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Abstract

The human distal gut harbors a vast ensemble of microbes (the microbiota) that provide us with 

important metabolic capabilities, including the ability to extract energy from otherwise 

indigestible dietary polysaccharides1–6. Studies of a small number of unrelated, healthy adults 

have revealed substantial diversity in their gut communities, as measured by sequencing 16S 

rRNA genes6–8, yet how this diversity relates to function and to the rest of the genes in the 

collective genomes of the microbiota (the gut microbiome) remains obscure. Studies of lean and 

obese mice suggest that the gut microbiota affects energy balance by influencing the efficiency of 

calorie harvest from the diet, and how this harvested energy is utilized and stored3–5. To address 

the question of how host genotype, environmental exposures, and host adiposity influence the gut 

microbiome, we have characterized the fecal microbial communities of adult female monozygotic 
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and dizygotic twin pairs concordant for leanness or obesity, and their mothers. Analysis of 154 

individuals yielded 9,920 near full-length and 1,937,461 partial bacterial 16S rRNA sequences, 

plus 2.14 gigabases from their microbiomes. The results reveal that the human gut microbiome is 

shared among family members, but that each person’s gut microbial community varies in the 

specific bacterial lineages present, with a comparable degree of co-variation between adult 

monozygotic and dizygotic twin pairs. However, there was a wide array of shared microbial genes 

among sampled individuals, comprising an extensive, identifiable ‘core microbiome’ at the gene, 

rather than at the organismal lineage level. Obesity is associated with phylum-level changes in the 

microbiota, reduced bacterial diversity, and altered representation of bacterial genes and metabolic 

pathways. These results demonstrate that a diversity of organismal assemblages can nonetheless 

yield a core microbiome at a functional level, and that deviations from this core are associated 

with different physiologic states (obese versus lean).

We characterized gut microbial communities in 31 monozygotic (MZ) twin pairs, 23 

dizygotic (DZ) twin pairs, and where available their mothers (n=46) (Supplementary Tables 

1–5). MZ and DZ co-twins and parent-offspring pairs provided an attractive paradigm for 

assessing the impact of genotype and shared early environment exposures on the gut 

microbiome. Moreover, genetically ‘identical’9 MZ twin pairs gain weight in response to 

overfeeding in a more reproducible way than do unrelated individuals10 and are more 

concordant for body mass index (BMI) than DZ twin pairs11.

Twin pairs who had been enrolled in the Missouri Adolescent Female Twin Study 

(MOAFTS12) were recruited for this study (mean period of enrollment in MOAFTS, 

11.7±1.2 years; range, 4.4–13.0 years). All twins were 25–32 years old, of European or 

African ancestry (EA and AA, respectively), were generally concordant for obesity 

(BMI≥30 kg/m2) or leanness (BMI=18.5–24.9 kg/m2) [1 twin pair was lean/overweight 

(overweight defined as BMI ≥25 and <30) and 6 pairs were overweight/obese], and had not 

taken antibiotics for at least 5.49±0.09 months. Each participant completed a detailed 

medical, lifestyle, and dietary questionnaire: they were broadly representative of the overall 

Missouri population with respect to BMI, parity, education, and martial status (see 

Supplementary Results). Although all were born in Missouri, they currently live throughout 

the USA: 29% live in the same house, but some live >800 km apart. Since fecal samples are 

readily attainable and representative of interpersonal differences in gut microbial ecology7, 

they were collected from each individual and frozen immediately. The collection procedure 

was repeated again with an average interval between sampling of 57±4 days.

To characterize the bacterial lineages present in the fecal microbiotas of these 154 

individuals, we performed 16S rRNA sequencing, targeting the full-length gene with an ABI 

3730xl capillary sequencer. Additionally, we performed multiplex pyrosequencing with a 

454 FLX instrument to survey the gene’s V2 variable region13 and it’s V6 hypervariable 

region14 (Supplementary Tables 1–3).

Complementary phylogenetic and taxon-based methods were used to compare 16S rRNA 

sequences among fecal communities (see Methods). No matter which region of the gene was 

examined, individuals from the same family (a twin and her co-twin, or twins and their 

mother) had a more similar bacterial community structure than unrelated individuals (Fig. 
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1A and Supplementary Fig. 1A,B), and shared significantly more species-level phylotypes 

(defined as sharing ≥97% identity in their 16S rRNA sequences) [G=55.2, p<10−12 (V2); 

G=12.3, p<0.001 (V6); G=11.3, p<0.001 (full-length)]. No significant correlation was seen 

between the degree of physical separation of family members’ current homes and the degree 

of similarity between their microbial communities (defined by UniFrac15). The observed 

familial similarity was not due to an indirect effect of the physiologic states of obesity 

versus leanness; similar results were observed after stratifying twin-pairs and their mothers 

by BMI category (concordant lean or concordant obese individuals; Supplementary Fig. 2). 

Surprisingly, there was no significant difference in the degree of similarity in the gut 

microbiotas of adult MZ versus DZ twin-pairs (Fig. 1A). However, in the present study we 

could not assess whether MZ and DZ twin pairs had different degrees of similarities at 

earlier stages of their lives.

Multiplex pyrosequencing of V2 and V6 amplicons allowed higher levels of coverage 

compared to what was feasible using Sanger sequencing, reaching on average 3,984±232 

(V2) and 24,786±1,403 (V6) sequences per sample. To control for differences in coverage, 

all analyses were performed on an equal number of randomly selected sequences [200 full-

length, 1,000 V2, and 10,000 V6]. At this level of coverage, there was little overlap between 

the sampled fecal communities. Moreover, the number of 16S rRNA gene sequences 

belonging to each phylotype varied greatly between fecal microbiotas (Supplementary 

Tables 6–8).

Since this apparent lack of overlap could reflect the level of coverage (Supplementary 

Tables 1–3), we subsequently searched all hosts for bacterial phylotypes present at high 

abundance using a sampling model based on a combination of standard Poisson and 

binomial sampling statistics. The analysis allowed us to conclude that no phylotype was 

present at more than ~0.5% abundance in all of the samples in this study (see Supplementary 

Results). Finally, we subsampled our dataset by randomly selecting 50–3,000 sequences/

sample; again, no phylotypes were detectable in all individuals sampled within this range of 

coverage (Supplementary Fig. 3).

Samples taken from the same individual at the initial collection point and 57±4 days later 

were consistent with respect to the specific phylotypes found (Supplementary Figs. 4,5), but 

showed variations in relative abundance of the major gut bacterial phyla (Supplementary 

Fig. 6). There was no significant association between UniFrac distance and the time between 

sample collections. Overall, fecal samples from the same individual were much more similar 

to one another than samples from family members or unrelated individuals (Fig. 1A), 

demonstrating that short-term temporal changes in community structure within an individual 

are minor compared to inter-personal differences.

Analysis of 16S rRNA datasets produced by the three PCR-based methods, plus shotgun 

sequencing of community DNA (see below), revealed a lower proportion of Bacteroidetes 

and a higher proportion of Actinobacteria in obese versus lean EA and AA individuals 

(Supplementary Table 9). Combining the individual p-values across these independent 

analyses using Fisher’s method disclosed significantly less Bacteroidetes (p=0.003), more 

Actinobacteria (p=0.002), but no significant difference in Firmicutes (p=0.09). These 
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findings are in agreement with previous work showing comparable differences in both taxa 

in mice2 and a progressive increase the representation of Bacteroidetes when 12 unrelated 

obese humans lost weight after being placed on one of two reduced calorie diets6.

Across all methods, obesity was associated with a significant decrease in the level of 

diversity (Fig. 1B plus Supplementary Fig. 1C–F). This reduced diversity suggests an 

analogy: the obese gut microbiota is not like a rainforest or reef, which are adapted to high 

energy flux and are highly diverse, but rather may be more like a fertilizer runoff where a 

reduced diversity microbial community blooms with abnormal energy input16.

We subsequently characterized the microbial lineage and gene content of the fecal 

microbiomes of 18 individuals representing 6 of the families (3 lean EA MZ twin-pairs and 

their mothers plus 3 obese EA MZ twin pairs and their mothers) through shotgun 

pyrosequencing (Supplementary Tables 4,5) and BLASTX comparisons against a number of 

databases [KEGG17 (v44) and STRING18] plus a custom database of 44 reference human 

gut microbial genomes (Supplementary Figs. 7–10 and Supplementary Results). Our 

analysis parameters were validated using control datasets comprised of randomly 

fragmented microbial genes with annotations in the KEGG database17 (Supplementary Fig. 

11 and Supplementary Methods). We also tested how technical advances that produce longer 

reads might improve these assignments by sequencing fecal community samples from one 

twin pair using Titanium pyrosequencing methods [average read length of 341±134 nt (SD) 

versus 208±68 nt for the standard FLX method]. Supplementary Fig. 12 shows that the 

frequency and quality of sequence assignments is improved as read length increases from 

200 to 350 nt.

The 18 microbiomes were searched to identify sequences matching domains from 

experimentally validated Carbohydrate-Active enZymes (CAZymes). Sequences matching 

156 total CAZy families were found within at least one human gut microbiome, including 77 

glycoside hydrolase, 21 carbohydrate-binding module, 35 glycosyltransferase, 12 

polysaccharide lyase, and 11 carbohydrate-esterase families (Supplementary Table 10). On 

average 2.62±0.13% of the sequences in the gut microbiome could be assigned to CAZymes 

(total of 217,615 sequences), a percentage that is greater than the most abundant KEGG 

pathway (‘Transporters’; 1.20±0.06% of the filtered sequences generated from each sample), 

and indicative of the abundant and diverse set of microbial genes directed towards accessing 

a wide range of polysaccharides.

Category-based clustering of the functions from each microbiome was performed using 

Principal Components Analysis (PCA) and hierarchical clustering19. Two distinct clusters 

of gut microbiomes were identified based on metabolic profile, corresponding to samples 

with an increased abundance of Firmicutes and Actinobacteria, and samples with a high 

abundance of Bacteroidetes (Fig. 2A). A linear regression of the first principal component 

(PC1, explaining 20% of the functional variance) and the relative abundance of the 

Bacteroidetes showed a highly significant correlation (R2=0.96, p<10−12; Fig. 2B). 

Functional profiles stabilized within each individual’s microbiome after ~20,000 sequences 

had been accumulated (Supplementary Fig. 13). Family members had more similar profiles 

than unrelated individuals (Fig. 2C), suggesting that shared bacterial community structure 
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(who’s there based on 16S rRNA analyses) also translates into shared community-wide 

relative abundance of metabolic pathways. Accordingly, a direct comparison of functional 

and taxonomic similarity (see Supplementary Methods) disclosed a significant association: 

individuals with similar taxonomic profiles also share similar metabolic profiles (p<0.001; 

Mantel test).

Functional clustering of phylum-wide sequence bins representing microbiome reads 

assigned to 23 human gut Firmicutes and 14 Bacteroidetes reference genomes showed 

discrete clustering by phylum (Supplementary Figs. 14A,15). Bootstrap analyses of the 

relative abundance of metabolic pathways in the microbiome-derived Firmicutes and 

Bacteroidetes sequence bins, disclosed 26 pathways with a significantly different relative 

abundance (Supplementary Fig. 14A). The Bacteroidetes bins were enriched for a number of 

carbohydrate metabolism pathways, while the Firmicutes bins were enriched for transport 

systems. The finding is consistent with our CAZyme analysis, which revealed a significantly 

higher relative abundance of glycoside hydrolases, carbohydrate-binding modules, 

glycosyltransferases, polysaccharide lyases, and carbohydrate esterases in the Bacteroidetes 

sequence bins (Supplementary Fig. 14B).

One of the major goals of the International Human Microbiome Project(s) is to determine 

whether there is an identifiable ‘core microbiome’ of shared organisms, genes, or functional 

capabilities found in a given body habitat of all or the vast majority of humans1. Although 

all of the 18 gut microbiomes surveyed showed a high level of beta-diversity with respect to 

the relative abundance of bacterial phyla (Fig. 3A), analysis of the relative abundance of 

broad functional categories of genes (COG) and metabolic pathways (KEGG) revealed a 

generally consistent pattern regardless of the sample surveyed (Fig. 3B and Supplementary 

Table 11): the pattern is also consistent with results we obtained from an meta-analysis of 

previously published gut microbiome datasets from nine adults20,21 (Supplementary Fig. 

16). This consistency is not simply due to the broad level of these annotations, as a similar 

analysis of Bacteroidetes and Firmicutes reference genomes revealed substantial variation in 

the relative abundance of each category (see Supplementary Fig. 17). Furthermore, pair-wise 

comparisons of metabolic profiles obtained from the 18 microbiomes in this study revealed 

an average R2 of 0.97±0.002 (Fig. 2A), indicating a high level of functional similarity.

Overall functional diversity was compared using the Shannon index22, a measurement that 

combines diversity (the number of different types of metabolic pathways) and evenness (the 

relative abundance of each pathway). The human gut microbiomes surveyed had a stable 

and high Shannon index value (4.63±0.01), close to the maximum possible level of 

functional diversity (5.54; see Supplementary Methods). Despite the presence of a small 

number of abundant metabolic pathways (listed in Supplementary Table 11), the overall 

functional profile of each gut microbiome is quite even (Shannon evenness of 0.84±0.001 on 

a scale of 0 to 1), demonstrating that most metabolic pathways are found at a similar level of 

abundance. Interestingly, the level of functional diversity in each microbiome was 

significantly linked to the relative abundance of the Bacteroidetes (R2=0.81, p<10−6); 

microbiomes enriched for Firmicutes/Actinobacteria had a lower level of functional 

diversity. This observation is consistent with an analysis of simulated metagenomic reads 

generated from each of 36 Bacteroidetes and Firmicutes genomes (Supplementary Fig. 18): 
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on average, the Bacteroidetes genomes have a significantly higher level of both functional 

diversity and evenness (Mann-Whitney, p<0.01).

At a finer level, 26–53% of ‘enzyme’-level functional groups (KEGG/CAZy/STRING) were 

shared across all 18 microbiomes, while 8–22% of the groups were unique to a single 

microbiome (Supplementary Fig. 19A–C). The ‘core’ functional groups present in all 

microbiomes were also highly abundant, representing 93–98% of the total sequences. Given 

the higher relative abundance of these ‘core’ groups, >95% were found after 26.11±2.02 Mb 

of sequence was collected from a given microbiome, whereas the ‘variable’ groups continue 

to increase substantially with each additional Mb of sequence. Of course, any estimate of the 

total size of the core microbiome will be dependent upon sequencing effort, especially for 

functional groups found at a low abundance. On average, our survey achieved greater than 

450,000 sequences per fecal sample, which, assuming an even distribution, would allow us 

to sample groups found at a relative abundance of 10−4. To estimate the total size of the core 

microbiome based on the 18 individuals, we randomly sub-sampled each microbiome in 

1,000 sequence intervals (Supplementary Fig. 19D). Based on this analysis, the core 

microbiome is approaching a total of 2,142 total orthologous groups (one site binding 

hyperbola curve fit to the resulting rarefaction curve, R2=0.9966), indicating that we have 

identified 93% of functional groups (defined by STRING) found within the core 

microbiome of the 18 individuals surveyed. Of these core groups, 71% (CAZy), 64% 

(KEGG), and 56% (STRING) were also found in the 9 previously published but much lower 

coverage datasets generated by capillary sequencing of adult fecal DNA20,21 (average of 

78,413±2,044 bidirectional reads/sample; see Supplementary Methods).

Metabolic reconstructions of the ‘core’ microbiome revealed significant enrichment for a 

number of expected functional categories, including those involved in transcription and 

translation (Fig. 4). Metabolic profile-based clustering indicated that the representation of 

‘core’ functional groups was highly consistent across samples (Supplementary Fig. 20), and 

includes a number of pathways likely important for life in the gut, such as those for 

carbohydrate and amino acid metabolism (e.g. fructose/mannose metabolism, aminosugar 

metabolism, and N-Glycan degradation). Variably represented pathways and categories 

include cell motility (only a subset of Firmicutes produce flagella), secretion systems, and 

membrane transport (e.g. phosphotransferase systems involved in the import of nutrients, 

including sugars; Fig. 4 and Supplementary Fig. 20).

The distribution of CAZy glycoside hydrolase and glycosyltransferase families was 

compared between each pair of microbiomes (see Supplementary Table 10 for CAZy 

families with a relative abundance >1%). This analysis revealed that all individuals have a 

similar profile of glycosyltransferases (R2=0.96±0.003), while the profiles of glycoside 

hydrolases were significantly more variable, even between family members (R2=0.80±0.01; 

p<10−30, paired Student’s t-test). This suggests that the number and spectrum of glycoside 

hydrolases is probably affected by ‘external’ factors such as diet more than the 

glycosyltransferases.

To identify metabolic pathways associated with obesity, only non-core associated (variable) 

functional groups were included in a comparison of the gut microbiomes of lean versus 
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obese twin pairs. A bootstrap analysis23 was used to identify metabolic pathways that were 

enriched or depleted in the variable obese gut microbiome. For example, similar to a mouse 

model of diet-induced obesity4, the obese human gut microbiome was enriched for 

phosphotransferase systems involved in microbial processing of carbohydrates 

(Supplementary Table 12). All gut microbiome sequences were compared against the 

custom database of 44 human gut genomes: an odds ratio analysis revealed 383 genes that 

were significantly different between the obese and lean gut microbiome (q-value < 0.05; 273 

enriched and 110 depleted in the obese microbiome; Supplementary Tables 13,14). By 

contrast, only 49 genes were consistently enriched or depleted between all twin-pairs (see 

Supplementary Methods).

These obesity-associated genes were representative of the taxonomic differences described 

above: 75% of the obesity-enriched genes were from Actinobacteria (vs. 0% of lean-

enriched genes; the other 25% are from Firmicutes) while 42% of the lean-enriched genes 

were from Bacteroidetes (vs. 0% of the obesity-enriched genes). Their functional annotation 

indicated that many are involved in carbohydrate, lipid, and amino acid metabolism 

(Supplementary Tables 13,14). Together, they comprise an initial set of microbial 

biomarkers of the obese gut microbiome.

Our finding that the gut microbial community structures of adult MZ twin pairs had a degree 

of similarity that was comparable to that of DZ twin pairs, and only slightly more similar 

compared to their mothers, is consistent with an earlier fingerprinting study of adult twins24, 

and with a recent microarray-based analysis, which revealed that gut community assembly 

during the first year of life followed a more similar pattern in a pair of DZ twins compared 

to 12 unrelated infants25. Intriguingly, another fingerprinting study of MZ and DZ twins in 

childhood showed a slightly reduced similarity profile in DZ twins26. Thus, comprehensive 

time-course studies, comparing MZ and DZ twin pairs from birth through adulthood, as well 

as intergenerational analyses of their families’ microbiotas, will be key to determining the 

relative contributions of host genotype and environmental exposures to (gut) microbial 

ecology.

The hypothesis that there is a core human gut microbiome, definable by a set of abundant 

microbial organismal lineages that we all share, may be incorrect: by adulthood, no single 

bacterial phylotype was detectable at an abundant frequency in the guts of all 154 sampled 

humans. Instead, it appears that a core gut microbiome exists at the level of metabolic 

functions. This conservation suggests a high degree of redundancy in the gut microbiome 

and supports an ecological view of each individual as an ‘island’ inhabited by unique 

collections microbial phylotypes: as in actual islands, different species assemblages 

converge on shared core functions provided by distinctive components. Our findings raise 

the question of how core functionality is assembled in this body habitat. Understanding the 

underlying principles should provide insights about microbial adaptation to, and perhaps 

mutualistic community assembly within, a wide range of environments.
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METHODS SUMMARY

Fecal samples were collected from each individual. Community DNA was prepared and 

used for pyrosequencing (454 Life Sciences), as well as for PCR and sequencing of bacterial 

16S rRNA genes. Shotgun reads were mapped to reference genomes using the NCBI ‘non-

redundant’ database, KEGG17, STRING18, CAZy (http://www.cazy.org/), and a 44-

member human gut microbial genomes database. Metabolic reconstructions were performed 

based on CAZy, KEGG, and STRING annotations. The relative abundance of KEGG 

metabolic pathways is referred to as a ‘metabolic profile.’

METHODS

Community DNA preparation

Fecal samples were frozen immediately after they were produced. De-identified samples 

were stored at −80°C before processing. 10–20g of each sample was pulverized in liquid 

nitrogen with a mortar and pestle. An aliquot (~500mg) of each sample was then suspended, 

while frozen, in a solution containing 500 µl of extraction buffer [200 mM Tris (pH 8.0), 

200 mM NaCl, 20 mM EDTA], 210 µl of 20% SDS, 500 µl of a mixture of 

phenol:chloroform:isoamyl alcohol (25:24:1, pH 7.9), and 500 µl of a slurry of 0.1 mm-

diameter zirconia/silica beads (BioSpec Products, Bartlesville, OK). Microbial cells were 

subsequently lysed by mechanical disruption with a bead beater (BioSpec Products) set on 

high for 2 min at room temperature, followed by extraction with phenol:chloroform:isoamyl 

alcohol, and precipitation with isopropanol. DNA obtained from three separate 10 mg frozen 

aliquots of each fecal sample were pooled (≥200µg DNA) and used for pyrosequencing (see 

below).

16S rRNA gene sequence-based surveys

Complementary phylogenetic and taxon-based methods were used to compare 16S rRNA 

sequences among fecal communities. Phylogenetic clustering with UniFrac15 is based on 

the principle that communities can be compared in terms of their shared evolutionary 

history, as measured by the degree to which they share branch length on a phylogenetic tree. 

We complemented this approach with taxon-based methods27, which disregard some of the 

information contained in the phylogenetic tree of the taxa in question, but have the 

advantage that specific taxa unique to, or shared among, groups of samples can be identified 

(e.g., those from lean or obese individuals). Prior to both types of analyses, we grouped 16S 

rRNA gene sequences into Operational Taxonomic Units (OTUs/phylotypes) using both cd-

hit28 and the furthest-neighbor-like (FNL) algorithm, with a sequence identity threshold of 

97%, which is commonly used to define ‘species’-level phylotypes. Taxonomy was assigned 

using the best-BLAST-hit against Greengenes29 (E-value cutoff of 1e-10, minimum 88% 

coverage, 88% percent identity) and the Hugenholtz taxonomy (downloaded from http://

greengenes.lbl.gov/Download/Sequence_Data/Greengenes_format/ on May 12, 2008, 

excluding sequences annotated as chimeric).
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Selection of operational taxonomic units (OTUs)

16S rRNA gene-derived pyrosequencing data were pre-processed to remove sequences with 

low quality scores, sequences with ambiguous characters, or sequences outside of the length 

bounds (V6 < 50nt, V2 < 200nt), and binned according to sample-specific barcode (e.g. ref. 

13). Similar sequences were identified using Megablast30 and cd-hit, with the following 

parameters: E-value 1e−10 (Megablast only); minimum coverage, 99%; and minimum 

pairwise identity, 97%. Candidate OTUs were identified as sets of sequences connected to 

each other at this level using a maximum of 4000 hits per sequence. Each candidate OTU 

was considered valid if the average density of connection was above threshold; otherwise it 

was broken up into smaller connected components27.

Tree building and UniFrac clustering for PCA analysis

A relaxed neighbor-joining tree was built from one representative sequence per OTU using 

Clearcut31, employing the Kimura correction (the PH Lane mask was applied to V2 and 

full-length data), but otherwise with default comparisons. Unweighted UniFrac15 was run 

using the resulting tree. PCA was performed on the resulting matrix of distances between 

each pair of samples. To determine if the UniFrac distances were on average significantly 

different for pairs of samples (i.e. between twin-pairs, between twins and their mother, or 

between unrelated individuals), we performed a t-test on the UniFrac distance matrix, and 

generated a p-value for the t-statistic by permutation of the rows and columns as in the 

Mantel test, regenerating the t-statistic for 1,000 random samples, and using the distribution 

to obtain an empirical p-value.

Rarefaction and phylogenetic diversity (PD) measurements

To determine which individuals had the most diverse communities of gut bacteria, 

rarefaction plots and Phylogenetic Diversity (PD) measurements, as described by Faith32, 

were made for each sample. PD is the total amount of branch length in a phylogenetic tree 

constructed from the combined 16S rRNA datasets, leading to the sequences in a given 

sample. To account for differences in sampling effort between individuals, and to estimate 

how far we were from sampling the diversity of each individual completely, we plotted the 

accumulation of PD (branch length) with sampling effort, in a manner analogous to 

rarefaction curves. We generated the PD rarefaction curve for each individual by applying 

custom python code (http://bmf2.colorado.edu/unifrac/about.psp) to the Arb parsimony 

insertion tree27.

Pyrosequencing of total community DNA

Shotgun sequencing runs were performed on the 454 FLX pyrosequencer from total fecal 

community DNA. Two samples were also analyzed in a single run employing Titanium 

extra long read pyrosequencing technology (see Supplementary Table 4,5). Sequencing 

reads with degenerate bases (“Ns”) were removed along with all duplicate sequences, as 

sequences of identical length and content are a common artifact of the pyrosequencing 

methodology. Finally, human sequences were removed by identifying sequences 

homologous to the H.sapiens reference genome (BLASTN e-value<10−5, %identity>75, and 

score>50).

Turnbaugh et al. Page 9

Nature. Author manuscript; available in PMC 2009 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://bmf2.colorado.edu/unifrac/about.psp


CAZyme analysis

Metagenomic sequence reads were searched against a library of modules derived from all 

entries in the Carbohydrate-Active enZymes (CAZy) database (www.cazy.org using 

FASTY33 e-value<10−6). This library consists of ~180,000 previously annotated modules 

(catalytic modules, carbohydrate binding modules (CBMs) and other non-catalytic modules 

or domains of unknown function) derived from ~80,000 protein sequences. The number of 

sequencing reads matching each CAZy family was divided by the number of total sequences 

assigned to CAZymes and multiplied by 100 to calculate a relative abundance. An R2 value 

was calculated for each pair of CAZy profiles. We then compared the distribution of 

glycoside hydrolase similarity scores to the distribution of glycosyltransferase similarity 

scores.

Statistical analyses

Xipe23 (version 2.4) was employed for bootstrap analyses of pathway enrichment and 

depletion, using the parameters sample size=10,000 and confidence level=0.95. Linear 

regressions were performed in Excel (version 11.0, Microsoft). Mann-Whitney and 

Student’s t-tests were utilized to identify statistically significant differences between two 

groups (Prism v4.0, GraphPad; Excel version 11.0, Microsoft). The Bonferroni correction 

was used to correct for multiple hypotheses. The Mantel test was used to compare distance 

matrices: the matrix of each pairwise comparison of the abundance of each reference 

genome, and the abundance of each metabolic pathway, were compared (Mantel program in 

Python using PyCogent34; 10,000 replicates). Data are represented as mean±SEM unless 

otherwise indicated.

Microbiome sequences were compared against the custom database of 44 gut genomes 

(BLASTX e-value<10−5, bitscore>50, and %identity>50). A gene by sample matrix was 

then screened to identify genes ‘commonly-enriched’ in either the obese or lean gut 

microbiome (defined by an odds ratio greater than 2 or less than 0.5 when comparing the 

pooled obese twin microbiomes to the pooled lean twin microbiomes and when comparing 

each individual obese twin microbiome to the aggregate lean twin microbiome, or vice 

versa). The statistical significance of enriched or depleted genes was then calculated using a 

modified t-test (q-value<0.05; calculated with code kindly supplied by Mihai Pop and J.R. 

White, University of Maryland). We also searched for genes that were consistently enriched 

or depleted in all six MZ twin-pairs. A gene-by-sample matrix was generated based on 

BLASTX comparisons of each microbiome with our custom 44-genome database, in order 

to calculate an odds ratio based on the frequency of each gene in each twin versus the 

respective co-twin. The analysis revealed only 49 genes (odds ratio>2 or <0.5): they 

represent a variety of taxonomic groups, including Firmicutes, Bacteroidetes, and 

Actinobacteria, and did not show any clear functional trends.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 16S rRNA gene surveys reveal familial similarity and reduced diversity of the gut 
microbiota in obese individuals
(A) Average unweighted UniFrac distance (a measure of differences in bacterial community 

structure) between individuals over time (self), twin-pairs, twins and their mother, and 

unrelated individuals [1,000 sequences per V2 dataset; Student’s t-test with Monte Carlo; 

*p<10−5; **p<10−14; ***p<10−41; mean±SEM]. (B) Phylogenetic diversity curves for the 

microbiota of lean and obese individuals (based on 1 to 10,000 sequences per V6 dataset; 

mean±95%CI shown).
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Figure 2. Metabolic pathway-based clustering and analysis of the human gut microbiome of MZ 
twins
(A) Clustering of functional profiles based on the relative abundance of KEGG metabolic 

pathways. All pairwise comparisons were made of the profiles by calculating each R2 value. 

Sample ID nomenclature: Family number, Twin number or mom, and BMI category 

(Le=lean, Ov=overweight, Ob=obese; e.g. F1T1Le stands for family 1, twin 1, lean). (B) 
The relative abundance of Bacteroidetes as a function of the first principal component 

derived from an analysis of KEGG metabolic profiles. (C) Comparisons of functional 

similarity between twin pairs, between twins and their mother, and between unrelated 

individuals. Asterisks indicate significant differences (Student’s t-test with Monte Carlo; 

p<0.01; mean±SEM).
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Figure 3. Comparison of taxonomic and functional variations in the human gut microbiome
(A) Relative abundance of major phyla across 18 fecal microbiomes from MZ twins and 

their mothers, based on BLASTX comparisons of microbiomes and the NCBI non-

redundant database. (B) Relative abundance of COG categories across each sampled gut 

microbiome.
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Figure 4. KEGG categories enriched or depleted in the core versus variable components of the 
gut microbiome
Sequences from each of the 18 fecal microbiomes were binned into the ‘core’ or ‘variable’ 

microbiome based on the co-occurrence of KEGG orthologous groups (core groups were 

found in all 18 microbiomes while variable groups were present in fewer (<18) 

microbiomes; see Supplementary Figure 19A). Asterisks indicate significant differences 

(Student’s t-test, *p<0.05, **p<0.001, ***p<10−5; mean±SEM).
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