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Psoriasis (PS) and rheumatoid arthritis (RA) are immune-mediated inflammatory diseases. Previous studies showed that these two
diseases had a common pathogenesis, but the precise molecular mechanism remains unclear. In this study, RNA sequencing of
peripheral blood mononuclear cells was employed to explore both the differentially expressed genes (DEGs) of 10 PS and 10 RA
patients compared with those of 10 healthy volunteers and the shared DEGs between these two diseases. Bioinformatics network
analysis was used to reveal the connections among the shared DEGs and the correspondingmolecular mechanism. In total, 120 and
212 DEGs were identified in PS and RA, respectively, and 31 shared DEGs were identified. Bioinformatics analysis indicated that the
cytokine imbalance relevant to key molecules (such as extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated
protein kinase (MAPK), tumor necrosis factor (TNF), colony-stimulating factor 3 (CSF3), interleukin- (IL-) 6, and interferon gene
(IFNG)) and canonical signaling pathways (such as the complement system, antigen presentation, macropinocytosis signaling,
nuclear factor-kappa B (NF-𝜅B) signaling, and IL-17 signaling) was responsible for the common comprehensive mechanism of PS
and RA. Our findings provide a better understanding of the pathogenesis of PS and RA, suggesting potential strategies for treating
and preventing both diseases. This study may also provide a new paradigm for illuminating the common pathogenesis of different
diseases.

1. Introduction

Psoriasis (PS) and rheumatoid arthritis (RA) are immune-
mediated chronic inflammatory diseases. PS is characterized
by epidermal hyperplasia, and the predominant pathological
feature of RA is the destruction of synovial joints. Studies
have increasingly suggested that patients suffering from PS
or RA have similarly increased risks of certain disorders,

such asmajor adverse cardiovascular events, malignancy, and
liver fatty changes, compared to the general population [1–6].
Additionally, these two diseases have a similar pathogenesis.
Previous studies have indicated that the chronic inflamma-
tion mediated by T helper (Th) 17 and Th1 cells plays a key
role in PS [7, 8]. Cytokines, including Th1-related (tumor
necrosis factor- (TNF-) 𝛼, interferon gamma (IFN𝛾), and
interleukin- (IL-) 2) and Th17-related (IL-17A, IL-17F, IL-22,
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IL-26, and TNF-𝛼) proteins, together with IL-23, IL-20, and
IL-15 were increased in the sera of PS patients [8, 9]. For
RA, the concerted interaction of proinflammatory cytokines
also plays a dominate role in its pathogenesis [10]. An
increasing number of clinical and histopathological features
of PS and RA are explained by an imbalance in particular
cytokines, which is one of the most fascinating research
topics inspiring researchers [9]. The similarities between the
mechanisms involved in PS and RA imply an underlying
genetic homogeneity of these two diseases. By exploring
the genetic overlap of PS and RA, we seek to provide a
better understanding of their molecular correlation and their
shared mechanisms. The genetic commonality of PS and RA
may provide increasing evidence for developing combined
treatment targets for both diseases. These targets will even-
tually complement the traditional systemic treatments and
biological agents that are currently available.

Due to the progress in high-throughput techniques
for biological research, next-generation sequencing (NGS)
platforms are often used to explore the gene profile; these
platforms have the advantages of greater sensitivity and
more precise quantification, thus providing a more complete
picture of the transcriptome in studies of gene expression
than that obtained by microarrays [11]. Measurements of
mRNA expression by RNA sequencing are valuable for
identifying the molecular changes that occur in cells, thus
providing clues regarding the molecular networks involved
in disease processes [12]. Studies have focused on molecular
changes in PS or RA independently using transcriptome or
gene expression profile technology [12, 13], but few reports
have been published concerning the correlations between PS
and RA at the transcriptome level, including in-depth studies
of the mechanisms and molecular networks involved in the
pathogenesis common to RA and PS.

The present study applied RNA sequencing technology
to the peripheral blood mononuclear cell (PBMC) RNA of
PS and RA patients and healthy volunteers, and differentially
expressed genes (DEGs) were explored among the groups.
Furthermore, bioinformatics analysis was performed to iden-
tify the key molecules and signaling pathways relevant to
RA and PS as well as the upstream regulators related to the
identified genes. This study aimed to obtain a comprehensive
understanding of the cytokine imbalance in RA and PS
based on DEGs, which may provide new insights into the
pathogenesis of and suitable prevention strategies for these
two diseases.

2. Materials and Methods

2.1. Patients. PS patients, RA patients, and healthy volunteers
were recruited from the China-Japan Friendship Hospital in
Beijing City of China at the dermatology clinic, the rheuma-
tology clinic, and the health screening center, respectively.
The diagnosis of PS was consistent with the guidelines of
the care for the management of psoriasis from the American
Academy of Dermatology and the guidelines for the treat-
ment of psoriasis from the Psoriasis Study Group of Chinese
Medical Association [14, 15]. Additionally, enrolled patients
hadno symptoms or signs of psoriatic arthritis.These patients

had a psoriasis area severe index (PASI) greater than 10 or
body surface area (BSA) greater than 10% but a PASI less than
30 and BSA less than 30%. A diagnosis of RA was based on
the 1987 American College of Rheumatology revised criteria
and the 2010 American College of Rheumatology/European
League against Rheumatism classification criteria for RA.
Disease activity was assessed by the Disease Activity Score in
28 joints (DAS28). For inclusion, the control subjects could
not have a history of an arthritic disorder and were subject to
the same exclusion criteria as the PS and RA patients. Given
that RA is two- to threefold more common in females than
males, only females were chosen as the observed subjects in
this study [16].

The following subjects were excluded: individuals who
were≥65 years old and≤18 years old; individualswith compli-
cations, such as cardiovascular and cerebrovascular diseases,
respiratory, digestive, urinary, and hematological diseases,
metabolic syndrome, and mental disturbances; individuals
who were pregnant, lactating, or who planned to become
pregnant within a year; individuals who received topical
treatments (such as corticosteroids or retinoic acid) within 2
weeks, systemic therapy within 4 weeks, or biological therapy
within 12 weeks; PS patients with a concurrent RA diagnosis;
and RA patients diagnosed with any type of PS.

In summary, 10 female PS patients, 10 female RA patients,
and 10 female healthy controls were enrolled into this study.
All protocols involving human subjects were approved by
the ethics committee of the China-Japan Friendship Hospital
(ethics ID: 2014-58), and informed consent was signed by all
participants before the study began.

2.2. PBMC Isolation and Total RNA Extraction. In all, 3mL
peripheral fasting blood samples were collected from all
subjects in the morning. PBMCs were isolated using den-
sity gradient centrifugation. Specifically, based on Ficoll-
Hypaque gradient solution (Histopaque-1077, Sigma-Aldrich,
USA), 3mL of heparinized whole blood was diluted to 6mL
with phosphate-buffered saline (PBS, pH 7.4), layered on
top of 3mL of Histopaque and centrifuged for 30min at
400×g. PBMCs were aspirated, washed twice, suspended
in PBS, and counted with a hemocytometer. PBMCs were
lysed in Trizol reagent (1mL/1 × 107 PBMCs) (Invitrogen,
Karlsruhe, Germany; Carlsbad, CA) and stored at −80∘C
for the subsequent testing. Total RNA in PBMC sample
was isolated using the Trizol extraction method, and it was
quantified with a NanoDrop ND-1000 spectrophotometer
(ThermoFisher Scientific Inc.,Marietta, OH,USA).TheRNA
Integrity Number was greater than 7.0, and acceptable quality
values accorded with A260/A280 ratios ranging from 1.8 to
2.2 for each total RNA sample.

2.3. Identification of DEGs. Total RNA of each sample was
purified by adsorption of biotin oligo magnetic beads. cDNA
synthesis was conducted after the binding ofmRNA. Double-
stranded cDNA was introduced to the cDNA fragment
digested by NlaIII endonuclease, and the bound fragments
contained CATG sites and adjacent poly A tails at the 3󸀠
end. After precipitation of the 3󸀠 cDNA fragment, Illumina
adaptor 1 was added to the 5󸀠 end. Both the adaptor 1
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and CATG sites are recognized by MmeI, which cuts at a
downstreamCATG site and produces fragments of 17-bp tags
with adaptor 1. Adaptor 2 was added to the 3󸀠 end of these
tags after the fragment was removed using beads attached to
the 3󸀠 end. Then, these sequences were prepared for Solexa
sequencing [17].

Clean tags were produced by filtering the adaptor
sequences and removing low-quality sequences (containing
ambiguous bases). Only the tags with perfect matches or one
mismatch were further considered and annotated based on
the reference genes. The expression level of each gene was
estimated by the frequency of clean tags and then normalized
to TPM (number of transcripts per million clean tags), which
is a standard method extensively used in DEG analysis [18].
The number of tags mapped to a given gene represented
the expression level of this gene. Expression levels of a gene
from two different samples were compared to provide an
expression difference. Significance values for differences in
expression were determined using a modified exact test. The
gene was classified as differentially expressed only when the
expression difference was greater than 1.2-fold with a 𝑝 value
less than 0.01.

2.4. Bioinformatics Analysis about DEGs. The information of
shared DEGs identified in PS and RA was uploaded into the
Ingenuity Pathways Analysis system (IPA, Ingenuity Systems,
http://www.ingenuity.com). The “Core Analysis” module in
IPA was utilized to analyze and visualize interactions of the
shared DEGs. These interactions were characterized by spe-
cific canonical pathways and molecular networks. Analytical
score was the negative base 10 logarithm of Fisher’s exact
test 𝑝 value in canonical pathway analysis. Significance for
biological functions of each network was symbolized by a
𝑝 value for the enrichment of the genes in the network by
comparison with the entire Ingenuity Pathway Knowledge
Base.

3. Results

3.1. Baseline Characteristics of Study Subjects. The character-
istics of the enrolled subjects, including age, disease duration,
BMI, PASI, BSA, and results of blood routine andbiochemical
tests, are presented in Table 1. No significant differences in
any of the examination indicators were noted among the
groups.

3.2. Identified Shared DEGs between PS and RA and the
Corresponding Functions. One hundred and twenty genes
in PS and 212 genes in RA were identified as DEGs when
compared with the controls (Figure 1, Tables S1 and S2 in
Supplementary Material available online at https://doi.org/
10.1155/2017/2405291). As shown in Figure 1 and Table 2,
there were 31 shared genes between PS and RA, including
20 upregulated and 11 downregulated DEGs, which reflects
the complex association of PS and RA at the transcriptome
level. The biological functions corresponding to the shared
DEGs mainly include cell-to-cell signaling, systemic autoim-
mune syndrome, cell death and apoptosis, inflammatory
dermatoses, and rheumatic arthritis (Figure 2, Table S3).

Table 1: Characteristics of the enrolled subjects for the three groups.

Characteristic Control (𝑛 = 10) PS (𝑛 = 10) RA (𝑛 = 10)
Age (years) 45.80 ± 3.50 48.60 ± 5.20 54.50 ± 7.10
Disease duration
(years) / 3.70 ± 1.20 2.10 ± 1.10

BMI (kg/m2) 22.34 ± 1.83 23.23 ± 4.71 25.81 ± 2.62
PASI / 9.17 ± 8.56 /
BSA (%) / 19.40 ± 4.14 /
ESR (mm/h) / / 39.14 ± 29.53
CRP (mg/L) / / 15.48 ± 15.40
RF (IU/mL) / / 63.76 ± 71.81
WBC (×109/L) 4.92 ± 1.10 5.33 ± 0.98 6.09 ± 1.50
HGB (g/L) 126.20 ± 13.89 124.72 ± 11.54 122.38 ± 14.74
PLT (×109/L) 228.70 ± 28.69 251.19 ± 34.56 246.75 ± 75.06
Note. Comparisons of clinical indicators of the PS group, RA group, and
control group. An unpaired 𝑡-test was used for continuous variables analysis,
and the data are expressed as the mean ± SD when appropriate (95% CI).

3.3. Networks of the SharedDEGs and the Corresponding Func-
tions. To reveal the connections between the shared DEGs,
the biomolecular networks of these DEGs were constructed
using IPA. As shown in Figure 3, these DEGs were associated
with one another directly or indirectly, and three networks
were established. Highly linked molecules of the networks
included extracellular signal-regulated kinase 1/2 (ERK1/2),
p38 mitogen-activated protein kinase (MAPK), interferon
gene (IFNG), and Ca2+. The network functions included
organismal injury and abnormalities, cell death and survival,
and cellular function and maintenance.

3.4. Signaling Pathways Relevant to the Merged Bionetwork.
The three networks were merged and formed a large network
that was associated with 42 signaling pathways. TNF was
highly linked molecule of the network. The main categories
corresponding to these signaling pathways were cytokine
signaling, cellular immune response, and humoral immune
pathways. Signaling pathways with −log(𝑝-value) more than
2.00𝐸 + 00 represented the most significantly relevant
pathways related to the merged network and included the
complement system, antigen presentation, macropinocytosis
signaling, acute phase response signaling, nuclear factor-
kappa B (NF-𝜅B) signaling, IL-6 signaling, IL-17 signaling,
and p38 MAPK signaling (Figures 4 and 5 and Table S4).
Top five pathways of these pathways were associated with the
shared DEGs.

3.5. Upstream Regulators of the Shared DEGs. Thirty-six
upstream regulators were identified by biomolecular network
analysis, with the majority being cytokine molecules, that is,
52.78% of them (Figure 6(a), Table S5). The regulators with
𝑝 values less than 1.00𝐸 − 04 included colony-stimulating
factor 3 (CSF3), IL-6, FOS, p38 MAPK, and TNF, and the
connection between every regulator and the correspond-
ing target molecule is presented in Figure 6(b). The main
biofunctions of the regulated effect networks corresponding

http://www.ingenuity.com
https://doi.org/10.1155/2017/2405291
https://doi.org/10.1155/2017/2405291
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Figure 1: Number of DEGs in PS and RA. (a) The Venn diagram indicates the number of uniquely upregulated (red) or downregulated
(green) genes from the comparisons of PS and RA with control and the number of shared DEGs. (b) The bar diagram shows the number of
DEGs in PS, RA, and the shared DEGs between them.
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Figure 2: Biological functions corresponding to the shared DEGs.

to those regulators were inflammation or immune-related
processes.

4. Discussion

PS and RA are immune-mediated inflammatory diseases.
An increasing number of studies have reported a correlation
between PS and RA, but the exact common molecular
mechanisms have not been elucidated. With the develop-
ment of high-throughput detection and analysis techniques,

including genomics and bioinformatics, the exploration of
these comprehensive mechanisms has become feasible.
PBMCs can be extracted from whole blood and consist of
lymphocytes (T cells, B cells, and NK cells) and mono-
cytes. Identifying gene expression in PBMCs is an impor-
tant strategy to determine disease-specific genes in holism
[19]. Methodologically, by comparison of gene profiles of
patients with particular disease and healthy persons, the
disease-specific genes can be found [20]. In this study, the
PBMC gene profiles of PS patients, RA patients, and healthy
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Table 2: The shared DEGs in PS and RA.

𝑛 Symbol Entrez gene name Fold change
PS RA

1 AEBP1 AE binding protein 1 2.615 2.644
2 ARG1 Arginase 1 1.295 2.224
3 C1QB Complement component 1, q subcomponent, B chain 1.153 2.356
4 C1QC Complement component 1, q subcomponent, C chain 1.177 3.000
5 C4BPA Complement component 4 binding protein alpha 1.504 3.322
6 CACNG6 Calcium voltage-gated channel auxiliary subunit gamma 6 −1.329 −1.445
7 CCNB2 Cyclin B2 1.479 2.390
8 CD177 CD177 molecule 1.000 2.404
9 CEP55 Centrosomal protein 55 1.303 1.554
10 CHI3L1 Chitinase 3 like 1 1.095 1.258
11 CTGF Connective tissue growth factor 4.700 4.954
12 DAAM1 Dishevelled associated activator of morphogenesis 1 −1.158 −1.489
13 EGR2 Early growth response 2 1.413 2.495
14 FHDC1 FH2 domain containing 1 1.122 1.631
15 FOLR3 Folate receptor 3 (gamma) 1.787 1.853
16 HLA-DQA2 Major histocompatibility complex, class II, DQ alpha 2 1.548 1.305
17 HLA-DRB4 Major histocompatibility complex, class II, DR beta 4 1.884 1.711
18 IFI27 Interferon alpha inducible protein 27 1.948 2.764
19 ITGB4 Integrin subunit beta 4 −1.531 −2.478
20 KRT1 Keratin 1 −1.142 −1.415
21 LTF Lactotransferrin 1.526 1.708
22 MET MET protooncogene, receptor tyrosine kinase 4.700 4.459
23 MT2A Metallothionein 2A −1.705 −1.253
24 PGLYRP1 Peptidoglycan recognition protein 1 1.535 1.907
25 RNF182 Ring finger protein 182 3.138 3.459
26 SLC26A8 Solute carrier family 26 member 8 1.890 3.021
27 SNAI1 Snail family zinc finger 1 −2.149 −1.672
28 TECPR1 Tectonic beta-propeller repeat containing 1 −1.027 −1.240
29 THEM5 Thioesterase superfamily member 5 −1.476 −1.306
30 TNFSF11 Tumor necrosis factor superfamily member 11 −2.000 −3.000
31 YEATS2 YEATS domain containing 2 −1.631 −1.304

volunteers were evaluated by determining the DEGs, and
31 gene expression signatures commonly shared between
PS and RA were identified. Based on these shared DEGs,
the pathogenesis common to both PS and RA was elu-
cidated at the transcriptome level. The discoveries of this
study suggest that the common mechanism of PS and RA
mainly involves inflammation and an abnormal immune
response characterized by a cytokine imbalance. Specifically,
the identified highly linked molecules, significant signaling
pathways, and upstream regulators were directly or indirectly
associated with the regulation of a variety of cytokines. As
shown in Figure 7, certain key molecules (ERK1/2, CSF3,
FOS, IFNG, andTNF) and significant signaling pathways (the
complement system, antigen presentation, macropinocytosis
signaling, acute phase response signaling, NF-𝜅B signaling,
IL-6 signaling, IL-17 signaling, and p38 MAPK signaling)
were associated with an imbalance of cytokines; this imbal-
ance may provide new clues for a better understanding of PS
and RA.

The complement system is an essential component of
innate immunity, and it plays an important role in modu-
lating adaptive immunity. Its activation contributes to the
pathogenesis of autoimmune and inflammatory diseases,
such as PS and RA [21]. Reduction of complement activation
is one of the mechanisms by which TNF-𝛼 inhibitors exert
their effectiveness in these two diseases [22]. In this study,
the upregulation of three DEGs (C4BPA, C1QB, and C4BPA)
implied that the complement system was activated, which
was consistent with previous studies. This study further
confirmed that the complement system is indeed an attractive
therapeutic target for both PS and RA. Professional antigen-
presenting cells, such as dendritic cells (DCs), macrophages,
and B cells, play a key role in triggering and/or maintaining
the chronic inflammatory process in RA [23]. Increasing
evidence indicates that RA treatment may occur through
the manipulation of antigen presentation [24]. This study
found that the activated antigen presentation pathway is
characterized by upregulation of two DEGs, HLA-DQA2 and
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Figure 3: Biomolecular networks related to the shared DEGs. In each network, molecules are represented as nodes, and the biological
relationship between two nodes is represented as a line. Red symbols represent upregulated DEGs; green symbols represent downregulated
DEGs. Yellow symbols indicate the highly linked molecules from the Ingenuity Knowledge Database. Solid lines between molecules indicate
a direct physical relationship between molecules, whereas dash lines represent indirect functional relationships. (a)The first network. (b)The
second network. (c) The third network.
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HLA-DRB4, and this upregulation is a common mechanism
of PS and RA. Therefore, targeting antigen presentation may
also be a new strategy for PS treatment. Macropinocytosis
represents a distinct pathway of endocytosis in mammalian
cells, and it significantly contributes to antigen presentation
by the immune system. A study revealed that the type II
collagen in an RA mice model was taken up by DCs and
macrophages predominantly via inhibition of micropinocy-
tosis [25]. In addition, the nonapoptotic cell death associated
with perturbations of micropinocytosis is one apoptosis
mechanism caused by RA [26]. This study showed that
micropinocytosis signaling is also involved in PS, which
offers a new method to understand the pathogenesis of PS.
The acute phase response serves as a core of the innate
immune response, and proteins relevant to this response
were closely correlated with the development of RA [27].
The results from this study suggest that the pathogenesis of
both PS and RA might partially result from the perturbation
of the acute phase response. Regarding previous studies, the
four signaling pathways discussed above are involved in the
metabolism and regulation of cytokines. Specifically, when
the complement system is stimulated by certain triggers,
proteases in the system cleave specific proteins to release

cytokines [28]. Antigen presentation plays an important role
in cytokine production in PS and RA [29]. Cytokines, such as
IFN𝛾 and IL-17A, regulate macropinocytosis in macrophages
[30]. Cytokine levels (IL-6 and IFN𝛾) mediate the acute
phase response [31]. In short, perturbation of these path-
ways affected particular cytokines, which potentially partially
reflects the pathogenesis of PS and RA.

IL-6 is a proinflammatory cytokine that induces activa-
tion of Th cells and controls the balance between Treg cells
and Th17 cells. In lesional psoriatic skin, IL-6 is markedly
elevated, and T lymphocytes encounter high IL-6 levels, thus
allowing cutaneous T cells to avoid Treg suppression and
increasing theTh17 inflammatory activity [32]. Targeting IL-6
signaling in PS may rebalance Treg/Th17 activity and amelio-
rate the disease [33]. IL-6 also stimulates the inflammatory
and autoimmune processes in RA, and both deregulation of
IL-6 production and blockade of IL-6 signaling are effective
strategies in treating experimental models of RA [34]. IL-
17 is the signature cytokine secreted by Th17 cells. IL-17
is particularly important in PS due to its proinflammatory
effects and its involvement in an integrated inflammatory
loopwithDCs and keratinocytes, contributing to an overpro-
duction of inflammatory cytokines that leads to amplification
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Figure 5: Top five pathways. Purple symbols represent the shared DEGs. (a) Complement system. (b) NF-𝜅B signaling. (c) Macropinocytosis
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of the immune response [35, 36]. A study demonstrated
that effective treatment of PS with TNF inhibitors was
associated with suppression of IL-17 signaling [37]. Similarly,
the therapeutic strategy of IL-17 signaling inhibition was also
used to treat RA [38]. TNF, formerly known as TNF-𝛼, is
the best-known member of TNF superfamily. As a cytokine,
TNF stimulates cell proliferation and cell differentiation and
plays a key role in the pathogenesis of PS and RA [39].
A lack of the TNF G allele is associated with reduced PS
severity [40]. CSF3 acts as a cytokine and may be produced
by the endothelium and by macrophages. A previous study
confirmed that CSF3 is a typical IL-17A-regulated gene in the
keratinocytes of PS [35]. IFNG encodes the IFN𝛾 protein.
IFN𝛾 is a cytokine secreted byTh cells (specifically, Th1 cells)
and is an important activator of macrophages. IFN𝛾 has been
implicated in the initiation/maintenance of inflammation. A
study showed that the pathogenesis of RA was correlated
with reduced frequencies of IFN𝛾 producers [41]. This study
found that these particular cytokines, such as IL-6, IL-17,
TNF, CSF3, and IFN𝛾, as well as the corresponding signaling
pathways are involved in the pathogenesis of PS and RA,
which not only verified previous discoveries but also reflected
the importance of these cytokines. In brief, an imbalance in
these cytokines plays a crucial role in the pathogenesis of PS
and RA, and targeting these cytokines is a key strategy for
prevention and treatment.

NF-𝜅B is essential for the expression of proinflamma-
tory cytokines and controls a number of essential cellular
functions, including the immune response, cell proliferation,
and apoptosis. Loss of normal NF-𝜅B signaling regulation
is a major contributor to a variety of inflammatory and
autoimmune diseases, such as PS and RA [42, 43]. Activator
protein-1 (AP-1) is recognized as a regulator of the expression
of cytokines, such as CSF3, IL-6, and TNF, and is causally
involved in PS and RA [44]. The immediate early gene

product Fos is part of the AP-1 transcription factor, and its
deregulation is associated with a variety of immunological
defects. Selective inhibition of Fos function demonstrated
that targeting Fos/AP-1 activity could be an promising new
option for arthritis treatment [45]. ERK1/2 and p38 MAPK
are important members of the MAPK family, which are
responsive to inflammatory cytokines, and they are involved
in cell differentiation, apoptosis, and autophagy. ERK1/2
is phosphorylated and activated via cell surface receptors
stimulated by cytokines. Emerging data suggest that cytokine
expression in response to p38 MAPK and ERK1/2 activation
is involved in the etiopathogenesis of PS and that p38 MAPK
signaling is an indicator of the loss of keratinocyte cell-
cell adhesion in PS [46, 47]. IL-6, NF-𝜅B, and p38 MAPK
signaling activation is an important characteristic of the
inflammatory response in activated macrophages in RA,
and p38 MAPK signaling is involved in the process of RA
angiogenesis [48]. In addition, suppressing the expression of
TNF-𝛼 and IL-6 through inhibiting the activation of NF-𝜅B
and ERK1/2 is an important strategy for treating RA [49].
This study indicated that four biomolecules, NF-𝜅B, Fos, p38
MAPK, and ERK1/2, are highly linkedmolecules or upstream
regulators that are closely associated with the shared DEGs
in PS and RA and therefore regulated cytokines; these four
biomolecules represent novel targets to prevent and treat
these two diseases.

5. Conclusions

The common pathogenesis of PS and RA was characterized
by a cytokine imbalance. The deregulation of certain key
molecules, such as ERK1/2, CSF3, FOS, IFNG, and TNF, as
well as the perturbation of signaling pathways, including the
complement system, antigen presentation, macropinocytosis
signaling, NF-𝜅B signaling, IL-6 signaling, IL-17 signaling,
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and p38 MAPK signaling, reflected this type of imbalance.
The new findings in this study provided a new molecular
understanding of PS and RA and could pave the road for the
discovery of new strategies for treating PS and RA.
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