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Abstract: The neurohormone octopamine regulates many crucial physiological processes in insects
and exerts its activity via typical G-protein coupled receptors. The roles of octopamine receptors in
regulating behavior and physiology in Coleoptera (beetles) need better understanding. We used the
red flour beetle, Tribolium castaneum, as a model species to study the contribution of the octopamine
receptor to behavior and physiology. We cloned the cDNA of a β-adrenergic-like octopamine receptor
(TcOctβ2R). This was heterologously expressed in human embryonic kidney (HEK) 293 cells and
was demonstrated to be functional using an in vitro cyclic AMP assay. In an RNAi assay, injection
of dsRNA demonstrated that TcOctβ2R modulates beetle locomotion, mating duration, and fertility.
These data present some roles of the octopaminergic signaling system in T. castaneum. Our findings
will also help to elucidate the potential functions of individual octopamine receptors in other insects.

Keywords: red flour beetle; octopamine receptor; locomotion; reproduction

1. Introduction

Octopamine (OA) was first discovered in the salivary glands of an octopus [1], and it
shares structural and functional similarities to the vertebrate biogenic amines, adrenaline,
and noradrenaline. High concentrations of OA have been found in the neuronal and
nonneuronal tissues of most invertebrate species [2]. OA acts as a neurohormone, neu-
romodulator, and neurotransmitter in invertebrates [3], with essential functions and reg-
ulation of many physiological processes, including olfactory sensitivity [4–6], endocrine
regulation [7], learning and memory [8,9], locomotion [10–13], sleep [14], induction of
germline stem cell increase [15], and ovulation [16–19].

OA acts by binding to typical G-protein coupled receptors (GPCRs) with seven con-
served transmembrane domains. The first insect OA receptor was isolated from Drosophila
melanogaster [20]. Subsequently, a number of OA receptors were cloned from other insect
species. According to their functional similarities to vertebrate adrenergic receptors, in
terms of amino acid sequence and signaling pathway, OA receptors are classified into four
major groups designated as α1-adrenergic-like OA receptors (Octα1-R), α2-adrenergic-like
OA receptors (Octα2-R), β-adrenergic-like OA receptors (Octβ1-R, Octβ2-R, Octβ3-R), and
OA/tyramine receptors (Tyr1-R, Tyr2-R, Tyr3-R) [21–23]. Activation of Octα1-R expressed
in cell lines primarily leads to an increase in both intracellular Ca2+ and cAMP concentra-
tion, while activation of Octα2-R leads to an increase in intracellular Ca2+ and the decrease
of cAMP concentration. Activation of Octβ-Rs only induces an increase in intracellular
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cAMP concentration [21]. The Tyr1-R and Tyr3-R class of receptors can be stimulated by
both tyramine and OA. The activation of these receptors results in the inhibition of the
cAMP level and an increase in intracellular Ca2+ concentration. The difference between
these two types of TyrRs lies in their affinities for OA and TA when the intracellular Ca2+

concentration changes. The Tyr2-Rs have been characterized in Drosophila and Bombyx mori.
They are specifically activated by tyramine and selectively coupled to intracellular Ca2+

mobilization but have no effect on intracellular cAMP concentration [21,23,24].
The functions of OA receptors, especially OctβRs, have been studied in many insect

species. Octβ2R is expressed in the female reproductive tract controlling ovulation and
fertilization in D. melanogaster [16,19]. Studies on Nilaparvata lugens have shown that
the injection of OAR antagonists, and blockage of N1OA2B2 both lead to a decrease in
egg production [18]. The octopamine receptor antagonists (mianserin and phentolamine)
impaired the movement of adult rice stem borers, Chilo suppressalis, probably due to the
inhibition of CsOA2B2 [25]. The activation of distinct OA receptors in skeletal and cardiac
muscles is necessary for Drosophila exercise adaptations, and the expression of Octβ2R
in skeletal muscles is required for improving endurance and speed [13]. As a potential
insecticide target, OctβRs have been studied for their pharmacological characterizations.
The interaction of OctβRs on agonists and antagonists was tested in Plutella xylostella [26],
B. mori [27], N. lugens [18], Rhodnius prolixus [24], and Nephotettix cincticeps [28].

It has been well documented that octopamine receptors have diverse functions in
different insects. The physiological functions of the octopamine receptors have been well
characterized in Drosophila model systems [16]. However, there is no functional study
on the octopamine receptors in coleopteran insects yet. The phylogenetic comparison,
tissue expression profiles, and flexible behavior-related gene expression of OA receptors
were studied in the subsocial burying beetle, Nicrophorus vespilloides [29,30]. With the
availability of genome information and the high efficiency of RNA interference (RNAi), the
red flour beetle, Tribolium castaneum, is a good model system for functional genomic studies.
Furthermore, it has been reported that the duration of tonic immobility was shortened
in a dose-dependent manner by injection of OA [31], showing that OA is involved in T.
castaneum behavior. Therefore, we combined physical cloning, transcriptional expression
profiling, heterologous expression, and RNAi assays to characterize the functionality of
TcOctβ2R in T. castaneum. We sought to determine the contribution of the OA receptor to
beetle behavior and physiology.

2. Results
2.1. Molecular Cloning and Sequence Analysis

The open reading frame (ORF) of TcOctβ2R (GenBank Accession Number: NM_001293572)
is 1236 bp and encodes a protein of 411 amino acids with a molecular weight of 47.9 kD
and an isoelectric point of 8.71. The prediction of the transmembrane structure shows that
TcOctβ2R is a GPCR with typical seven transmembrane domains. The comparison of the
amino acid sequence of TcOctβ2R with DmOctβ2R and BmOctβ2R showed a similarity
of 51.5%. Through multiple sequence alignment, it is found that the cysteine residues
indicated by the deep grey background are highly conserved in the extracellular II and III
of Octβ2R. In addition, TcOctβ2R has the conserved DRY motif in transmembrane domain
III (TM3) and NPxxY motif in TM7. These two motifs are necessary for G protein coupling
and are conserved in all adrenergic receptors (Figure 1).
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Figure 1. Multiple sequence alignment of TcOctβ2R with two β-adrenergic-like receptors from
D. melanogaster (DmOctβ2R) and B. mori (BmOctβ2R). TM means transmembrane domains. The
seven transmembrane domains are numbered as TM1–7. Identical amino acids are marked by
asterisks, and conserved amino acids are marked by dots. The deep grey background indicates
conserved cysteine residues. The yellow background indicates a conserved amino acid motif.

A phylogenetic tree constructed with the insect octopamine receptors clustered into
three groups, consisting of octopamine/tyramine receptors, OctαRs, and OctβRs (Figure 2).
TcOctβ2R was grouped with Octβ2Rs and showed a close relationship to AmOctβ2R of
Apis mellifera and NIOctβ2R of N. lugens (Figure 2).



Int. J. Mol. Sci. 2021, 22, 7252 4 of 13

Figure 2. Phylogenetic tree of TcOctβ2R (marked by the red square) and various biogenic amine
receptors. The neighbor-joining tree was constructed in MEGA 5.0 using 1000 bootstrap tests. The
numbers at the nodes of the branches represent the level of bootstrap support for each branch. The
Drosophila PDF receptor served as the out-group. Am, A. mellifera; Bm, B. mori; Dm, D. melanogaster;
Cs, C. suppressalis; Nl, N. lugens; Pa, Periplaneta americana; Tc, T. castaneum.The accession numbers of
all receptors used in the phylogenetic analysis can be found in Table S2.

2.2. Heterologous Expression and Functional Assay

Transfection of pcDNA3.1(+)-TcOctβ2R plasmid makes human embryonic kidney
(HEK 293) cells transiently express TcOctβ2R on the cell membrane. The activation of the
TcOctβ2R on the membrane by the ligand will cause the accumulation of cAMP, which
manifests as an increased luminescence of the GloSensor. We examined the activity of
different biogenic amines, including naphazoline, OA, TA, and dopamine, on the receptor.
In the assays, no stimulation of cAMP production was recorded after incubation with
1.0 × 10−6 M biogenic amines on an empty pcDNA3.1(+) vector. In contrast, naphazoline,
OA, and TA significantly induced the increase of cAMP in cells expressing TcOctβ2R
(Figure 3). Among the tested chemicals, naphazoline showed the most potent activation
on TcOctβ2R with a very low effective concentration (EC50) of 7.1 × 10−9 M. The model
ligand OA also showed a very potent activation with an EC50 of 2.8 × 10−8 M. TA showed
a moderate activation with an EC50 of 2.0 × 10−7 M. However, dopamine did not activate
TcOctβ2R at low concentrations, and activation only occurred at the highest concentration
(1.0 × 10−5 M) tested.
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Figure 3. Dose–response curves of TcOctβ2R transiently expressed cells (HEK 293) to four tested
ligands (naphazoline, octopamine, tyramine, and dopamine). Each spot represents the mean relative
luminescence ± S.E. from three biological replications. The relative luminescence was normalized to
the luminescence caused by the application of naphazoline at 1.0 × 10−5 M.

2.3. Spatial and Temporal Expression Profiles

Based on the standard curves obtained by the serial dilutions of cDNA, the primer
efficiencies were 95.2% and 98.6% for RPS3 and TcOctβ2R, respectively. The RT-qPCR
results showed that transcripts of TcOctβ2R were detected across all developmental stages
tested (Figure 4A). The highest expression was observed in the larval stage and old adult
stage, followed by the old pupal and early adult stages. The lowest expression occurred in
the early pupal and egg stages. Except for the egg stage, the expression level of TcOctβ2R
at other developmental stages showed a tendency for having higher expression in the old
stage than in the early stage. Among the different tissues of the 7-d-old virgin adults, a sig-
nificantly higher expression level of TcOctβ2R was recorded in the central nervous system
(CNS, including the brain, thoracic, and abdominal ganglia) (Figure 4B). No significant
difference was found among the expression levels of TcOctβ2R in the other tissues.

Figure 4. (A) Relative expression levels of TcOctβ2R at different developmental stages. Different stages are denoted
by capitalized letters: E (egg), L (larva), P (pupa), and A (adult). Letters in lowercase e and o represent early and old,
respectively; (B) relative expression levels of TcOctβ2R in various tissues of adults. CNS, central nervous system; FB, fat
body; MG, midgut; MT, Malpighian tubules; FRO, female reproductive organs; MRO, male reproductive organs; LEG, legs.
All the data shown are means of the relative expression ± standard error (S.E.) (n = 4), normalized to RPS3 transcript levels.
Different letters on the bar represent a significant difference in ANOVA (Tukey, p < 0.05).
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2.4. Effect of TcOctβ2R Knockdown on Mobility

Injection of dsRNA into pupae targeting TcOctβ2R significantly suppressed its ex-
pression in adults (Figure 5A). The transcription of TcOctβ2R was significantly reduced
by 88.2%. The reduction was confirmed by regular RT-PCR, where the dsRNA-treated
group showed a very faded band on an agarose gel (Figure 5B). In the adult mobility
assay, 82 individuals, divided into two groups (control insects and ds TcOctβ2R-treated),
were tested. The moving speed of each beetle was recorded in millimeters per second. As
shown in Figure 5C, the average speed of 41 individuals from the dsTcOctβ2R-injected
group was significantly decreased by nearly 30%, compared to the control group (p < 0.01,
independent t-test).

Figure 5. RNAi of TcOctβ2R and mobility assay: (A) RNAi efficiency tested by qRT-PCR; (B) the
confirmation of RNAi efficiency by RT-PCR; (C) moving speed (in millimeters per second) of T. castaneum.
Asterisks represent the significant difference in independent t-test (n = 41, *** p < 0.001).

2.5. Effect of TcOctβ2R Knockdown on Mating Behavior and Reproduction

By observing the mating behavior of beetles, it was found that the copulation rate
of the dsTcOctβ2R-injected group was 32.1% less than the 53.6% of the dsGFP-injected
group (Figure 6A). For mated beetles, TcOctβ2R knockdown did not affect the number
of copulations (Figure 6B). The dsTcOctβ2R-injected group, however, had significantly
reduced mating duration, compared to the control group (Figure 6C). The average mating
duration of the dsTcOctβ2R-injected beetles was 54.8 ± 10.4 s, which was about 44.2 s less
than that of the dsGFP-injected beetles.
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Figure 6. Mating behavior and fecundity assay after RNAi: (A) copulation rate (%); (B) number of
copulations (mean ± S.E.) in 90 min; (C) mating duration (n = 28); (D) total number of eggs laid
in 9 d (n = 13–14, mean ± S.E.). Asterisks represent the significant difference in independent t-test
(n = 25–37, * p < 0.05, *** p<0.001).

As TcOctβ2R knockdown inhibits beetle mating behavior, cross-mating experiments
after RNAi were used to test the effect on fecundity. Based on the total number of eggs
laid in 9 d, the rankings were in the following order (high to low): dsGFP♀xdsGFP♂>
dsTcOctβ2R♀xdsGFP♂> dsGFP♀xdsTcOctβ2R♂> dsTcOctβ2R♀xdsTcOctβ2R♂(Figure 6D).
Combinations of single-pair mating in which either sex was treated with dsTcOctβ2R also
showed a significant reduction in the total eggs laid (27–57% of the control), regardless
of which sex was treated. Therefore, the silencing of TcOctβ2R affects both the mating
behavior and fertility of beetles. In addition, the silencing of TcOctβ2R had a greater impact
on male fertility than on female fertility, which coincides with the higher expression of this
gene in the testis.

3. Discussion

The availability of well-annotated genome information of model organisms, such
as T. castaneum, provided an opportunity to study the functions of the octopaminergic
signaling system. Octopamine receptors have been identified from many species, including
B. mori [2,32], D. melanogaster [33], P. americana [34], A. mellifera [35], Bactrocera dorsalis [36],
P. xylostella [26], and R. prolixus [24]. In the current study, we cloned an octopamine receptor
from T. castaneum, and the phylogenetic analysis indicated that it belongs to the family of
insect OctβRs, which are structurally similar to the vertebrate β-adrenergic receptors.

Studies on the agonist or antagonist profiles of octopamine receptors have suggested
their potential as targets for novel insecticides [22]. The in vitro agonist assays of oc-
topamine receptors have been successfully performed in D. melanogaster [37] and B. dor-
salis [36]. In our study, the rank order for the potency of the tested ligands was as follows:
naphazoline > OA > TA > dopamine. Naphazoline also has significant agonistic effects
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on BdOctβR1 [36]. OA possessed the highest agonistic activity against DmOctβ2R [37].
The EC50 value of OA in T. castaneum was 2.8 × 10−8 M, and it was less potent than
DmOctβ2R (EC50: 1.53 × 10−8 M) [37]. In A. mellifera, the EC50 of OA for AmOctβ2R
was 1.82 × 10−9 M [35]. This suggests that AmOctβ2R or DmOctβ2R may have a better
coupling with G-proteins than TcOctβ2R.

The transcriptional profiles of TcOctβ2R revealed ubiquitous expression in all devel-
opmental stages and tissues examined. TcOctβ2R was highly expressed in the larval and
old adult stages (Figure 4A). Similarly, DmOctβ2R, CsOctβ2R, and MsOA2B2 exhibited
high expression in larvae [25,37,38]. PxOA2B2 and NiOA2B2 were highly expressed in
male adults but not in female adults. However, current research on Octβ2Rs is focused
on effects on female fecundity, while male-specific behaviors have not been studied well.
TcOctβ2R was highly expressed in the T. castaneum CNS. Similar results were found in
DmOctβ2R [37] and CsOctβ2R [25], which are highly expressed in heads. In addition,
the distribution pattern of NvOctβ2R indicated that it is expressed predominantly in the
thoracic musculature [29]. The highest transcript levels of SgOctβR were found in the
flight muscles, followed by the CNS, which were determined to be associated with flight
ability [39]. Here, we found that TcOctβ2R was highly expressed in the CNS, followed by
the legs and male reproductive organs (Figure 4B). Therefore, we conclude that TcOctβ2R
mainly acts as a neurotransmitter receptor in the nervous system of T. castaneum. It may
also be involved in behaviors regulated by the peripheral nervous system.

In D. melanogaster, OA neurons regulate the expansion of excitatory glutamatergic
neuromuscular arbors through DmOctβ2R on glutamatergic motor neurons [40]. This
indicated that this subtype of OA receptors might be important in locomotion. Octβ2R is
strongly expressed in the skeletal muscle system of Drosophila larvae. In adults, Octβ2R
is highly expressed in the leg skeletal muscles and longitudinal muscles in the abdomen.
An octopaminergic system is involved in the regulation of prothoracicotropic hormone
(PTTH) and insulin-like peptides (ILPs) signaling [41], which further regulate the energy
metabolism in insects [42]. In the current study, we found that knockdown of TcOctβ2R
reduced the locomotory activity in T. castaneum. This could be achieved by participat-
ing in the control of skeletal muscle contraction and the hormonal regulation of energy
metabolism through various neuronal signaling systems.

Octβ2R plays an important role in female reproductive behavior. OA regulates the
contraction of muscles in female reproductive organs through the abdominal ganglia (Abg)
octopaminergic neurons. These muscles occupy specific locations in the reproductive
system and affect the release of sperm from spermathecae and ovulation [43]. In Drosophila,
the combination of OA with Octb2R and OAMB in epithelial cells induces the transport of
eggs from the ovary to the uterus. Activation of OAMB induces an increase in cytoplasmic
Ca2+ levels and stimulates the production of secretions required for ovulation. Octb2R
activation induces oviduct muscle relaxation by increasing cAMP levels [16]. Similarly,
NIOAB2B is involved in regulating ovulation in N. lugens. The RNAi of NIOAB2B can cause
ovaries to increase in size due to egg retention [18]. In the present study on T. castaneum,
the total number of eggs laid by dsTcOctβ2R-injected females in 9 d was significantly lower
than the number of eggs laid by control beetles (Figure 6D). In addition, TcOctβ2R RNAi
has a greater impact on male reproduction than female (Figure 6D). In general, there is
a positive correlation between mating duration and semen delivery [44]. Since TcOctβ2R
RNAi shortens the mating duration of males, this could decrease the amount of sperm
delivered to females and lead to a decrease in egg production. Octβ2R is also highly
expressed in the male reproductive organs of T. castaneum (Figure 4B) and N. lugens [45].
Knockdown of TcOctß2R hinders the OA signal in the male reproductive organs, and this
may reduce the transmission of semen by affecting the contraction of the ejaculatory duct
muscles, which reduces the number of eggs produced by females. Thus, it is necessary to
further study how TcOctß2R affects the process of male ejaculation.

In summary, the cDNA of a β-adrenergic-like octopamine receptor (TcOctβ2R) was
cloned from T. castaneum. It was functionally identified by heterologous expression and an
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in vitro cyclic AMP assay. In RNAi assays, dsRNA injection indicated that this receptor
modulates beetle locomotion, mating behavior, and fertility. These findings will help to
elucidate the functions of individual OA receptors in beetles and in other insects.

4. Materials and Methods
4.1. Test Insects

The Georgia-1 (GA1) strain of T. casraneum (obtained from Dr. Yoonseong Park of
Kansas State University, Manhattan, KS, USA) was reared in wheat flour and brewer yeast
powder (10:1) at 30 ◦C, a 16:8 h (L:D) photoperiod and 30% relative humidity.

4.2. Primers, Plasmids, and Chemicals

Primers (Table S1) used in this manuscript were designed based on the predicted
sequence of T. castaneum and synthesized by Invitrogen (Shanghai, China). The pGEM-T
Easy Vector (Promega, Madison, WI, USA) was used to clone the PCR amplicon of TcOctβ2R.
The expression vector pcDNA3.1(+) was a gift from Dr. Yoonseong Park of Kansas State
University. High-quality plasmid DNA prepared by a QIAGEN Plasmid Plus Midi Kit
(Hilden, Germany) was used for transient transfection and heterologous expression.

The HEK 293 cells were cultured adherently in a culture medium at 37 ◦C with 5%
CO2 content. The culture medium was composed of DMEM/F12 medium, 10% fetal bovine
serum (FBS), 1% fungizone, and 1% penicillin/streptomycin. Coelenterazine h and the
reagents used for cell culture were purchased from Gibco Life Technologies (Grand Island,
NY, USA). The TransIT–LT1 transfection reagent used for the transient transfections was
purchased from Mirus Bio Chemicals (Madison, WI, USA). OA hydrochloride, dopamine
hydrochloride, TA hydrochloride, forskolin, and naphazoline hydrochloride were all
purchased from Sigma-Aldrich (St. Louis, MO, USA). The GloSensor reagent used for the
cAMP assay was purchased from Promega.

4.3. Molecular Cloning and Sequence Analysis

Total RNA was isolated from the whole body of T. castaneum adults using TRIZOL
reagent according to the manufacturer protocol. The first-strand cDNA was synthesized
by the PrimeScript first-strand synthesis system (TaKaRa, Dalian, China) after digesting
genome DNA with RQ1 RNase-Free DNase (Promega). The ORF of TcOctß2R was amplified
by a nested PCR using high fidelity DNA polymerase PrimeSTAR HS (Takara). The PCR
conditions were as follows: 98 ◦C for 2 min, 35 cycles at 98 ◦C for 10 s, 60 ◦C for 15 s, and
72 ◦C for 90 s, and final extension at 72 ◦C for 10 min. The purified PCR product was
cloned into the pGEM-T Easy vector (Promega) and sequenced.

Nucleotide sequence and putative protein sequence of the Tribolium Octβ2R receptor
were analyzed using DNAMAN7 (Lynnon BioSoft, Vaudreuil, QC, Canada). The isoelec-
tric point and molecular weight of the putative protein were predicted on the ExPASy
Proteomics Server (http://cn.expasy.org/tools/pi_tool, access on 29 June 2021). Similar
sequences were obtained by a BlastP search against the nonredundant protein database
on NCBI (http://www.ncbi.nlm.nih.gov, access on 29 June 2021). Multiple alignments
of the related sequences were conducted using ClustalW2 (http://www.ebi.ac.uk/Tools/
msa/clustalw2, access on 29 June 2021). Transmembrane helices were predicted using the
TMHMM server (http://www.cbs.dtu.dk/services/TMHMM, access on 29 June 2021).
Phylogenetic analysis was performed with MEGA 5.0 using the neighbor-joining method
and 1000 bootstrap tests. The pigment-dispersing factor receptor (PDF receptor) in
D. melanogaster served as an out-group.

4.4. Heterologous Expression and Functional Assay

The TcOctβ2R-pGEMT was subcloned into the pcDNA3.1(+) vector by a NotI digestion
and ligation. HEK 239 cells were used for the heterologous expression. Briefly, cells were
transfected using the TransIT–LT1 transfection reagent purchased from Mirus Bio LLC.
At 36 h after the transfection, the cells were collected. They were further preincubated

http://cn.expasy.org/tools/pi_tool
http://www.ncbi.nlm.nih.gov
http://www.ebi.ac.uk/Tools/msa/clustalw2
http://www.ebi.ac.uk/Tools/msa/clustalw2
http://www.cbs.dtu.dk/services/TMHMM
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with the GloSensor reagent (Promega) for an additional 2 h for the cyclic AMP (cAMP)
assay, as described previously [46]. Tenfold serial dilutions of tested ligands, including OA,
TA, dopamine, and naphazoline, were applied to the cells. Forskolin at 10 µM served as
a positive control for the receptor activation. The test ligands diluted with DMEM/F12
(Gibco Life Technologies) were added to the wells of the 96-well plate, and then, 50 uL
of cells were injected into the wells, and the luminescence was detected. The elevated
luminescence levels caused by the cAMP accumulation were measured within 15 min in 30 s
intervals using a TriStar2 LB 942 Multimode Reader (Berthold Technologies, Bad Wildbad,
Germany). The luminescence for each tested ligand was normalized to the luminescence
produced by naphazoline at the concentration of 10 µM, which was employed as the
model ligand and set as 100% of response, after background subtractions. Based on the
relative luminescence, logistic fitting in Origin 8.6 (OriginLab, Northampton, MA, USA)
generated a dose–response curve of the receptor to each tested ligand. All experiments
were conducted using three biological replicates.

4.5. Quantitative Reverse Transcription PCR (qRT-PCR)

Beetles at different developmental stages were collected, as described previously, for
developmental expression profiling [47]. Different tissues were dissected from 7-d-old
virgin adults: CNS (including the brain, thoracic, and abdominal ganglia), midgut, hindgut,
Malpighian tubules, legs, male reproductive organs, and female reproductive organs. In
total, 20 adults were pooled to prepare the midgut, hindgut, leg, and male and female
reproductive organs, while 40 individuals were pooled to collect the Malpighian tubules
and CNS. Total RNA extraction and cDNA synthesis were performed as described above.
The qRT-PCR primers are listed in Table S1. A threefold serial dilution of the cDNA was
used to obtain the standard curve for calculating the amplification efficiency of each primer
pair. qRT-PCR was performed using the IQ™ SYBR® Green Supermix (Promega) on a
Stratagene Mx3000P system (Stratagene, La Jolla, CA, USA). The reference gene ribosomal
protein S3 (rpS3, GenBank Accession Number CB335975) was used to calculate the relative
expression of TcOctβ2R with qBase+ software [48]. All experiments had four biological
replications.

4.6. RNA Interference

Primers (Table S1) tailing the T7 promoter were used to amplify the target region
for the synthesis of gene-specific dsRNA. The dsRNA synthesis was conducted using a
TranscriptAid T7 High Yield Transcription Kit (Thermo Fisher Scientific, Waltham, MA,
USA). For RNAi, a total of 200 ng dsRNA was injected into the beetle body cavity. Early
pupae (within 24 h after pupation) were used for the RNAi. Deaths occurring within 5
d after injection were considered as injection injury and excluded from the data analyses
(less than 10%). Seven days after the emergence of the dsRNA-injected beetles, four adults
were collected for RNA extraction to assess the RNAi efficiency by both qPCR and regular
RT-PCR. qPCR for RNAi efficiency determination was conducted, as mentioned previously.
RT-PCR was also carried out with 35 cycles for the target gene TcOctβ2R and 30 cycles for
the reference gene TcRPS3.

4.7. Mobility Assay after RNAi

Locomotory responses of T. castaneum were measured using Syntech TrackSphere LC-
300 (Syntech, Hilversum, The Netherlands). The locomotion assay was operated according
to the user manual of Syntech LC-300 and a previous description [49]. Before the operation,
the illumination and contrast were properly adjusted using the dark spot on a piece of
paper, which could be evaluated on the video. The beetle was effectively placed in the
same position of a 30 cm diameter sphere relative to the zoom lens, which served as a
detector by projecting a beam of ordinary light onto the beetle. As soon as the beetle started
walking, the sphere rotated in the opposite direction at the same speed as the beetle by the
rotation of two motors. The beetle’s position was recorded every second, and the walking
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speed and direction were calculated. For the mobility assay, 7-d-old virgin adults were
used. Each beetle was tested for 2 min, the average speed of the individuals was calculated.
At least 40 beetles in each dsRNA-injected group were tested. The data were subjected to
an independent t-test.

4.8. Mating Behavior and Fecundity Assay after RNAi

After dsRNA injection, the male and the female pupae were reared separately. The
7-d-old virgin adults were observed for the mating behavior and fecundity assay. Mating
behavior was recorded by a SONY HDR-CX405. The video was started at 6 p.m. and lasted
until 7:30 p.m. (90 min). The room temperature was controlled at 28 ± 1 ◦C. The females
were first placed in 24-well plates. Then the males were quickly added and videotaping
started. The start of mating was defined as when the male first mounted the back of
the female in the same direction. Correspondingly, when the male left the female’s back,
mating was judged to be ended. The duration of mating and the number of copulations
were recorded by watching videos. The dsRNA-injected females were mated with the same
dsRNA-injected males. Each dsRNA-injection group used 28 pairs of beetles to observe the
mating behavior. To detect the effect of silencing of TcOctβ2R on fecundity, dsGFP/dsOctβ2R-
injected females were paired with dsGFP/dsOctβ2R- injected males, respectively. Eggs from
3 d oviposition periods were collected/counted, and eggs were counted until the 9th day.
There were 14–15 pairs of beetles in each mating group.

4.9. Statistical Analysis

GraphPad Prism version 8.0.1 (www.graphpad.com, access on 29 June 2021) was used
for statistically analyzing and creating test graphs.
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