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ABSTRACT
Gamma-aminobutyric acid (GABA) is a ubiquitous four-carbon, non-protein amino acid. GABA has been 
widely studied in animal central nervous systems, where it acts as an inhibitory neurotransmitter. In plants, 
it is metabolized through the GABA shunt pathway, a bypass of the tricarboxylic acid (TCA) cycle. 
Additionally, it can be synthesized through the polyamine metabolic pathway. GABA acts as a signal in 
Agrobacterium tumefaciens-mediated plant gene transformation and in plant development, especially in 
pollen tube elongation (to enter the ovule), root growth, fruit ripening, and seed germination. It is 
accumulated during plant responses to environmental stresses and pathogen and insect attacks. A high 
concentration of GABA elevates plant stress tolerance by improving photosynthesis, inhibiting reactive 
oxygen species (ROS) generation, activating antioxidant enzymes, and regulating stomatal opening in 
drought stress. The transporters of GABA in plants are reviewed in this work. We summarize the recent 
research on GABA function and transporters with the goal of providing a review of GABA in plants.
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1. Introduction

The potential impact of climate change on plant growth poses 
a serious threat to crop productivity and food security. Being 
sessile organisms, plants cannot move as animals can to seek 
more favorable environmental conditions for growth. They 
have to provide for themselves in one place as best they can 
to deal with the specific growth conditions they face and to 
keep pace with environmental change to ensure survival and 
growth. Gamma-aminobutyric acid (GABA) is thus a molecule 
for the plant to deal with various growth environments.

GABA is a ubiquitous four-carbon non-proteinogenic 
amino acid found in both eukaryotes and prokaryotes. In 
plants, GABA was first found in potato (Solanum tuberosum) 
tubers more than 70 years ago.1 Henceforth, its physiological 
role has been widely studied2–12 and to date, it has been con-
firmed not only as a metabolite, but also as a signal molecule in 
plants.13–16 Its functional versatility includes responding to 
abiotic and biotic stress factors, maintaining carbon/nitrogen 
(C/N) balance, and regulating plant development. In this 
review, we discuss GABA metabolism, function, and transpor-
ters in plants.

2. The metabolic pathway and detection of GABA in 
plants

In plants, GABA is mainly involved in growth and develop-
ment through the GABA shunt, a bypass of the TCA cycle. 
GABA is synthesized from glutamate by irreversible decarbox-
ylation catalyzed by glutamate decarboxylase (GAD) in the 
cytosol. Subsequently, GABA is transferred into the mitochon-
dria and subjected to transamination to succinic semialdehyde 
(SSA) by GABA transaminase (GABA-T/POP2). The SSA is 

then oxidized to succinate by the NAD+-dependent succinate 
semialdehyde dehydrogenase (SSADH), and subsequently suc-
cinate feeds into the TCA cycle. Thus, the carbon skeleton of 
glutamate ultimately enters the TCA cycle by this GABA shunt 
and recycles. In turn, glutamate can be synthesized from α- 
ketoglutarate by glutamate dehydrogenase (GDH). Figure 1 is 
a simple illustration of GABA metabolism and functions (see 
review by Bouche & Fromm14).

An alternative GABA-synthesis pathway is the polyamine 
metabolic pathway, where arginine is converted to putrescine 
through multi-step routes. Putrescine is then converted to 
4-aminobutyraldehyde by O2-dependent polyamine oxidase 
or it is converted to spermidine, which degrades to 4-amino-
butyraldehyde and in turn is oxidized to GABA by NAD+- 
dependent 4-aminobutyraldehyde dehydrogenase. GABA 
enters the TCA cycle to be degraded by GABA-T and SSADH 
(see review by Shelp et al).17

Tools to directly detect GABA in vivo have been developed 
and continue to be improved upon. Some GABA sensors that 
have been developed are based on Agrobacterium tumefaciens 
proteins Atu2422 and Atu4243. The Atu2422 protein has low 
affinity for GABA, and the Atu4243 protein fused with either 
cpGFP (circularly permuted green fluorescent protein) or 
cpSFGFP (cp-superfolder GFP) reportedly does not translocate 
to the membrane surface in HEK293 cells.18 A more recently 
developed fluorescent sensor, iGABASnFR, which uses Pf622, 
a homologue of Atu4243 found in Pseudomonas fluorescens 
and fused with cpGFP or cpSFGFP, was developed and could 
be used to detect GABA release in mice and zebrafish in vivo.18 

It is difficult to find in the scientific literature reports of GABA 
sensors used in plants. Nevertheless, one group, Hijaz and 
Killiny (2020), reportedly used D6-GABA and gas 
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chromatography-mass spectrometry to investigate the uptake, 
translocation, and metabolism of exogenous GABA in Mexican 
lime (Citrus aurantifolia) seedlings.19

3. GABA acts as a signal molecule in plants

3.1 Agrobacterium tumefaciens-plant interaction

Agrobacterium tumefaciens is a powerful tool for plant genetic 
engineering where researchers have taken advantage of its 
natural ability to transfer DNA within its Ti plasmid to trans-
form plant cells it invades.20,21 After A. tumefaciens naturally 
invades a host plant, its T-DNA integrates into the plant’s 
genome and the transformed plant cells produce opines 
which induce crown gall disease. Opines upregulate the 
quorum-sensing (QS) system during tumor colonization. 
N-(3-oxooctanoyl) homoserine lactone (OC8-HSL) is 
degraded by Agrobacterium lactonase AttM and is the QS 
signal molecule22 that enhances conjugation of the Ti 
plasmid,23,24 the amplification of the Ti plasmid,25,26 and the 
severity of tumor symptoms.26 GABA rapidly accumulates in 
wounded plant tissues in response to biotic and abiotic stress 
conditions.14 In the Agrobacterium-plant interaction, GABA 
stimulates the degradation of the OC8-HSL by lactonase 
AttM27 and high concentrations of GABA in the tumor sup-
presses Ti plasmid conjugation.28 For example, a GABA-rich 
tobacco line was not as strongly affected by crown gall disease 

as the wildtype was affected.27 Furthermore, the crown gall 
symptoms were more severe in plants inoculated by an 
atu2422-mutated A. tumefaciens strain because they were 
unable to uptake GABA.29 In tomato, a low-GABA line exhib-
ited greater T-DNA transfer frequency than its control.30 

Moreover, inoculation by an A. tumefaciens strain with 
GABA-T activity to degrade GABA did not affect ploidy or 
copy number in two tomato cultivars and Erianthus 
arundinaceus.30 These results indicate that GABA inhibits 
T-DNA transfer and that GABA degradation during co- 
cultivation is an effective method for increasing T-DNA 
transfer.30 However, Lang et al. (2016) showed that higher 
accumulation of GABA in her1 (an Arabidopsis thaliana 
GABA-T/POP2 mutant line) suppressed vir gene expression, 
which is essential for T-DNA transfer.31 Therefore, some high 
levels of GABA accumulation may inhibit T-DNA transfer via 
vir gene suppression.

3.2 Plant development

In flowering plants, sexual reproduction is important for the 
completion of the plant life cycle. When a pollen grain lands on 
the surface of the stigma, polar growth of the pollen tube begins 
and allows the delivery of sperm cells into the ovule through 
the pollen tube. Proper guidance of pollen tube elongation is 
vital for plant mating. The concentration of GABA present in 
the flower can be a signal for pollen tube growth and 

Figure 1. A simplified diagram of GABA metabolism and its roles in plants. GABA is synthesized from glutamate (Glu) or arginine (Arg) and transferred by GABA- 
permease (GABP) to mitochondria, where GABA is catabolized by GABA transaminase (GABA-T) and succinate semialdehyde dehydrogenase (SSADH) to succinate (Suc). 
The succinate enters the tricarboxylic acid (TCA) cycle to maintain the C/N balance in cells. Glu can be synthesized by α-ketoglutarate (α-KG) via glutamate 
dehydrogenase (GDH). SSA can also be converted to γ-hydroxybutyrate (GHB) through SSA reductase (SSR) and GHB can be changed to SSA via the GHB dehydrogenase 
(GHBDH). Diverse biotic and abiotic stress stimuli elicit an increase in cytosolic Ca2+ levels. A Ca2+/calmodulin complex activates GAD in the cytosol and GABA level 
increases. Transporters control the influx (GAT1, ALMTs, AAP3 or ProT2) and efflux (ALMTs) of GABA. Through various pathways, GABA regulates pollen tube and 
adventitious root (AR) growth and development and enhances plant stress tolerance.
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orientation. GABA forms a gradient along the path of the 
pollen tube through the pistil and reaches the highest concen-
tration near the micropyle, through which the pollen tube 
penetrates the ovule.13,32,33 POP2 encodes a GABA-T. In 
the flowers of a pop2 Arabidopsis mutant, growth of many 
pollen tubes is inhibited concomitantly with the presence of 
excessive GABA concentration and lack of a GABA 
gradient.32,34 Some pop2 tubes can grow toward the ovule, 
but they are misguided and cannot enter the ovule.13,32,33 

Exogenous GABA can also affect pollen tube elongation in 
a dose-dependent manner as reported in Picea wilsonii.35 

Pollen tube growth in P. wilsonii was observed under low and 
high concentrations of GABA, where low concentrations 
prompted pollen tube growth and an overdose of GABA inhib-
ited tube growth.35 High GABA concentrations can also mod-
ulate pollen tube growth by impairing Ca2+ influx through Ca2 

+-permeable channels and GAD functions downstream of the 
Ca2+/CaM feedback control on Ca2+-permeable channels.36

GABA is also involved in fruit ripening. Under normal 
growing conditions, GABA highly accumulates at the mature 
green stage of fruits with immature seeds and then rapidly 
declines during ripening, when seeds in tomato fruits become 
mature.37 Down-regulation of the SlGAD genes in tomato 
reduces GABA levels and has little effect on normal plant 
growth and development.38 However, up-regulation of tomato 
SlGAD2 causes GABA levels to rise and stunts plant growth, 
delays flowering, and reduces flowering and fruit yield.39 In 
contrast, in over-expressing SlGAD3 tomato lines using the 
fruit-specific E8 promoter, high GABA levels were observed 
but no morphological abnormalities were recorded.40 Further, 
in C-terminal-truncated SlGAD3 OX lines, red-ripe fruits fail 
to develop due to a delay in ethylene production and 
a reduction of ethylene sensitivity.40

GABA is involved in seed gemination and primary and 
adventitious root growth. GABA levels increase in germination 
of soybean,41 oats,42 barnyard millet,43 adlay,44 rice,45 

wheat,46,47 barley,48 and Chinese wild rice49 seeds. GABA acti-
vates α-amylase gene expression and promotes seed starch 
degradation in a dose-dependent pattern in seed 
germination.48 Excess GABA inhibits the elongation of pri-
mary roots and dark-grown hypocotyls.34 Exogenous GABA 
prevents seed germination and primary root growth in the 
recalcitrant seeds of Chinese chestnut by altering the balance 
of carbon and nitrogen metabolism to maintain the dormancy 
and storage of these seeds.50 Similarly, a high GABA content 
also inhibits adventitious root growth. For example, adventi-
tious root growth of poplar is inhibited if the GABA level is 
increased in poplar lines by inhibition of α-ketoglutarate dehy-
drogenase activity,51 overexpression of PagGAD2 52 or exogen-
ous GABA application.51,52 The changes in GABA shunt 
activity affect cell-wall carbon metabolism-related genes and 
phytohormone (IAA, ABA, and ethylene) signaling.51,52

4. Abiotic and biotic stress

Unlike animals, plants are sessile organisms so they must 
obtain or produce their own resources to meet abiotic and 
biotic challenges through immobile means. Plants recruit 
many materials within themselves to respond to adverse 

conditions. GABA is one such material that accumulates 
rapidly in response to abiotic stress factors, such as low or 
high temperatures, drought, waterlogging, salt, hypoxia, exces-
sive reactive oxygen species (ROS) content, and toxic heavy 
metals among others.4,14,53

4.1 Low temperature

Low temperature is one of the most significant limiting-factors 
of plant productivity. High concentrations of GABA in plants 
are often reported in response to cold stress. For example, 
GABA accumulates to a high extent and the expression of 
GABA shunt-related genes is induced during exposure of bar-
ley or wheat seedlings to cold or freezing temperatures.54 

When hypoxia-treated sprouts were frozen at −18°C for 12 h 
and thawed at 25°C for 6 h, GABA content increased markedly 
to 7.21-fold higher levels than that in the unfrozen sprouts.55 

Similarly, GABA increases to high levels in response to freezing 
stress in the perennial grass Brachypodium sylvaticum.56 

Though many studies report high levels of GABA in response 
to low temperature exposure, GABA content in tea roots, on 
the other hand, decreases under cold treatment.57

High content of GABA is associated with plant tolerance to 
low temperatures. Exogenous GABA application induces an 
increase of endogenous GABA and improves cold tolerance in 
tomato seedlings,58 banana,59 anthurium cut-flowers,60 and tea 
plants.61 Potential mechanisms by which high levels of GABA 
alleviate low temperature injury may be due to enhancement of 
plant antioxidant systems,58,59 which reduces malondialdehyde 
(MDA) and ROS contents,58 and proline accumulation- 
mediated osmoregulation.59 Using iTRAQ-based proteomic 
analysis, researchers determined exogenous GABA-induced 
interactions among the biological processes of photosynthesis, 
amino acid biosynthesis, and C/N metabolism in tea plants.61 

An increased level of GABA-shunt activity allowed GABA to 
participate in putrescine-induced acclimation to cold storage 
of zucchini fruit62 and in salicylic acid-mediated amelioration 
of postharvest chilling injury in anthurium cut-flowers.63 In 
nitric oxide (NO)-induced chilling tolerance, NO treatment 
increased the activities of diamine oxidase, polyamine oxidase 
and glutamate decarboxylase while reducing GABA-T activity 
to lower levels, which altogether resulted in GABA 
accumulation.64,65

4.2 High temperature

High temperature is an important factor that can limit plant 
growth and development and there are investigations of many 
different plant species’ relationships of heat stress and GABA. 
For example, in immature seeds of soybean (Glycine max 
L. Merrill) that had been heat-dried at a maximum temperature 
of 40°C, GAD was expressed at high levels and GABA-T and 
SSADH decreased rapidly during the heat-drying treatment. 
Consequently, GABA content in the treated seeds increased to 
more than five-fold (447.5 mg/100 g DW) the content in 
untreated seeds (79.6 mg/100 g DW).66 Similarly, GABA 
increases in ripening grapes67 and cell suspension cultures 
originated from pea-size ‘Gamy Red’ grape berries in response 
to elevated temperature68. Furthermore, heat stress generated 
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an increase of glutamic acid in the cytoplasm69 that combined 
with calmodulin to activate GAD, thus producing high tem-
perature-induced accumulation of GABA in Arabidopsis roots 
but not shoots.70

Studies indicate that GABA may serve a protective role 
in plants exposed to heat stress. The exogenous application 
of GABA to heat-stressed four-day-old rice (Oryza sativa) 
seedlings significantly increased growth and survival rates 
by improving leaf turgor and up-regulating osmoprotec-
tants and antioxidants.71 Heat tolerance in creeping bent-
grass effectively improved due to exogenous application of 
GABA, which is involved in regulating photosynthesis, 
osmotic potential, tricarboxylic acid cycle, metabolic 
homeostasis,69 enhancement of antioxidant defense 
systems,72 heat shock factors and heat shock proteins.73,74 

Exogenous supplementation with GABA protects the repro-
ductive functions (pollen germination, pollen viability, 
stigma receptivity, and ovule viability) of heat-stressed 
mungbean plants, and these plants produce greater weights 
of pods and seeds in comparison to those of the controls.75 

Moreover, GABA application to heat-stressed plants also 
improves carbon fixation and assimilation and leaf water 
status by up-regulating the synthesis of osmolytes and thus 
reduces the oxidative damage.75

4.3 Drought

Drought is another highly restrictive factor for crop devel-
opment and production and, similar to the stresses 
described above, promotes GABA accumulation. The 
excised leaves of turnip,76 bean,77 soybean78 and sesame79 

plants subjected to drought stress raised their GABA levels. 
Drought has also been shown to induce high levels of 
GABA in tomato,80 Phyllanthus species,81 and creeping 
bentgrass.82 The Arabidopsis gad1/2 mutant has shown 
remarkably reduced GABA content, large stomata aperture, 
and defective stomata closure.83 Consequently, this mutant 
wilt earlier than the wildtype during a prolonged drought 
stress, whereas the functionally complemented gad1/2 
× pop2 triple mutant exhibits the opposite in phenotype 
and also produces a higher GABA content.83 These results 
indicate that GABA accumulation during drought is 
a stress-specific response and helps regulate stomatal open-
ing to prevent water loss.83 Increased endogenous GABA 
content by exogenous application improves white clover 
drought-tolerance via up-regulation of the GABA shunt, 
polyamines and proline metabolism.84 A high level of 
GABA also increases chlorophyll content, osmoregulation 
(i.e. soluble sugars, proline), and antioxidant enzyme activ-
ity in black cumin subjected to a water deficit.85 GABA 
enhancement of drought tolerance is associated with the 
improvement of nitrogen recycling, the protection of 
photosystem II, the mitigation of drought-depressed cell 
elongation, wax biosynthesis, fatty acid desaturase, and the 
delay of leaf senescence in creeping bentgrass.82 Drought 
and heat often occur simultaneously; in such case, as well 
as under drought alone, SSADH was identified as 
a metabolic quantitative trait loci (mQTL) in the barley 
flag-leaf.86

4.4 Flooding

Flooding severely affects crop yield.87 Globally, it is estimated 
that 12% of cultivated land is affected by waterlogging, result-
ing in a 20% decrease in crop production.88,89 Waterlogging 
reduces photosynthetic rate and antioxidant enzyme activity by 
causing damage to the protective enzymes90,91 and ultimately 
limits plant growth.92,93 In water-logged individuals of 
soybean94 and grape plants,95 GABA markedly accumulates 
in the nodules of the root systems. Further, GABA promotes 
the growth of maize seedlings in waterlogged conditions by 
downregulating reactive oxygen intermediates-producing 
enzymes, activating antioxidant enzymes, and improving 
chloroplast ultrastructure and photosynthetic traits.96

Hypoxic conditions resulting from soil waterlogging exacer-
bate the negative effects of the latter on plant growth and crop 
production. Hypoxia has been shown to induce GABA accu-
mulation in plants.97–100 When applesand germinating fava 
bean101, Finally, the GABA shunt is considered partly respon-
sible for alanine accumulation under hypoxia.102, Finally, the 
GABA shunt is considered partly responsible for alanine accu-
mulation under hypoxia.102–106 soybean,, seeds experience 
hypoxia, GABA content increases greatly and decreases after 
termination of the stress. Under hypoxic conditions, glutamate 
decarboxylase and diamine oxidase activities increase, which in 
turn elevates plant GABA content.

4.5 Salt

Soil salinity is a major environmental stress that affects crop 
yield around the world.107Three cellular responses of salt tol-
erance have been proposed in plants: (i) osmotic stress toler-
ance, (ii) Na+ exclusion capacity and (iii) tissue tolerance to Na 
+ accumulation. Multiple studies have reported a variety of 
protective molecules that accumulate in plants and the 
mechanisms underlying plant response to salinity.107–109 The 
GABA-T-deficient pop2-1 mutant is sensitive to salt but not to 
osmotic stress,110 and the genes involved in cell-wall and car-
bon metabolism, particularly sucrose and starch catabolism, 
increase under salt stress.111 In contrast to the results observed 
for pop2-1, the pop2-5 mutant over-accumulated GABA in 
roots and exhibited salt tolerance rather than salt sensitiv-
ity.112 The different results of the different pop2 mutants 
may be due to their respective GABA levels, where one may 
have accumulated an excessive amount of GABA beyond 
a particular threshold that is harmful to plants.112 Using the 
mutants pop2-5 and gad1,2 (with reduced ability of GABA 
production), Su et al. (2019) showed that GABA induces H+- 
ATPase activation and reduces Na+ uptake, H2O2-induced K+ 

efflux and ROS concentration.112 Consistent with those 
results, GABA accumulation was also induced in Nicotiana 
sylvestris and cytoplasmic male sterile (CMS) II plants treated 
with short- and long-term salt stress, but GAD activity did not 
correlate with GABA content.113 Contrary to this study, GABA 
content in Nicotiana tabacum plants treated with 500 mM 
NaCl decreased on the first and third day and increased on 
the seventh day of salt treatment.114 This may be due to the 
high level of salinity and a difference in plant development 
stage.113 GABA and GAD mRNA levels increase markedly in 
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five wheat cultivars and poplar under saline conditions.115,116 

In salt-treated wheat leaves, key metabolic enzymes required 
for the cyclic operation of the TCA cycle reportedly were 
physiochemically inhibited by salt, but the increase in GABA 
shunt activity provided an alternative carbon source for the 
TCA cycle to function in mitochondria and bypassed salt- 
sensitive enzymes to facilitate the increase in leaf respiration 
in wheat plants.117 Further, the application of exogenous 
GABA to maize,118 white clover,119 muskmelon,120 germinated 
hull-less barley,121 and tomato122 increases endogenous GABA 
content, activates enzymatic antioxidant activity, alleviates salt 
damage to plants, and enhances plant salt-tolerance.

GABA accumulation in plants in response to salinity is also 
associated with other stresses and hormones. GABA accumu-
lated in durum wheat under salinity treatment combined with 
high nitrogen or high light treatment and GABA could also 
serve as a temporary place of nitrogen storage.123 Application 
of GABA to plants exposed to NaCl affects the production of 
H2O2, ABA, and ethylene.124,125 Moreover, 22 ABA- and 50 
ethylene-related genes have been shown to be regulated by 
exogenous GABA.125

4.6 Heavy metal

Heavy metals are major pollutants in soils and can con-
taminate food due to their accumulation in the edible 
parts of crop plants. Besides ion toxicity, ROS accumula-
tion is a common phenomenon accompanied by heavy 
metal stress.126 A metabolome analysis showed that 
GABA content increases during chromium (Cr) stress in 
rice roots.127 Similarly, when soybean is grown under zinc 
(Zn) and copper (Cu) stress, high levels of GABA have 
been observed.128 Nicotiana tabacum plants treated with 
intermediate (10 µM) Zn concentrations showed highly 
induced levels of GABA but low levels when treated with 
high (100 µM) Zn concentrations.129 When rice seedlings 
grew under arsenic (As (III)) stress, GABA application 
induced GABA-shunt-related gene expression, activated 
the antioxidant enzyme system, and strongly inhibited As 
accumulation, thus conferring a tolerance to As (III) in 
the seedlings.130 Interestingly, long-term accumulation of 
GABA is more highly efficient in inducing As (III) toler-
ance than higher GABA levels in the short term, which 
actually causes toxicity.130 On the other hand, Cd stress 
seemingly reduces endogenous GABA content in duck-
weed, and under Cd stress, exogenous GABA enhanced 
rhizoid abscission, whereas Glu addition promotes rhizoid 
abscission.131 GAD genes are uniformly up-regulated in 
maize and rice roots by Cd stress, and the overexpression 
of ZmGAD1 and ZmGAD2 in Cd-sensitive yeast and 
tobacco leaves enhances Cd tolerance in the host 
cells.132 All of the aforementioned studies indicate that 
GABA content does not always increase in response to 
different metal stresses and may be more related to metal 
concentrations. Furthermore, high GABA content does not 
always enhance plant tolerance to metal stress.

4.8 ROS

A range of abiotic stress conditions can enhance the accumula-
tion of ROS in plants. When the GABA shunt functions in 
response to abiotic stress, it effectively restricts ROS generation 
in plant tissues. Succinic-semialdehyde dehydrogenase is the 
enzyme that catalyzes the last step in the GABA shunt. Four 
T-DNA insertion mutants of SSADH (ssadh mutants) have 
been shown to be phenotypically dwarfed with necrotic lesions, 
bleached leaves, reduced leaf area, lower chlorophyll content, 
shorter hypocotyls, and fewer flowers.133 These ssadh mutants 
are sensitive to heat and UV stress and accumulate high levels 
of ROS, causing cell death in tissues exposed to the stress.133 

A five-fold greater amount of GHB (γ-hydroxybutyrate, a by- 
product of SSA) was reported in ssadh mutants than in wild-
type Arabidopsis.134 Treatment with γ-vinyl-γ-aminobutyrate, 
a specific inhibitor of GABA-T/POP2, or a mutation of the 
POP2 gene prevents the accumulation of ROS in ssadh 
mutants, inhibits cell death, and improves growth.134,135 The 
phenotype of ssadh tomato mutants (SlSSADH-silenced plants 
by the VIGS system) shows stunted growth, curled leaves, and 
hyper-accumulation of ROS, thus resembling Arabidopsis 
ssadh mutants.136 Succinic semialdehyde can be converted 
into GHB by SSA reductase, and GHB can be converted into 
SSA by GHB dehydrogenase in animals and plants (Figure 1). 
Because SSA cannot be converted to succinate by SSADH in 
ssadh mutants, SSA and/or GHB accumulates.134,135 In pop2 
and pop2ssadh mutants, GABA levels are four and five times 
higher than that in wild type plants.135 However, the pheno-
types of double pop2ssadh mutants revert to that of the wild 
type, indicating that the high GABA content is not the cause of 
the phenotype of ssadh mutants.135 The ssadh mutants are 
more sensitive to SSA, and pop2ssadh mutants are more sensi-
tive to SSA or GHB than are wild type or pop2 mutants, 
indicating that high levels of SSA and/or GHB and not 
GABA levels cause the observed phenotype of ssadh 
mutants.135

4.9 Biotic stress

During plant growth and development, plants face a diversity 
of pathogens and pests. Plant GABA levels have also been 
shown to increase in response to biotic stress.10,137 For exam-
ple, in cultured rice cells treated with a cell-wall elicitor of rice 
blast fungus (Magnaporthe grisea), the level of GABA increased 
12.5-fold at 8 hours after treatment.138 Similarly, GABA pro-
duction is highly induced in stems of Jatropha curcas 
L. (Euphorbiaceae) infected with the Jatropha mosaic virus 
(JMV),139 in tomato leaves infected by Botrytis cinereal,140 in 
tobacco leaves infiltrated with a hairpin elicitor,141 in leaves of 
potato plants after inoculation with potato virus Y,142 in leaf 
apoplast of Phaseolus vulgaris inoculated with P. syringae pv. 
phaseolicola (Pph) 1302A,143 in Arabidopsis infected with 
Fusarium graminearum,144 in diseased Vitis vinifera,145 and 
in lettuce inoculated with gray mold.146 ‘Candidatus 
Liberibacter asiaticus’ and its vector, Diaphorina citri can accel-
erate cytosolic accumulation of GABA in citrus.147 Conversely, 
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a comparative proteomic analysis showed a significant down- 
regulation of GABA biosynthesis in tomato stems inoculated 
with highly and mildly aggressive Ralstonia solanacearum 
isolates.148,149 This result is consistent with a transcriptome 
profiling showing GABA shunt-related genes GAD2 and 
SSADH1 knocked-down by VIGS.148 In addition, GABA accu-
mulation decreases the biomass and toxicity of Lasiodiplodia 
theobromae and the metabolites produced by L. theobromae.150 

In plants, GABA plays an important role in central C/N meta-
bolism by connecting amino acid metabolism to the tricar-
boxylic acid (TCA) cycle (see the detailed text in section 5 
“C: N balance” below). In plant–microbe interactions, GABA 
contents increase due to the elevated GAD enzyme activity.-
141,149 Then GABA enters into the TCA cycle to maintain cell 
viability via alteration in C: N metabolism.139,140 Consequently, 
GABA activates antioxidant enzymes (peroxidase, superoxide 
dismutase, and catalase) and limits the cell death that can be 
caused by excessive ROS.151 Thus, high GABA levels indicate 
plant resistance to pathogens.

Reportedly, GABA is also involved in plant defense against 
herbivorous insects.152–154 For example, in GABA-reduced 
(gad1/2 double mutant) and GABA-enriched (gad1/2ⅹpop2- 
5) A. thaliana mutants, wounding of plant tissues and cell 
disruption caused by insect herbivory is sufficient to induce 
rapid, systemic, jasmonate (JA)-independent GABA synthesis 
and accumulation.155 However, in the responses of Clematis 
terniflora D. C. to UVB radiation and darkness, over- 
accumulation of JA leads to a remarkable increase in GABA 
content.156 In addition, high contents of GABA may be a plant 
defense against insects as GABA is an inhibitory neurotrans-
mitter in invertebrate nervous systems.137

In summary, a common response to stress in plants is 
the immediate elicited increase of Ca2+ concentration. The 
Ca2+/calmodulin complex is perceived by GAD in the cyto-
sol and GABA accumulates. Then, GABA is degraded and 
enters the TCA cycle to maintain C/N balance as 
a metabolite or GABA inhibits ROS accumulation by acti-
vating antioxidant enzymes in plants. GABA may also be 
a signal to activate other molecules in plant response to 
stresses. In brief, stress induces high levels of GABA accu-
mulation in plants and high GABA concentrations improve 
plant resistance to stress.

5. C: N balance

Carbon and nitrogen are the major essential elements for 
plants. Efficient assimilation of C and N is essential for optimal 
plant growth, productivity, and yield.157 Carbon skeletons 
enter the TCA cycle through the GABA shunt, whereby 
GABA can function as a nitrogen storage metabolite in plants. 
For example, A. thaliana can grow well on a culture medium 
containing GABA as the sole nitrogen source.158 Nitrogen- 
deficiency by excision of 50% of the nodules from Medicago 
truncatula causes the concentration of GABA in phloem exu-
dates to almost triple.159 After artificial petiole-feeding with 
GABA, the GABA concentration in nodules increases signifi-
cantly, the concentration of glutamate declines in phloem 
exudates and N2 fixation recovers 4–5 days after excision.159 

In the process of seed “maturation-drying” in Arabidopsis, 

GABA initially accumulates to a high level and then decreases 
upon germination.160–162 In truncated-GAD transgenic 
Arabidopsis, GABA accumulates in dry seeds, while the con-
centration of a number of sugars and organic acids decrease, 
and numerous amino acids and total protein significantly 
accumulate. 162 These results show that deregulated GAD alters 
the N to C ratio in Arabidopsis seeds.162 Additionally, the 
obstruction of the GABA shunt leads to significant changes 
in sucrose and starch contents and affects carbon metabolism 
in the cell wall.111 Therefore, GABA is rightfully considered to 
represent the central position in the interface between plant 
carbon and nitrogen metabolisms.163 Under low-nitrogen con-
ditions, exogenous GABA application increases the non- 
structural carbon hydrates and TCA intermediates in the 
stems of poplar seedlings.164 Moreover, GABA significantly 
attenuates the low nitrogen-induced increase of leaf antioxi-
dant enzymes, which suggests that GABA affects the C:N ratio 
for poplar growth by reducing energy costs under N-deficient 
conditions.164

6. GABA transporters in plants

GABA can be transported across the plasma membrane and 
organelle membranes. In these processes, both intra- and 
intercellular transport of GABA is likely required. GABA 
transporters were first identified in animals165 and then 
identified in plants in 1999.158 Arabidopsis thaliana grows 
efficiently with GABA as its sole nitrogen source, thereby 
providing evidence for the existence of GABA transporters 
in plants.158 Two low-affinity GABA transporters (amino 
acid permease 3, AAP3, and proline transporters 2, ProT2) 
from A. thaliana were identified by heterologous comple-
mentation in yeast, and these two GABA transporters can 
transport proline as well.158 A high-affinity GABA influx 
transporter in A. thaliana, AtGAT1, has been characterized 
through heterologous expression systems, i.e., 
Saccharomyces cerevisiae and Xenopus laevis oocytes.166 

AtGAT1, localized at the plasma membrane, shares no 
sequence similarity with any of the non-plant GABA trans-
porters described to date, and it expresses to the highest 
recorded levels in flowers and upon wounding or during 
senescence.166 GABA accumulates in the cytosol in 
response to various stress conditions and is transported 
into the mitochondria, where it is catabolized. 
A mitochondrial GABA-transporter (AtGABP, GABA- 
permease) that mediates transport of GABA from the cyto-
sol into the mitochondrion has been functionally character-
ized in Arabidopsis by complementation in yeast and 
Arabidopsis gabp mutants.167 The gabp mutants grow 
abnormalities under limited-carbon availability on artificial 
media and in soil under low light intensity.167

Although influx transporters of GABA in plants have been 
characterized as aforementioned, a GABA-efflux transporter 
that transports GABA from the cytosol to the apoplast was 
identified recently in wheat.53,168–170 Plant ALMTs (alumi-
num-activated malate transporters), classified as anion chan-
nels and regulated by diverse signals, are activated by anions 
and negatively regulated by GABA.168,171 GABA-mediated 
TaALMT1 activity results in altered root growth and altered 
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root tolerance to alkaline pH, acid pH, and aluminum ions.168 

Plant ALMTs from wheat, barley, rice, and Arabidopsis can 
transport GABA into cells.170 TaALMT1 facilitates GABA 
efflux and influx at very high rates.170 Ion of Al3+ activates 
malate and GABA efflux at low pH but blocks TaALMT1- 
mediated GABA influx. However, the reduction in GABA 
content in response to Al3+ at low pH and to anions at high 
pH is due to the large GABA efflux caused by activated 
TaALMT1, bearing no relation to malate efflux.170 GABA see-
mingly exerts its multiple physiological effects in plants via 
ALMT, including the regulation of pollen tube and root 
growth. The uptake of GABA by AtGAT1 is not reduced in 
response to Al3+.170 However, GABA can inhibit anion trans-
port by TaALMT1 from the inside and outside of a cell.172,173 

The molecular mechanism may resemble the conformational 
transition of GabR when binding to the pyridoxal 5′-phosphate 
(PLP)-dependent aspartate aminotransferase (AAT) and 
GABA.174 It is possible that GABA causes the TaALMT1 active 
structure to make a conformational transition and render 
TaALMT1 unable to transport anions.173

7. Conclusions and future perspectives

Plant GABA was first reported in 1949 from potato tubers.1 As 
described above, GABA accumulates in response to different 
kinds of biotic and abiotic stress, and it regulates plant growth 
and development. Stress factors also rapidly elicit a transient 
increase of cytosolic Ca2+ levels. Ca2+ is the universal second 
messenger in stress signaling.109 The Ca2+/calmodulin system 
activates GAD in the cytosol and concomitantly, GABA levels 
increase.6 Alternatively, GABA is synthesized from arginine 
through multiple steps. Then, GABA is transported into mito-
chondria by GABP and enters the TCA cycle to maintain C/N 
balance in cells. GABA influx is controlled by transporters 
GAT1, ALMTs, AAP3, or ProT2, and GABA efflux occurs by 
ALMTs. In cells, GABA facilitates photosynthesis, inhibits ROS 
generation, and activates antioxidant enzymes. GABA also 
regulates stomatal opening in drought stress and acts as 
a signal molecule in plants in order to regulate plant growth 
and development and elevate stress tolerance.

Recently, considerable progress has been made regarding 
GABA transporters; GABA regulation of adventitious root 
growth, primary root growth, and seed germination; and 
GABA responses to stress. However, many questions remain 
unclear or controversial. For instance, when plants experience 
a stress, how do they maintain balance between high GABA 
levels and plant growth? How do plant hormones interact with 
GABA? Clearly, GABA plays many roles in plants, but how 
does the signal pathway(s) of GABA operate(s) in plants? What 
is the component that senses GABA levels? What is the rela-
tionship between GABA and ROS? We hope ongoing and 
future research will provide the answers to these questions in 
the near future.
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