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Abstract

Background: Our purpose is to assess epidemiological agent-based models—or

ABMs—of the SARS-CoV-2 pandemic methodologically. The rapid spread of the out-

break requires fast-paced decision-making regarding mitigation measures. However,

the evidence for the efficacy of non-pharmaceutical interventions such as imposed

social distancing and school or workplace closures is scarce: few observational stud-

ies use quasi-experimental research designs, and conducting randomized controlled

trials seems infeasible. Additionally, evidence from the previous coronavirus out-

breaks of SARS and MERS lacks external validity, given the significant differences in

contagiousness of those pathogens relative to SARS-CoV-2. To address the pressing

policy questions that have emerged as a result of COVID-19, epidemiologists have

produced numerous models that range from simple compartmental models to highly

advanced agent-based models. These models have been criticized for involving sim-

plifications and lacking empirical support for their assumptions.

Methods: To address these voices and methodologically appraise epidemiological

ABMs, we consider AceMod (the model of the COVID-19 epidemic in Australia) as a

case study of the modelling practice.

Results: Our example shows that, although epidemiological ABMs involve simplifica-

tions of various sorts, the key characteristics of social interactions and the spread of

SARS-CoV-2 are represented sufficiently accurately. This is the case because these

modellers treat empirical results as inputs for constructing modelling assumptions

and rules that the agents follow; and they use calibration to assert the adequacy to

benchmark variables.

Conclusions: Given this, we claim that the best epidemiological ABMs are models

of actual mechanisms and deliver both mechanistic and difference-making evi-

dence. Consequently, they may also adequately describe the effects of possible

interventions. Finally, we discuss the limitations of ABMs and put forward policy

recommendations.
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1 | INTRODUCTION

In the aftermath of the outbreak of the novel coronavirus, govern-

ments around the globe have introduced non-pharmaceutical public

health interventions aimed at slowing down the spread of the resul-

tant pandemic. These measures range from relatively mild require-

ments like wearing face masks, washing hands, or avoiding close

contacts to school closures and imposed isolation that are likely to

have a detrimental and unpredictable influence on social and eco-

nomic life.1 Despite their significant impact, the introduction of many

of these measures was not supported with high-quality evidence.

First, conducting RCT would not be feasible for both ethical and prac-

tical constraints. Second, significant differences between the cor-

onaviruses that caused the SARS and MERS outbreaks and SARS-

CoV-2 (such as the likely airborne transmission2 and asymptomatic

infectiousness of the latter3,4) undermine extrapolation from the data

gathered during these previous epidemics. Finally, the current pan-

demic has not lasted long enough to gather observational data in the

amount and quality sufficient for the assessment of the efficacy of

alternative public health interventions, since the first reports were

published just weeks after the first measures were introduced.5

One of the many ways to address the issue concerning the

impracticality of conducting RCTs and observational studies in the

context of an ongoing pandemic is through scientific modelling, in par-

ticular epidemiological modelling. Here, we focus on the so-called

agent-based modelling (ABM) approach, which differs from more tra-

ditional epidemiological modelling in several ways.

ABMs are a form of computational modelling strategy where

agents are treated as entities interacting with each other and their

environment in a locally defined fashion described by a set of rules.

The overall dynamics of the system are then computed, allowing for

the simulation of complex patterns and an understanding of how

these patterns arise.6,7 ABMs are used in many scientific contexts,

including modelling the spread of infectious diseases, and have proven

successful in informing policy decisions before. For instance, Eisinger

and Thulke8 modified and then applied a previously developed ABM

of the spread of rabies, generating a rule-based model that represen-

ted specific spatial and behavioural characteristics of the fox popula-

tion (eg, with fox families represented as moving within home ranges

and young foxes engaging in long-distance migratory behaviour).6

Whereas the classical differential equation models predicted that vac-

cinating at least 70% of the fox population would eliminate rabies, the

ABM indicated that a successful vaccination strategy could do with

much less than 70% of the population being immunized once the spa-

tial arrangements of fox hosts were explicitly considered, saving mil-

lions of Euros as a result. Moreover, the ABM also suggested that the

classical strategy would fail more often than not, and was successfully

applied to deal with the rabies problem. However, despite the promis-

ing record of using ABMs in effective epidemiological interventions,

its use in informing proposed measures against the novel coronavirus

epidemic has raised criticism.9-11

Unfortunately for the assessment of healthcare interventions

based on this type of epidemiological models, standard evidence

hierarchies exclude agent-based models altogether and include theo-

retical or mechanistic inferences at the lowest level of the hierarchy.

For example, the Oxford Centre for Evidence-Based Medicine12 and

the National Institute for Health and Care Excellence (NICE guide-

lines)13 include theoretical and mechanistic reasoning but agent-based

models fall beyond their scope. This can be explained by the novelty

of agent-based modelling and the limited trust of EBMers in theoreti-

cal and, to some extent, also mechanistic reasoning, which, despite

being used implicitly to assess the possibility of confounding and the

quality of results,14 is downgraded or rejected as either subjective or

fallacious.15 However, such a view has been challenged by a group of

philosophers advocating for improving the practices of evidence

assessment in medicine by putting more weight on mechanistic rea-

soning in causal inference.16-18 The position of the EBM+ pro-

gram16-18 is encapsulated by the normative reading of the Russo-

Williamson Thesis,19 which states that causal claims should be based

on both difference-making and mechanistic evidence.

The causal claims supported by agent-based models have been

interpreted inconsonantly: either as being in line with the potential

outcome approach (POA),20 as delivering theory-driven understand-

ing21 or as providing mechanistic evidence.22 Below, we show that all

of these apparently inconsistent interpretations are correct, because

the best contemporary ABMs bear a resemblance to the actual mech-

anisms and therefore allow for the counterfactual assessment of inter-

vention efficacy in the target while also delivering an understanding

of the phenomena of interest. Our argument proceeds by

(a) discussing as a case study an ABM of SARS-CoV-2 epidemic in

Australia, (b) showing that the best ABMs represent actual mecha-

nisms despite the presence of various simplifications and

(c) considering the limitations of using ABMs as evidence for clinical

and policy decisions.

2 | MODELLING THE SARS-COV-2
EPIDEMIC

Apart from the compartmental SIR (Susceptible, Infectious, Recov-

ered) framework and its derivatives23-28 or regression analysis,29,30

most advanced models of the spread of the novel coronavirus are

transformed versions of agent-based influenza pandemic models.11,31

Such models have been used as evidence for introducing (some-

times severe) public health measures,32 with the recent change in

British policy being the prime example. In this section, we illustrate

this approach to modelling the SARS-CoV-2 pandemic with an

agent-based model of the epidemic in Australia31 based on AceMod.

Developed as a “framework for studying influenza pandemics in

Australia”33 (p. 412). AceMod is an influenza spread model that

addresses the need for simulating interventions responding to the

outbreaks of future respiratory diseases. While the 2009 swine flu

pandemic was the motivation for constructing AceMod, the model

was not intended to accurately represent the outbreak of the H1N1

strain, but rather as a generalized framework for studying how an

infectious disease spreads through the social interactions of
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Australians. AceMod utilizes census data to ascribe realistic spatial

and social characteristics to almost 20 million agents inhabiting the

model world. These agents are divided into different social groups

of varying characteristics, with households differentiated proportion-

ally according to statistical data on the prevalence of different types

of families (singles, single parents and couples with or without chil-

dren). These features are ascribed to agents stochastically in a way

that replicates the aggregate structure of statistical data. During the

daytime, children and students meet in classrooms and at schools,

adults go to work and pensioners stay at home. During the night-

time, the agents encounter contacts at households and in their

neighbourhoods (eg, at supermarkets, theatres).

The disease can be contracted by an agent in the event of meet-

ing an infected individual in one of these settings. The probability that

an agent i contracts the disease in a given step t depends on the num-

ber of sick individuals met in that step and the contagiousness of the

disease, scaled by K. The modellers assume that the infectivity of the

disease decreases linearly over time. Asymptomatic cases are assumed

to be 50% less infectious than symptomatic ones, and the flu lasts

5 days within the model. After this period, recovered agents cannot

infect others. Additionally, those who experience symptoms do so

after an incubation period lasting approximately 3 days. The influenza

epidemic is started by agents coming to Australia via international air-

ports and seeded into communities living near the airports at random.

To represent an epidemic of a particular strain of influenza with

AceMod, the model requires calibration. Modellers can proceed with

this step in two ways, depending on the accessibility of data. In the

case of well-studied influenza strains, their infectivity and the ratios of

transmission in different contexts are well-recognized, and parameter

values can be chosen based on empirical studies. However, if these

data are missing, then parameter values have to be calibrated using

statistical procedures such as simplex or genetic algorithms to maxi-

mize the fit of the model to a benchmark. After constructing and cali-

brating AceMod, modellers run simulations to obtain the estimates of

prevalence, incidence and attack rates, and choose the most common

outcome (due to stochasticity, different runs of the model may lead to

obtaining slightly different results).

Chang et al31 have used a significantly amended version of

AceMod to address the question of the effectiveness of non-

pharmaceutical interventions aimed at suppressing the SARS-CoV-2

epidemic in Australia. The selection of models constructed to control

a novel and possibly deadly strain of the seasonal flu in this case is pri-

marily the result of the rapid demand for evidence informing decisions

regarding public health measures, which may raise doubts about the

justification and soundness of their conclusions. For example, one can

ask whether the efficacy claims assess healthcare interventions

against the novel coronavirus epidemic or an artificial pathogen exis-

ting only within the model world that shares some features of influ-

enza and others of SARS-CoV-2. To address this criticism (considered

in depth below), we discuss the changes introduced to the model and

argue that the process of model calibration and validation suggests

that the model represents the actual mechanism of the SARS-CoV-2

epidemic.

ABMs such as AceMod can be seen as consisting of two parts:

the rules specifying the behaviour of agents and the creation of the

model society, as well as the assumptions characterizing the infectiv-

ity of the pathogen causing the epidemic. Given that AceMod is based

on 2016 census data and a major change in social behaviours is

unlikely to have occurred since then, the model accurately represents

the social interactions of present-day Australians. Hence, the former

part of the model has been left mostly unchanged, beyond increasing

the number of agents to over 24 million to adjust for the growing pop-

ulation. In addition to introducing a social structure sufficiently resem-

bling the contact network of the present population, obtaining

accurate predictions of epidemic development and policy assessment

requires inputting data on transmission likelihoods that are true for

the pathogen causing the modelled epidemic.34 Most changes in the

model are concerned with the assumptions specifying the infectivity

of the disease. Even though several features of influenza epidemics

are similar to the epidemic caused by the novel coronavirus, they dif-

fer with respect to infectivity and attack rates, mortality rates, the

average duration of disease, the reproductive number R0 and the dis-

tribution of asymptomatic cases. Therefore, these parameters in the

model required recalibration.

The transmission probabilities remained mainly as specified in the

influenza model. To account for the differences in the incubation

period and disease length, Chang et al set the time from contraction

to the appearance of symptoms to 5 days on average and the duration

of the disease to 12 days. Infectivity increases exponentially the day

after an agent gets infected and then decreases linearly until the end

of infection, so cases are most infectious at the start of symptoms.

The length of the generation period was calibrated to 6.4 days to

reflect this difference in the model. Additionally, the likelihood of con-

tracting SARS-CoV-2 but staying asymptomatic was set to be age-

dependent, and equalled 1/3 for adults while minors were set to be

five times less likely to suffer from symptoms than adults. While this

assumption is in agreement with the empirical findings that children

represent a minor fraction of symptomatic cases, the calibration aimed

at reproducing aggregate epidemic curves and may diverge from the

actual chances of developing symptoms.

Within the AceMod framework, the reproductive number R0 is

not one of the assumptions inputted into the model. Rather, its esti-

mate results from a simulation of the scenario described by the rules

and assumptions, some of which are stochastic. The assumptions con-

sidered and, particularly, the parameter denoting contagiousness of

the disease (K) have been calibrated such that R0 stays within the limit

of (2.0-2.5), that is, in agreement with empirical estimates of the

reproductive number at the beginning of the SARS-CoV-2 out-

break.35,36 The set of parameter values that result in the estimate of

R0 = 2.27 create the epidemic dynamics reproducing the beginnings

of the outbreak in a few countries experiencing the disease prior to

Australia (China, Italy, Spain), where the growth rate of cumulative

incidence equalled roughly 0.2. In addition to reproducing the empiri-

cal data for the beginning of the epidemic, the recalibrated AceMod

allows for simulating what the future of the epidemic in Australia may

look like. As the modellers admit, the Baseline scenario, which is based
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on the assumption that agents do not change their behaviour in

response to the epidemic, is unlikely given the widespread self-

imposed isolation in other countries. However, it allows for counter-

factual comparisons of the different possible (sets of) interventions

relative to the Baseline scenario. To assess the efficacy of particular

healthcare policies, Chang et al modify relevant rules and assumptions

to describe the spread of SARS-CoV-2 under either case isolation,

school closure, along with three levels of compliance with social dis-

tancing, along with a few combinations of the three policies. For

instance, to assess the effect of school closure (including primary and

secondary schools, colleges and universities), the parameter denoting

the chance of meeting an infected agent in schools is set to zero,

which describes the situation when both students and teachers stay

at home (and hence cannot contract the virus). These counterfactual

scenarios represent the effects of interventions on the model world.

All interventions are modelled as taking place after the number of

cases exceeds 1000. The comparison of most common outcomes

(given the stochasticity of the assumptions and rules, they are indeter-

ministic) including interventions with the baseline scenario allows for

putting forward counterfactual causal claims that describe the effects

of interventions on peak incidence and prevalence and the develop-

ment of the epidemic in time. The conclusions accurately describe the

effects of interventions within the model as long as no coding error

occurs. However, the reliance of the model on simplifications gener-

ates a question as to whether the assessment of intervention efficacy

holds for the novel coronavirus epidemic in Australia.

3 | ABMS AS MODELS OF ACTUAL
MECHANISMS

Before proceeding to our argument, let us first make several general

remarks about modelling. These remarks should prove essential in

clarifying the main issues that are often raised with regard to using

simplified models, particularly in the context of policy decision-mak-

ing. First of all, ABMs are instances of mechanistic models, for they

clearly fit the general, also called the minimal, characterization of

what a mechanism is: a set of entities whose activities and interac-

tions are organized such that they are responsible for the phenome-

non.37-39 This definition is broad enough to conceptually unify the

debates on biological and social mechanisms under a single notion

of a mechanism. Furthermore, such definition leaves open the possi-

bility of integrating biological and social aspects into a mixed-

mechanism model.40

It should also be noted that much like any other kind of model,

ABMs serve as simplified representations of their target phenomena.

As the AceMod case clearly shows, modellers introduce various sim-

plifications by which they purport to adequately capture the core

dynamics of the modelled phenomenon. In this process, they first

abstract away from the complexities of the real system by “extracting”

certain features that they believe to be of crucial importance and that

will then be the focus of modelling, whereas other features that may

or may not have a causal influence are disregarded in these early

stages. Modelling is an iterative process during which the merits of

the model's assumptions are continuously being evaluated, and if

required, the assumptions are refined and additional assumptions

added. More importantly, some of those extracted features are dis-

torted to the extent that, if taken literally, they would misrepresent

the actual state of things. However, introducing such distortions is

often made in full awareness, with the ultimate goal of finding out

whether the consequences they have for the behaviour of the system

make a difference and to what degree. Philosophers often refer to the

former—that is, the set of properties retained in a model—as an

abstraction, while the latter case—that is, the distortions of the sys-

tem's features—is called an idealization.41

However, abstractions and idealizations do not exhaust the con-

ceptual toolbox available to modellers. A popular way to attempt to

model a given system realistically is to introduce various approxima-

tions. Although there are noteworthy differences between approxima-

tions and idealizations, we cannot afford to go into any detail here. In

summary, models often effectively disregard, distort and otherwise

simplify possibly important details. In light of this, many wonder

whether we can gain insight into the modelled phenomenon at all, and

if so then how.

Although the SARS-CoV-2 ABM is fairly detailed and precise, it

cannot do without some of the simplifications discussed above. Con-

sider some of the following assumptions introduced in the model. On

the one hand, the basic features of the social life of the majority of

the population are extracted and considered in the model: for exam-

ple, the inclusion of day and night regimes with their respective differ-

ences in social behaviour allows for modelling a more realistic

scenario than in simpler models. On the other hand, the infectivity of

symptomatic and asymptomatic cases is considered to be constant for

all members of the two groups of agents, albeit it differs between the

groups. In reality, we expect that infectivity varies, which is further

supported by extreme cases of super-spreaders who infect a large

number of people and thus may seed new local outbreaks, which

could arguably impact the predictions.42-44 Other parameter values

also have a wide distribution but are treated as constant, often by cal-

culating the mean value. The ABM also does not consider the poten-

tial impact of ethnic differences45-49 in the population with respect to

differing lifestyles, socioeconomical status and immune host

responses, all of which could affect the dynamics of the spread.

Unfortunately, Chang et al31 have not conducted sensitivity analysis

and therefore we lack evidence for assessing the influence of such

simplifications on model predictions.

Furthermore, some other assumptions exceed our current under-

standing of the epidemic and SARS-CoV-2's transmission mechanism.

For example, one of the assumptions of the AceMod model is the lin-

ear reduction of infectivity over time. Unfortunately, empirical

results50 suggest only that infectivity reduces over time, but do not

indicate the linearity of this process. Additionally, AceMod and its

SARS-CoV-2 model put agents into working groups of 20 agents,

despite the heterogeneity of their working conditions. Considering

the differentiation of work duties (from healthcare workers and shop

assistants to writers with virtually no social interaction), the chance of
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meeting an infected person at work is actually job-specific and there-

fore the model simplifies the reality.

Consequently, we concur with Andersen's claim that “no mecha-

nism model can include all the actual, much less the potential, causal

relationships in which such a mechanism may engage in a system”51

(p. 995). This pessimistic view on simplified models has inspired the

method known as exploratory modelling.52 In cases when the values

of parameters and assumptions inputted into the model cannot be

established with certainty, researchers can simulate multiple possible

worlds to discover the dependencies that are stable across the set of

different models. In cases when only a fraction of assumptions are

uncertain, researchers conduct sensitivity analyses to check if changes

in the values of the parameters lead to changes in their conclusions.53

The results that remain unchanged despite minor adjustments to

assumptions are considered to be robust.54 This, in turn, leads to

choosing those interventions that are most effective across different

sets of parameter values, known as robust decision-making.52

Others prefer to think in terms of the distinction between how-

actually and how-possibly modelling, referring to models that describe

an actual mechanism or a possible mechanism, respectively.55 There

are two general ways to unpack the concept of a how-possibly model.

First, we may want to say that a model serves as a hypothesis to be

confirmed or disconfirmed as new evidence emerges. In this sense, a

how-possibly model will eventually either turn into a how-actually

model, should the evidence confirm it, or be discarded if the evidence

is contrary to the model's conclusions. The other general notion of a

how-possibly model invites a different attitude. Rather than being in

the position of having little data to establish whether or not the model

does, in fact, represent the actual mechanism, we may interpret the

model as representing something other than the potentially actual

mechanism. On this view, claims about possible mechanisms do not

attempt to pick out actual states, nor do they attempt to explain how

a phenomenon actually occurs. Instead, they refer to conceivable

states, and ask whether the hypothesized mechanism could, in princi-

ple, produce the phenomenon in question if certain assumptions are

satisfied.

Here we argue that, notwithstanding the simplifications intro-

duced in the discussed influenza and SARS-CoV-2 ABMs, the epide-

miologists are, in fact, providing representations of actual mechanisms

of the spread of the viruses. This can be supported by exploiting the

relevant similarities56,57 between the SARS-CoV-2 ABM and the

actual outbreak. The respects in which an ABM can be judged similar

to its target concern the features retained in that model, while the

degree(s) of similarity concern the extent to which the model's fea-

tures match those of the phenomenon. A good example is setting the

parameter/assumption of incubation period = 5 days. This assumption

was introduced based on empirical research: “We maintained the

incubation period (the interval from the infection to the onset of dis-

ease in an individual) around the mean value of 5.0 days, as reported

in several studies, for example, the mean incubation period was

reported as 5.2 days, 95% confidence interval (CI), 4.1 to 7.0, while

being distributed around a mean of approximately 5 days within the

range of 2 to 14 days with 95% CI”31 (p. 3).

To elaborate this further, Glennan58 introduced a useful concep-

tual distinction between what he called behavioural adequacy and

mechanical adequacy. According to Glennan, a model represents an

actual mechanism if it reproduces the aggregate behaviour of the phe-

nomenon, and truthfully describes its parts and interactions. Con-

cerning the behavioural adequacy, one should be asking if “the model

predict[s] (quantitatively or qualitatively) the overall behaviour of the

mechanism?”58 (p. 457). By calibrating the model to data from the

beginning of the epidemic, Chang et al31 showed that it reproduces

the benchmark variables (R0 and attack rate).

Two remarks are in order here. First, one may oppose the claim

that what is being represented is the actual mechanism by arguing

that the mechanism underlying the beginning of the outbreak and the

fully-fledged epidemic are distinct. Changes in social behaviour or

genetic mutations could undermine the behavioural adequacy of the

model. Second, it is possible (at least in principle) that the model rep-

resents a false mechanism, but is calibrated to the relevant benchmark

such that it reproduces it. For example, there is no data confirming

(or disproving) the assumption that children are asymptomatic five

times more often than adults. As the modellers admit, this assumption

was made not only to account for the lower attack rate among minors,

but also to make the model adequate to aggregate-level data. This

approach to calibration resembles the estimation of statistical parame-

ters (a.k.a. curve fitting) and is considered dubious. The main line of

criticism highlights that it is in principle possible to construct a model

that represents a possible mechanism and, using calibration, adjust

parameter values so that it reproduces the represented phenomenon,

that is, obtains behavioural adequacy despite being false. However,

while this criticism is indeed justified regarding models of mechanisms

that are epistemically inaccessible in other ways (such as mechanisms

in the social sciences59), it is not so in the case of epidemiological

mechanisms whose transmission mechanism can be studied empiri-

cally and compared to the mechanism represented by the model.

This can establish that the mechanism represented by the model

is similar (in relevant aspects and to relevant degrees) to the mecha-

nism that generates the outbreak, that is, achieves mechanical ade-

quacy in Glennan's terminology. Applying the list of Glennan's58

(p. 457) criteria for mechanical adequacy justifies the claim that the

mechanism represented by Chang et al31 resembles the actual mecha-

nism. First, according to our best contemporary understanding of the

spread of the novel coronavirus, the model identifies all of the compo-

nents of the mechanism. This would change if further studies identi-

fied other significant transmission routes, for example, the faecal-oral

route. Second, the model represents the entities of the mechanism in

a localized way, given that it retains the spatial distribution of inhabi-

tation in Australia. Additionally, the model simulates the development

of an epidemic in time. This asserts that the “spatial and temporal

organization of the mechanism” is accurately represented. Third, given

that the number and place of social interactions are crucial for model-

ling the spread of contagious diseases, the model accurately captures

relevant properties of the agents inhabiting the model world. Fourth,

the calibration to census data asserts that the model provides “quanti-

tatively accurate descriptions of the interactions and activities of each
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component,” at least on average for groups of agents. Finally, our

background knowledge suggests that there is no other mechanism

(different from the spread of the pathogen through human interac-

tions) that could be responsible for the epidemic of SARS-CoV-2.

Given that AceMod fulfils Glennan's criteria for behavioural and

mechanical adequacy, considering our current understanding of the

novel coronavirus, we can conclude that Chang's et al31 model repre-

sents the actual mechanism of the spread of the disease in Australia.

Given this, the claims assessing the efficacy of the mitigation mea-

sures under consideration are likely to be accurate not only within the

model but also about its target. We claim this with several caveats in

mind to be discussed in the next section.

It is also important to note that the ABM integrates the biological

aspects, expressed by the parameter of infectivity, and the social

aspects such as daily interaction regimes. As a result, the ABM should

be construed as an instance of a model of a mixed mechanism, a con-

cept elaborated by Kelly et al.40 Due to exposure patterns,

population-level phenomena such as infectious disease epidemics are

crucially dependent on human behaviour and social practices. In cases

like the current pandemic, effective interventions may best be aimed

at the societal level and therefore mechanistic models that integrate

social factors, human behaviour and biological aspects (something that

the ABM discussed here attempts to do) are arguably best suited for

providing understanding and suggesting policy decisions.

4 | DISCUSSION AND
RECOMMENDATIONS

Our study defends using ABMs for informing decisions regarding miti-

gation and suppression measures by arguing that its best epidemiolog-

ical models represent actual mechanisms. Provided that the model's

assumptions are calibrated and checked against the background

empirical data—that is, the components, their activities, and spatio-

temporal organization resemble (in relevant aspects and to a certain

degree) the actual state of things—iterative runs of the simulations

can indeed provide understanding and inform policy decisions. This is

because the model delivers both difference-making and mechanistic

evidence by satisfying the criteria of behavioural and mechanical ade-

quacy, respectively.

In contrast to our claim, epidemiological SIR models and ABMs have

been criticized for over-simplifying target phenomena and hence lacking

relevance for policy decisions. For instance, Eubank et al criticized the

Imperial College London model11 for its “reliance on a simplified picture

of social interactions [that] limits its extensibility to counterfactuals. The

general nature of conclusions based on such model can be expected to

be similar to those of a simple compartmental model”60(pp. 5-6). Simi-

larly, Squazzoni et al suggested that even though AceMod is better cali-

brated than other epidemiological ABMs, “these [models] do not capture

network effects nor people's reactive responses as the population states

simply change via stochastic (randomized) processes determined by

parameters (although the parameters derive from data)”9(p. 2.6). In our

view, these highly advanced epidemiological models, while being

simplified representations of reality, account for relevant aspects of

social interactions and crucial aspects of the novel coronavirus epidemic

(eg, contagiousness), therefore allowing them to be put forward as evi-

dence for policy-relevant claims.

We claim this despite a straightforward comparison of model pre-

dictions to the actual epidemic curve (eg, the number of total cases) in

Australia shows the two to be mismatched. The number of covid-19

cases is smaller than predicted by an order of magnitude. However,

such a direct comparison is not warranted because the countermea-

sures implemented by the National Cabinet and the state governments

differ from the mitigation and suppression interventions considered by

Chang et al.31 That is, the a posteriori behavioural adequacy of the

model cannot be directly assessed based on the predictions because

the scenarios implemented into the model differ from the actual course

of events. In particular, first restrictions on international travel were

imposed on March first, when just 29 COVID-19 cases were

observed,61 followed by the 14-day quarantine for incomers62 on 15th

March (300 cases)61 that virtually stopped the import of new cases to

Australia, the closure of borders for nonresidents63 and a social dis-

tancing rule (requiring 4 m2 for each person in enclosed space)64 on

20th March (928 cases).61 Two days later (1609 cases),61 some states

closed non-essential businesses65 and, on 30th March (4460 cases),61

forbade gatherings of more than two people and advised staying at

home with some exceptions.66 The last two interventions are more

severe than the measures considered by the modellers and are a plausi-

ble explanation of the overestimation of the number of cases. Given

this, we can claim that the model had been behaviourally adequate to

the mechanism governing the beginning of the epidemic in Australia

and it would produce accurate predictions if the interventions were

introduced in line with the measures simulated by Chang et al.31 How-

ever, inaccurate predictions are what should be expected in the case of

the so-called fat-tail processes, where outcomes strongly depend on

the initial conditions. One should expect that, over time, the assump-

tions and calibrated parameters will be more accurate and ABMs will

produce predictions not only qualitatively but also quantitatively accu-

rate. The usefulness of epidemiological ABMs for decision-makers

results from delivering an understanding of the spread of the virus and

allowing for comparisons among alternative mitigation measures. For

instance, one of the qualitative predictions of the model is the limited

efficacy of school closures, which remained open in Australia67 and

had limited influence on the severity of the epidemic, considering that

just one cluster was located at a school.68

We believe that, considering the diversity in the number and pat-

terns of social interactions across countries, the quality of evidence

from ABMs should be assessed on the case by case basis. To do so,

one can employ the approach of Parkinnen et al17(p. 79) developed

initially to evaluate the quality of evidence for biological mechanisms.

In that case, one should consider (a) the quality of the method (ie, con-

sider the empirical adequacy of the assumptions in light of contempo-

rary empirical results), (b) the implementation of the method (ie,

assess how the epidemiological ABM is programmed, calibrated and

simulated) and (c) the stability of the results (ie, how sensitive the

results are to changes in the assumptions). AceMod31 fulfils the first
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two criteria (provisionally accepting the existing empirical results but

keeping in mind that they may change as the pandemic develops in

time and new results become published), and assessing the third one

is impossible with the publicly available data.

Epidemiological models usually do not account for the harms of

non-pharmaceutical interventions. Severe mitigation measures such

as imposed social distancing and business closures are likely to ham-

per economic and social life. All models are partial representations of

reality and, given that the primary purpose of an epidemiological

model is to address the efficacy of health care interventions, they iso-

late away certain factors and effects of interventions (economic and

social) and are more accurate in predicting the spread of the disease

under alternative conditions. Other models69,70 trade-off epidemio-

logical accuracy with accounting for social and economic effects, and

may be more relevant for assessing the harms of mitigation measures.

Additionally, ABMs, much like the compartmental models, are

dependent on the assumptions of the modellers.10 Our claim that

AceMod calibrated for SARS-CoV-2 bears similarity to the actual

mechanism of the epidemic depends on the accuracy of the empirical

results used as an input for this model. We need to repeatedly

acknowledge the provisional nature of these empirical results, given

the novelty of the pathogen. If the parameter values in AceMod were

miscalibrated, then the assessments of intervention efficacy could be

wrong. This implies that neither the virus can mutate nor that people

can significantly and unpredictably change their behaviour since “the

efficacy of implementation depends on people's reactions, [the stabil-

ity of] pre-existing social norms and structural societal constraints.”9

Furthermore, the effects of epidemiological agent-based modelling

are highly dependent on social structure and carefully calibrated to

social and economic characteristics. Therefore, the epidemiological

ABMs are geographically localized and their conclusions should not be

extrapolated beyond their target systems,71 unless the models and

their predictions are calibrated to particular settings. Finally, while

AceMod is well-documented in the two publications discussed

throughout our paper, neither its code nor detailed documentation

regarding its use is published (this unfortunately also applies to some

other ABMs of the SARS-CoV-2 epidemic). Given these limitations,

the models should be carefully checked for coding errors and other

possible flaws before applying their implications in the policy context.

In summary, we have argued that, despite the criticism raised

against models being the appropriate vehicle for informing policies, the

SARS-CoV ABM is suitable for this purpose because the mechanism

described by the model sufficiently resembles the mechanism at work

in the real world. Thus, our best contemporary epidemiological ABMs

are representations of the actual mechanism of the spread of the virus.

Unfortunately, such models have been left out from methodological

discussions and are not explicitly listed by evidence hierarchies. While

the need for appraising mechanistic reasoning in medicine is also

voiced by EBMers,72 there is no broadly-accepted view on how to

amalgamate evidence of different types. Further research is needed to

assess the risk of bias in the epidemiological models that deliver both

difference-making and mechanistic evidence. However, considering

the current situation and pressing need for rapid and accurate

decisions regarding mitigation measures, policymakers should take to

heart the advice that “if no randomized trial has been carried out […],

we must follow the trail to the next best external evidence and work

from there”73 (p. 74). In the current situation, accurately calibrated epi-

demiological ABMs are the best existing evidence.
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