and MoS2 surface). The curves
show the typical fluctuations of emission current, indicating desorption of physisorbed molecules
caused by Joule heating. Figure 4a shows that reducing the inter-electrode distance causes the field
emission current to appear at lower voltages, confirming that the FE turn-on voltage depends on the
electrode separation.

For a given distance, the current remains at the floor noise up to a threshold voltage, corresponding
to what we define as the FE turn-on voltage; above this threshold it starts rising exponentially up to
100 nA, as expected from Fowler–Nordheim (FN) theory. According to FN model,

I =
Saβ2E2

Φ
exp

[
−bΦ

3
2

βE

]
(2)

where a and b are constants with values 1.54× 10−6 A eV V−2 and 6.83× 107 eV
3
2 V cm−1, respectively;

S and φ represent the emitting surface and the material work function (in our case φ = 5.25 eV [51]);
and β is the so-called field enhancement factor. β is a typical figure of merit for the qualification of field
emitting materials, despite the fact that it has been shown to depend on the experimental setup [24].
Finally, the electric field is E = V/d, where V is the anode–cathode voltage.

The Fowler–Nordheim behavior of the field emission current is usually checked by the linearity of
the so-called FN plot of ln

(
I/V2

)
vs. 1/V. In particular, the intercept and slope of the fitting straight

line yield the emission area and the field enhancement factor β, respectively.
The FN plot of our measurements is reported in Figure 4c, which confirms the expected linear

behavior. Figure 4d is analogous to the FN plot for a modified Fowler–Nordheim model recently
proposed by Yee Sin Ang et al. [42] to account for 2D electron confinement. This 2D FN model takes
into account the fact that, differently from bulk materials, field emission from 2D materials may depend
on the extraction direction, resulting in the following current field equation:

I2D
FN = A2D

FN exp

[
−bΦ

3
2

βE

]
(3)

where A2D
FN is a constant, and the other symbols are the same as in Equation (2). Figure 4c,d show that

both models well reproduce the experimental data. However, the 2D model provides a better fit over a
wider voltage range. Thus, we use the 2D FN model for further analysis—in particular, to evaluate β at
different distances d. The plot in Figure 5a shows linear behavior of β(d) in agreement with what has
often been reported for different field emission sources [23,33,52,53]. Such behavior is likely due the
fact that at higher distance the field from the W-tip becomes more uniform on the emitting area [21].
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voltage as a function of cathode–anode distance.

The seemingly low value of the amplification factor—less than 20 for d < 200 nm—is remarkable
if we consider that emission happens from the inner part of the flake, where no field enhancement by
edge effect takes place, and that β further increases with the distance d.

Finally, we can evaluate the turn-on field from the voltage values at which the current emerges
from the noise floor of 1 × 10−13A. From the slope of the fitting straight line of the threshold voltage
versus d plot, shown in Figure 5b, we estimate the turn-on field as 230 V/µm. If compared to the
typical turn-on field of several kV/µm needed to extract electrons from flat surfaces, the obtained
turn-on field can be considered a good result, pointing to noteworthy, although still unexploited, FE
capabilities of MoS2. Like graphene, MoS2 is a flexible material [54]. The application of an electric
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field can cause local warpage of the flake and facilitate FE. Furthermore, surface roughness of the
MoS2 flakes, which strongly depends on the substrate [55], creates wrinkles and protrusions which
are favorable to FE. However, the main reason for the lower turn-on field is the n-doping and the
low electron affinity of MoS2, which ranges from 3.74 eV to 4.45 eV [56–58] and is lower than that
of graphene.

4. Conclusions

We have presented the electrical transport characterization of field-effect transistors with MoS2

bilayer channels. The conductance shows an n-type behavior and gate modulation, with prevailing
on-state over a wide voltage range. This feature has suggested the use of MoS2 flakes for field emission
investigations. We have reported significant field emission from the flat part of the flake under the
application of a moderate electric field, even without taking advantage of field enhancement due
to edge effects. We have also demonstrated that a modified field emission model, which considers
the 2D nature of the flakes, provides a better fit compared with traditional 3D Fowler–Nordheim
theory. This study, demonstrating the suitability of MoS2 as a field emitter, is a step ahead towards
the exploitation of MoS2 for vacuum electronics applications, in addition to its established use as an
electrode in heterojunctions and channel in field-effect transistors.
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