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Objective In the present study, we have used machine learning algorithm to accomplish
the task of automated detection of poor-quality scintigraphic images. We have valida-
ted the accuracy of our machine learning algorithm on °°™Temethyl diphosphonate
(99 TcMDP) bone scan images.

Materials and Methods Ninety-nine patients underwent 99mTCGMDP bone scan
acquisition twice at two different acquisition speeds, one at low speed and another
at double the speed of the first scan, with patient lying in the same position on the scan
table. The low-speed acquisition resulted in good-quality images and the high-speed
acquisition resulted in poor-quality images. The principal component analysis (PCA) of
all the images was performed and the first 32 principal components (PCs) were retained
as feature vectors of the image. These 32 feature vectors of each image were used for
the classification of images into poor or good quality using machine learning algorithm
(multivariate adaptive regression splines [MARS]). The data were split into two sets,
that is, training set and test set in the ratio of 60:40. Hyperparameter tuning of the
model was done in which five-fold cross-validation was performed. Receiver operator
characteristic (ROC) analysis was used to select the optimal model using the largest
value of area under the ROC curve. Sensitivity, specificity, and accuracy for the
classification of poor- and good-quality images were taken as metrics for the perfor-
mance of the algorithm.

Result Accuracy, sensitivity, and specificity of the model in classifying poor-quality
and good-quality images were 93.22, 93.22, and 93.22%, respectively, for the training
dataset and 86.88, 80, and 93.7%, respectively, for the test dataset.

Conclusion Machine learning algorithms can be used to classify poor- and good-
quality images with good accuracy (86.88%) using 32 PCs as the feature vector and
MARS as the classification model.
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Image Classification Using Machine Learning Algorithm

Introduction

Scintigraphic procedures performed in nuclear medicine
result in images having quality ranging from poor to
good. The imaging scenarios involving poor uptake of
radiopharmaceutical, administration of less than the opti-
mum radiopharmaceutical dose, extravasations of radio-
pharmaceutical, deviation from the recommended
acquisition protocol, technical issues in imaging devices,
and so on may lead to poor-quality low-count images.’

Making diagnosis from these poor-quality images is chal-
lenging for nuclear medicine physicians because noise masks
the visibility of small lesions. The study needs to be repeated
if its image quality is so poor that no diagnosis can be made.
Therefore, the images are reviewed by nuclear medicine
physicians for its diagnostic quality before patient leaves
the department after the completion of the scan.

During the review process, for each poor-quality image,
nuclear medicine physician has two choices: (1) to use digital
image processing techniques to transform poor quality im-
age into diagnostic quality, or (2) to repeat the study. We
hypothesize that the task of detection of images that could be
improved using techniques of digital image processing to
reach acceptable diagnostic quality can be automated. Ma-
chine learning algorithms are typically used in classification
and regression analysis and existed for decades, but they
have only recently become common in medical imaging due
to technological advances.?3

In this study, we have used a machine learning algorithm
to accomplish the task of automated detection of poor quality
scintigraphic images. We have validated the accuracy of our
machine learning algorithm on 99mTC-MDP bone scan
images.

Materials and Methods

The whole-body Tc-99m MDP bone scan images included in
the present study were acquired as the part of MSc thesis
entitled “Image Enhancement Using Stochastic Resonance”
which was aimed to enhance the bone scan images acquired
with twice the routinely used scanning speed for bone scan
acquisition. Enhancement of images was done using postpro-
cessing technique based on stochastic resonance to make them
approximately equal to the normal full time bone scan images.
The study was approved by the ethics committee of our
institute (Ref.No.[ECPG-115/21.03.2018, RT-7/10.05.2018).
Written consent was taken from all the patients before enrol-
ment in the study.

Ninety-nine patients were scanned twice. First scan was
acquired using standard imaging protocol (depending on the
count rate in chest region the scanning speed was selected)
and second scan was acquired at twice the scanning speed
used in the first scan. The second scan had more statistical
noise (approximately half the number of total counts in the
first scan) compared with first scan. The acquisition protocol
used was as follows: 7 to 11 MBq Tc-99m MDP per kg body
weight was administered intravenously. Before the adminis-
tration of Tc-99m MDP, patients were instructed to drink at
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least 1 to 2L of water and void their bladder frequently to
reduce the radiation dose to patient, public and staff. After a
waiting period of 3 to 4 hours, the whole body bone scan
images (both anterior and posterior view) were acquired
with low-energy, high-resolution (LEHR) collimator using
dual head single-photon emission computerized tomogra-
phy (SPECT) gamma camera (Symbia E, Siemens Medical
Solutions USA, Inc.) in 1,024 x 256 matrix. Therefore, we
obtained 198 good-quality images and 198 poor-quality
images in our image database.

Nuclear medicine physician visually compared the first
and second scan images and verified that the second scan
appears to be visually noisier than the first scan image. We
labeled the first scan as good quality image and second scan
as poor-quality image.

The image database was partitioned into training and test
dataset in 60:40 ratio. The principal component analysis
(PCA) of each image was performed and the first 32 compo-
nents were retained as a feature vector of the image.

The automatic detection of poor-quality images was
performed using multivariate adaptive regression splines
(MARS) model (a machine learning algorithm). The MARS
has been previously used for both regression and classifica-
tion problem in machine learning. Using the feature vectors
as input derived from each image using PCA, we trained
MARS to classify good and poor-quality images.

We describe PCA and MARS in brief. For detail, interested
reader can see the references” for PCA and for MARS.”

PCA is a statistical technique. Each column of the image is
considered as variable and each row of the image is consid-
ered as an instance of these variables. PCA transforms this
image data as a linear combination of the principal compo-
nents (PCs) of image variables. The original dataset with
maximum variability is represented with the first PC, where-
as the data from the remaining dataset with the maximum
variability are represented with the second PC. This process
goes on consecutively as such with the data from the
remaining dataset with the maximum variability being
represented with the next PC. If m represents the number
of all PCs and p represents the number of the significant PCs
among all PCs, then p may be defined as the number of PCs of
the m-dimensional dataset with the highest variance values.
The number p should be chosen such that the data are
represented at the very best.* In this study, we choose
p =32, this was based on our previous experience that it is
possible to reconstruct the original image with p =32.

There is an exhaustive list of classifiers in the literature,
and any classifier could have been used. We did not have
specific reasons for selecting MARS as classifier. The motiva-
tion for using MARS was our familiarity in working with
MARS.

MARS is a nonparametric regression procedure that
makes no assumption about the underlying functional rela-
tionship between the dependent and independent variables.
It constructs this relationship from a set of coefficients and
so-called basis functions that are entirely determined from
the regression data.>® MARS uses a pruning technique to
limit the complexity of the model by reducing the number of

No. 4/2022 © 2022. World Association of Radiopharmaceutical and Molecular Therapy (WARMTH). All rights reserved.

277



278

Image Classification Using Machine Learning Algorithm

its basis functions.” The MARS model can be used for both
regression and classification task. We have used this model
for the classification task.

Training of MARS model was done using 32 PCs. Hyper-
parameter tuning of model was done in which five-fold
cross-validation was performed. Receiver operator charac-
teristic (ROC) analysis was used to select the optimal model
using the largest value of area under ROC curve.

The performance of MARS model after hyperparameter
tuning was further validated on test dataset for the classifi-
cation of poor- and good-quality images.

All the analysis was performed in package “Caret” installed
with free version of R (R version 3.5.1 [2018-07-02] nickname
Feather Spray).” The motivation for using Caret package was as
follows: (1) The Caret package (classification and regression
training) contains numerous tools for developing predictive
models, and (2) the package contains functions useful in the
early stages of a project (e.g., data splitting and preprocessing).
The implementation of MARS model provided in Caret package
has been used in the study as the classification model.

Results

The range of speed used in full-time scan and half-time scan was
obtained, individual data have been plotted in ~Fig. 1. We have
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included few images from which reader can get some idea about
the visual perception of good- and poor-quality images included
in our image database. - Fig. 2 displays representative images of
six different patients acquired during full-time and half-time
scans. It can be observed that half-time scan images were noisier
than the full-time scan images. Also, the corresponding images
reconstructed using 32 PCs are given in the figure.

Training and Test Result
After pruning a fixed number of terms, the model accuracy in
terms of area under ROC, sensitivity, and specificity is given
in =Table 1. For 32 PCs, pruning that resulted in best model
performance was found to be two steps with an area under
ROC of 0.967 and sensitivity and specificity of 92 and 93%,
respectively. Graphs showing the number of predictors found
important and the performance of model at different number
of pruning steps are given in =Fig. 3A and B, respectively
=Table 2 shows the confusion matrices of MARS model
after hyperparameter tuning for training and test datasets.
The confusion matrices show the actual number of true
predictions of poor- and good-quality images by the MARS
model in training and test datasets.

Accuracy: It shows how close the predicted value is to the
actual value. The accuracy of our model in training dataset
was 93.22% and test dataset was 86.88%.
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(A) Histogram ad plot of full-time scan velocity, (B) histogram and plot of half-time scan velocity.
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Fig. 2 (A-F) Images of six different patients. In each group, first row left image is the full-time image and first row right image is the half-time
image, second row left image is the reconstructed full-time image with 32 PCs, right image is the reconstructed half-time image with 32 PCs.

Sensitivity: It is the percentage of actual positive class
(good-quality images in our case) that was correctly
predicted. In the present study, the sensitivity of model
in classification of images in training dataset was 93.22%

and in test dataset was 80%.

Specificity: Specificity is the proportion of actual negative
class (poor-quality images) that are correctly predicted. In
the present study, specificity was 93.22% for training

dataset and 93.7% for test dataset.

In brief, the above results suggest that using 32 PCs as
feature vectors and MARS as classifier for detection of poor
and good quality images resulted in accuracy, sensitivity, and
specificity greater than 80%.

Discussion

Objective of the present study was to develop an algorithm
for automated detection of poor-quality whole-body 99mTc-

Table 1 Performance results after hyperparameter tuning of the MARS model, ROC was used to select the optimal model using the

largest value

32 PCs
Number of samples 236
Number of predictors 32
Number of classes 2,“G,” “P”
Preprocessing None

Resampling

Cross-validated (five-fold)

Resampling results across tuning parameters

nprune ROC Sensitivity Specificity
2 0.969 0.923 0.933
11 0.951 0.933 0.889
21 0.9215 0.881 0.932
30 0.9328 0.863 0.924
40 0.932 0.880 0.915

Final values used for model

nprune =2, degree =1

Abbreviations: G, good-quality images; MARS, multivariate adaptive regression splines; P, poor-quality images; PC

receiver operating characteristics.

, principal component; ROC,
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Fig. 3 Training results (A) number of predictors found important at different number of pruning step, (B) performance of model at different
number of pruning step. MARS, multivariate adaptive regression splines.

Table 2 Confusion matrix of training and test dataset

Training data
Reference
G P Total
Prediction
G 110 8 118
P 8 110 118
Total 118 118 236
Test data
Reference
G P Total
Prediction
G 64 5 69
P 16 75 91
Total 80 80 160

Abbreviations: G, good-quality images; P, poor-quality images.

MDP bone scintigraphic images from a dataset having both
poor- and good-quality images using machine learning. We
performed the modeling using 32 PCs. By inspecting the
input and reconstructed image, a reader can observe that 32
PCs was a good choice, as it has retained the information
which is necessary for the reconstructing image very similar
to the input image (~Fig. 2). However, it has helped us in
reducing the data from 262,144 data points
(1024 x 256 = 262,144 pixels) to 32 data points (32 PCs).
The accuracy, sensitivity, and specificity of model with 32
PCs were 86.88, 80, and 93.7%, respectively.

In medical field, the amount of data available for a given
problem is very limited. Therefore, a classifier developed on
the training dataset is applied to each sample in the test
dataset for validation of the classifier’s success. In other fields
where sufficiently large data are available, one may use the
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advantage of dividing data into three distinct subsets: train-
ing, test, and validation of data. However, dividing the
available medical data in three ways would have further
reduced the amount of data that would actually train the
classifier.®

In our study, we divided the data into training and test
dataset in the ratio 60:40 which means 236 samples for
training and 160 samples for test datasets, respectively. In
the literature, other authors have used various ratios for the
splitting of dataset. Rosenwald et al split the dataset of 240
patients into 150:90 with about two-thirds of samples
devoted to training set.'® Boer et al split the data of 152
samples into 80/72, so that 53% of data were used to train the
classifier.'" In the study by Golub et al, the split for data was
40 for training and 32 for test set which means 56% of data
were used to train the classifier.'? Sun et al used 40-size
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dataset for the training set and 91 for test set or 31% for
training set.3

We have used PCA technique for feature extraction. It is a
mathematical procedure that extracts relevant information
from a large dataset. It has ability to identify relatively
fewer numbers of features or components that as a whole
represent the full image. Thus, PCs extracted by PCA implic-
itly represent all the features in the image. There are several
other techniques for feature extraction which are based on
spatial characteristics (statistical moments like mean and
standard deviation), histogram (tonal distribution of digital
image, standard deviation, skewness, kurtosis, etc.), texture
(local binary patterns, gray-level cooccurrence matrix, the
Fast Fourier Transform frequency domain features, etc.), and
quality of images.'* In nuclear medicine, previous work has
been reported in compression of dynamic images using PCA.
It also has a routine application in picture archiving and
communication systems.'>'® Recently, one study done by
Cho et al'’ had shown the role of PCA-support vector
machine (SVM) in classification of nuclear medicine images.
In this study, the authors have performed 18F-florbetaben
amyloid brain positron emission tomography (PET) scans,
PCA was used for feature vectors extraction, and SVM was
used as classification model whose accuracy was evaluated
in classifying amyloid positive and amyloid negative scans. In
all the reported work, number of studies have focused on the
required number of feature vectors for image classification.

The classifier used in the present study is MARS which is
a nonparametric regression procedure that makes no as-
sumption about the underlying functional relationship be-
tween the dependent and independent variables. Various
other techniques like linear models, generalized additive
models, classification and regression tree (CART), artificial
neural networks (ANN), logistic regression (LR), decision
tree, and so on can be used as classifiers. Studies have been
done previously to compare these classification techniques
in different areas.'®23 Moisen and Frescino'® compared
linear models, generalized additive models, CART, MARS,
and ANN for mapping forest characteristics in the Interior
Western United States using forest inventory field data and
ancillary satellite-based information. Delen et al'® com-
pared LR, decision tree (C5), and ANN for predicting the
survivability of diagnosed cases for breast cancer. Stark and
Pfeiffer?’ compared LR, classification tree algorithms (ID3,
C4.5, CHAID, and CART), and ANN to solve classification
problems in complex datasets in veterinary epidemiology.
Colombet et al?! evaluated the implementation and com-
parative performance of CART and ANN with an LR model to
predict the risk of cardiovascular disease on a real database
of patients. Chae et al®?> compared LR, CHAID, and C5.0 in
predicting hypertension and provide policy information for
hypertension management in a health-insurance domain.
Ture et al?> compared LR, flexible discriminant analysis
(FDA), FDA with MARS (FDA/MARS), Chi-squared automatic
interaction detector (CHAID), quick unbiased efficient sta-
tistical tree (QUEST), CART, radial basis function (RBF), and
multilayer perceptron (MLP) to predict control and hyper-
tension groups. We chose MARS for our study because we

World Journal of Nuclear Medicine  Vol. 21

Pandey et al.

wanted to start with no assumptions about possible rela-
tionships among feature set of the images.

Our study provides evidence that machine learning algo-
rithms can classify poor- and good-quality images with good
accuracy (86.88%) using 32 PCs as feature vector and MARS as
classification model. It has a future clinical implication, as
the model can help in selecting the poor-quality images
automatically which can be further improved by applying
suitable postprocessing techniques. This can accelerate the
speed of NMPs in interpretation of scans. Moreover, this
model can help in accelerating the research in the field of
image enhancement in nuclear medicine because most
difficult task in the research is the collection of data (poor
quality images for image enhancement task). To improve
poor quality images, first they need to be identified and
separated from total pool of images. The most used and
available identification technique is visual inspection which
has to be performed with the help of NMPs, who are hard
pressed for time. The methodology used in this study to
classify the image into poor- and good-quality images can be
used by the scientists working on image enhancement.

The limitation of our study is that the classifier model is
validated for whole body 99mTcMDP bone scan images only.
In future, we would like to investigate or generalize the
model for the classification of other scintigraphic images
such as thyroid, iodine, PET, and SPECT images.

Conclusion

Machine learning algorithms can be used to classify poor-
and good-quality images with good accuracy (86.88%), using
32 PCs as feature vector and MARS as classification model.
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