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Abstract: Mounting evidence demonstrates that a high-salt diet (HSD) not only affects hemodynamic
changes but also disrupts immune homeostasis. The T helper 17 (Th17) and regulatory T cells (Tregs)
are susceptible to hypersalinity. However, research on the influence of sodium on Th2-mediated
food allergies remains scarce. We aimed to investigate the effect of dietary sodium on the immune
response to food allergies. Mice maintained on an HSD (4% NaCl), low-salt diet (LSD; 0.4% NaCl), or
control diet (CTRL; 1.0% NaCl) were orally sensitized with ovalbumin (OVA) and a cholera toxin
(CT) adjuvant, and then subjected to an intragastric OVA challenge. OVA-specific immunoglobulin G
(IgG), IgG1, IgG2a, and IgE antibodies were significantly higher in the HSD group than in the CTRL
group (p < 0.001, p < 0.05, p < 0.01, and p < 0.05, respectively). Mice on HSD had significantly higher
interleukin (IL)-4 levels than the CTRL group (p < 0.01). The IL-10 levels were significantly lower in
the HSD group than in the CTRL group (p < 0.05). The serum levels of interferon-γ (IFN-γ), sodium,
and chloride did not differ among the three groups. This study indicates that excessive salt intake
promotes Th2 responses in a mouse model of food allergy.
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1. Introduction

Globalization has caused rapid changes in people’s eating habits, leading to an in-
creased consumption of processed and packaged foods, and a lifestyle that is based on a
high-salt diet (HSD). Excessive salt consumption can pose a threat to human health. High
dietary salt intake has been linked to many well-recognized diseases, such as cardiovas-
cular complications, hypertension, and metabolic syndromes [1]. Mounting evidence on
the effects of HSD has demonstrated that it not only mediates hemodynamic changes but
also disrupts immune homeostasis. It is well established that excessive salt augments the
differentiation of naïve T cells into T helper 17 cells (Th17), resulting in the onset and exac-
erbation of autoimmune conditions in animal models of multiple sclerosis, lupus nephritis,
rheumatoid arthritis, and Crohn’s disease [2–4]. There is a fine balance between Th17 and
regulatory T cells (Tregs). Furthermore these T-helper subsets are reciprocally regulated,
which enables the transition between pro- and anti-inflammatory states [5]. Therefore, the
enhanced differentiation of Th17 cells after exposure to high concentrations of salt may
further dampen Treg phenotypes. Moreover, excessive salt was shown to exert a direct
effect on the suppressive functions of Tregs and exacerbate experimental graft-versus-host
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diseases [6]; Th2 and Tregs also share such a relationship. A change in the equilibrium
between allergen-specific Th2 and Treg cells can either result in the development of al-
lergic diseases or in the recovery from allergy [7,8]. A previous study demonstrated that
the failure to induce oral tolerance, or the breakdown of oral tolerance as a result of the
impaired generation or functioning of the suppressive Tregs, could contribute to food
allergy [9]. Newly discovered evidence revealed that the epigenetic modifications, caused
by decreased or increased levels of histone acetylation at key Th cell loci, contributed to
the allergy to cow’s milk protein or the allergy-protective effect of raw milk [10,11]. While
it is well known that sodium is an immunomodulator of Th17 cells and Tregs [12], our
understanding of the direct effect of sodium on Th2-dependent allergic diseases, such as
food allergies, remains scarce.

The expression of food allergies is multifactorial and is affected by the genetic back-
ground of an individual, environmental factors, and interactions between the genome and
environment, including the epigenetic effects. The prevalence of food allergies has been
constantly increasing over the last three decades [13]. As evidenced by the epidemiologic
studies, up to 10% of the population is affected by food allergies [14]. The present standards
for treating food allergy include allergen avoidance and immediate access to medication
in the event of anaphylaxis [13]. These are relatively safe and effective measures for con-
trolling symptoms but not for curing the disease. Food allergies are characterized by an
overriding Th2 response. The increasing prevalence of food allergies, together with a rise in
human urbanization may indicate a correlation between the two. Moreover, urbanization
leads to changes in lifestyle and diet is one of the most rapid of these changes. The limited
evidence on the impact of dietary components, such as food additives and vitamin D
n-3/n-6 polyunsaturated fatty acids, on the homeostasis of the immune system suggests
that these components may hinder or facilitate the development of food allergies [15–17].
However, the impact of HSDs or low-salt diets (LSDs) on food allergy has not yet been
ascertained. Since sodium chloride (NaCl) has been shown to affect immune homeostasis,
we hypothesized that a high salt intake might have an effect on food allergies. Here, we
aimed to investigate the effect of dietary salt intake on the immune response in a mouse
model of food allergy.

2. Materials and Methods
2.1. Animals and Ethics Statement

Eight-week-old female BALB/c mice were purchased from the National Animal
Center (Taipei, Taiwan). All mice were housed in cages under conventional conditions
of controlled temperature and relative humidity with a regular 12 h light/dark cycle in
the Animal House of the National Defense Medical Center (Taipei, Taiwan). All animal
experiments were approved by the Institutional Animal Care and Use Committee of the
National Defense Medical Center (Ethical approval number: IACUC-13-121).

2.2. Antigen Preparation

Ovalbumin (OVA) grade V was acquired from Sigma-Aldrich (St. Louis, MO, USA).
Cholera toxin (CT; Calbiochem, San Diego, CA, USA) was used as an adjuvant. Briefly,
360 mL of 1 mg/mL OVA and 90 µL of 2 mg/mL CT were dissolved in 9 mL phosphate-
buffered saline (PBS).

2.3. Experimental Design

After an acclimatization period of one week, the mice were randomly divided into
the following three groups: HSD, LSD, and control (CTRL) (n = 6 mice/group). In the
HSD group, naïve mice were exposed to HSD (TestDiet®, St. Louis, MO, USA) that was
supplemented with 4% NaCl. In the LSD group, naïve mice were administered chow with
0.4% NaCl (TestDiet®), whereas mice from the control group were fed a normal salt diet
(TestDiet®) containing 1.0% NaCl. One-percent, NaCl-containing water was provided to
mice from the HSD group, and distilled water was provided to the mice in the LSD and
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control groups. All mice were maintained on a specialized rodent diet and water ad libitum
for 10 weeks (weeks 0 to 10).

All mice were first sensitized and thereafter challenged with OVA intragastrically.
Briefly, the mice were intragastrically administered 20 mg of OVA in the presence of 10 µg
of CT adjuvant, which was suspended in 500 µL of PBS, once a week for six weeks. In
the week after the last sensitization, mice were challenged with 50 mg OVA suspended in
200 µL of PBS via intragastric gavage after overnight fasting. All mice were euthanized
one day after the OVA challenge, and blood and spleen samples were harvested for further
analyses. The experiments were performed in duplicates to obtain representative data. The
experimental scheme is illustrated in Figure 1.
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Figure 1. Experimental protocol. Three different experimental protocols were used for priming. Mice were fed a high- or
low-salt diet or control diet ad libitum for 10 weeks. After 4 weeks of exposure to different sodium concentrations, all
mice were intragastrically sensitized with 20 mg of ovalbumin (OVA) and 10 µg of cholera toxin (CT) once every week, for
six weeks. After sensitization, mice were challenged with 50 mg of OVA via intragastric gavage. All mice were euthanized
for blood and spleen sampling 1 day after the OVA challenges. Ovalbumin: OVA, cholera toxin: CT, intragastrically: i.g.

2.4. Measurement of OVA-Specific Immunoglobulin G (IgG), IgG1, and IgG2a Antibodies

Blood samples were collected after challenge. The levels of OVA-specific IgG, IgG1,
and IgG2a were measured using enzyme-linked immunosorbent assays (ELISA) (R&D
Systems, Minneapolis, MN, USA), as described previously [18]. Briefly, microtiter plates
(96 wells; Nunc, Kamstrup, Roskilde, Denmark) were coated overnight at 4 ◦C with 100 µL
of OVA (100 µg/mL) in 0.05 M sodium carbonate (pH 9.6). On the next day, the plates were
blocked with 3% skimmed milk in PBS-Tween 20 by incubation for 1 h. Serum samples
(1/30–1/1000) and standards (pooled hyperimmune sera after monthly treatment with
OVA emulsified in complete Freund’s adjuvant) were added to the plates in duplicates. The
plates were then incubated for 5 h at room temperature. An amount of 100 mL horseradish
peroxidase conjugated with goat anti-mouse IgG (1/4000; Jackson, West Grove, PA, USA),
IgG1 or IgG2a (1/4000 for both; SBA, Birmingham, AL, USA) were added to each well
and incubated overnight at 4 ◦C. Between each incubation, the plates were washed with
PBS containing 0.05% Tween 20. Color was developed by adding orthophenyleldiamine
(0.5 mg/mL; Sigma) in citrate-carbonate buffer containing 0.015% hydrogen peroxide and
incubated in the dark at room temperature. Finally, the reaction was stopped with 4 N
sulfuric acid. A SPECTRAmax 250 reader (Molecular Devices, Sunnyvale, CA, USA) was
used to measure the absorbance at 492 nm, and unknowns were interpolated.

2.5. Measurement of OVA-Specific IgE Antibody

OVA-specific IgE antibodies in mouse serum were detected by in vivo passive cuta-
neous anaphylaxis (PCA) assay, as described previously [18]. Briefly, Sprague Dawley rats
were purchased from the Animal Center, National Yang-Ming University, Taipei, Taiwan.
Aliquots (100 µL) of 2-fold dilutions of mouse serum samples (1/50–1/800) were intra-
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dermally injected into the rats. They were then challenged after 48 h via an intravenous
injection of 2 mg of OVA and 5 mg of Evans Blue in 1 mL PBS. Thirty minutes after the
challenge, the rats were sacrificed and the diameter of the cutaneous reaction was measured.
A positive IgE response was recorded if the challenge resulted in a blue lesion ≥5 mm on
the skin of 50% or more recipient animals. The antibody titer was expressed as the highest
dilution of the serum sample to give a positive PCA reaction.

2.6. Analysis of Cytokine Production in OVA-Stimulated Spleen Cells

Cytokine production in spleen cells was analyzed as described previously [18]. A
day after the oral OVA challenge, spleen cells from the six BALB/c mice of each group
were gently crushed and cultured (2 × 106 cells per well) in 24-well flat-bottomed mi-
crotiter plates (1 mL per well; Costar, Cambridge, MA, USA) with OVA, in duplicates, and
in complete Roswell Park Memorial Institute 1640 (RPMI) medium (1 mg/mL) supple-
mented with 10% fetal calf serum and antibiotics. Culture supernatants were harvested
after 1–3 days of incubation. The levels of interleukin (IL)-4, IL-10, and interferon-γ
(IFN-γ) from the harvested supernatants were measured using sandwich, enzyme-linked
immunosorbent assay (ELISA) kits (e-Bioscience, San Diego, CA, USA) according to the
manufacturer’s instructions.

2.7. Statistical Analysis

All the experiments were performed in duplicates. Experimental data were expressed
as box-and-whisker plots with individual data points. Statistical comparisons between
the two groups were made by the non-parametric Mann–Whitney U-test. Differences
were considered significant at p < 0.05. Analysis was performed using GraphPad Prism
version 9.1.1 (223) for Mac (GraphPad Software, San Diego, CA, USA).

3. Results
3.1. HSD Induces High Levels of OVA-Specific Serum IgG, IgG1, IgG2a, and IgE in Mice

To investigate the impact of salt intake on the humoral response in sensitized mice,
we measured plasma levels of OVA-specific IgG, IgG1, IgG2a, and IgE antibodies after an
oral challenge with the OVA-antigen (Figure 2). OVA-specific IgG, IgG1, IgG2a, and IgE
levels were significantly higher in the HSD group than in the CTRL group (p < 0.001 for
Figure 2a; p < 0.05 for Figure 2b; p < 0.01 for Figure 2c; p < 0.05 for Figure 2d). Conversely,
there were no statistical differences between the levels of OVA-specific IgG1, IgG2a, and
IgE serum antibodies between the LSD and CTRL groups.

3.2. High IL-4 and Low IL-10 Production in Splenocytes of Mice Maintained on HSD

Next, we evaluated the effect of sodium intake on the cytokine production in the
spleens of mice with food allergies. The concentration of IL-4 was significantly higher
in the HSD group than in the CTRL group, after the stimulation with OVA (p < 0.01 for
Figure 3a). In contrast, the IL-10 levels were markedly lower in the HSD group than
in the CTRL group (p < 0.05 for Figure 3b). No significant difference were observed
in the IFN-γ levels between the HSD and CTRL groups (Figure 3c). On the contrary,
LSD did not significantly change IL-4, IL-10, and IFN-γ production in the spleen cells of
OVA-sensitized mice.

3.3. HSD Causes No Change in the Serum Levels of Sodium and Chloride

To determine the effect of the different salt concentrations on electrolyte homeostasis,
plasma concentrations of sodium (Na) and chloride (Cl) were evaluated after the adminis-
tration of a special salt diet for 10 weeks (Figure 4). Dietary salt had no effect on plasma
levels of Na and Cl for all mice from the three groups.



Nutrients 2021, 13, 3684 5 of 10
Nutrients 2021, 13, x FOR PEER REVIEW 5 of 10 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 2. Effect of different concentrations of dietary sodium on the production of OVA-specific immunoglobulin G (IgG) 
(a), IgG1 (b), IgG2a (c), and IgE (d) antibodies in mice with OVA-induced food allergy. Serum was collected after challenge 
with the OVA antigen. IgG (a), IgG1 (b), and IgG2a (c) levels were examined by the enzyme-linked, immunosorbent assay 
(ELISA) and IgE (d) levels by the in vivo passive cutaneous anaphylaxis (PCA) test. Data are expressed as box-and-whisker 
plots with individual data points. The boxes represent the inner quartiles value range with the median indicated as black 
line. The whiskers represent minimum to maximum interval. * p < 0.05, ** p < 0.01, and *** p < 0.001. High-salt diet: HSD, 
Low-salt diet: LSD, Control diet: CTRL. 

3.2. High IL-4 and Low IL-10 Production in Splenocytes of Mice Maintained on HSD 
Next, we evaluated the effect of sodium intake on the cytokine production in the 

spleens of mice with food allergies. The concentration of IL-4 was significantly higher in 
the HSD group than in the CTRL group, after the stimulation with OVA (p < 0.01 for Figure 
3a). In contrast, the IL-10 levels were markedly lower in the HSD group than in the CTRL 
group (p < 0.05 for Figure 3b). No significant difference were observed in the IFN-𝛾 levels 
between the HSD and CTRL groups (Figure 3c). On the contrary, LSD did not significantly 
change IL-4, IL-10, and IFN-𝛾 production in the spleen cells of OVA-sensitized mice. 

  

Figure 2. Effect of different concentrations of dietary sodium on the production of OVA-specific immunoglobulin G (IgG)
(a), IgG1 (b), IgG2a (c), and IgE (d) antibodies in mice with OVA-induced food allergy. Serum was collected after challenge
with the OVA antigen. IgG (a), IgG1 (b), and IgG2a (c) levels were examined by the enzyme-linked, immunosorbent assay
(ELISA) and IgE (d) levels by the in vivo passive cutaneous anaphylaxis (PCA) test. Data are expressed as box-and-whisker
plots with individual data points. The boxes represent the inner quartiles value range with the median indicated as black
line. The whiskers represent minimum to maximum interval. * p < 0.05, ** p < 0.01, and *** p < 0.001. High-salt diet: HSD,
Low-salt diet: LSD, Control diet: CTRL.

Nutrients 2021, 13, x FOR PEER REVIEW 6 of 10 
 

 

  
(a) (b) 

 

 

(c)  

Figure 3. Effect of different concentrations of dietary sodium on the production of cytokines by splenocytes. Splenocytes 
were isolated from the spleens after OVA challenge and incubated in culture medium containing fetal bovine serum (FBS) 
and OVA for 1 to 3 days. Interleukin (IL)-4 (a), IL-10 (b), and interferon- 𝛾 (IFN-𝛾) (c) were measured by sandwich ELISA. 
Data are expressed as box-and-whisker plots with individual data points. The boxes represent the inner quartiles value 
range with the median indicated as black line. The whiskers represent minimum to maximum interval. * p < 0.05 and ** p 
< 0.01. High-salt diet: HSD, Low-salt diet: LSD, Control diet: CTRL 

3.3. HSD Causes No Change in the Serum Levels of Sodium and Chloride 
To determine the effect of the different salt concentrations on electrolyte homeostasis, 

plasma concentrations of sodium (Na) and chloride (Cl) were evaluated after the 
administration of a special salt diet for 10 weeks (Figure 4). Dietary salt had no effect on 
plasma levels of Na and Cl for all mice from the three groups. 

  
(a) (b) 

Figure 4. Effect of different concentrations of dietary sodium on the levels of serum sodium (Na; (a)) and chloride (Cl; (b)). 
Mice were fed a high- or low-salt diet, or a control diet ad libitum for 10 weeks. Blood samples were collected 1 day after 
administering the specialized diet. Data are expressed as box-and-whisker plots with individual data points. The boxes 
represent the inner quartiles value range with the median indicated as black line. The whiskers represent minimum to 
maximum interval. High-salt diet: HSD, Low salt diet: LSD, Control diet: CTRL. 

Figure 3. Cont.



Nutrients 2021, 13, 3684 6 of 10

Nutrients 2021, 13, x FOR PEER REVIEW 6 of 10 
 

 

  
(a) (b) 

 

 

(c)  

Figure 3. Effect of different concentrations of dietary sodium on the production of cytokines by splenocytes. Splenocytes 
were isolated from the spleens after OVA challenge and incubated in culture medium containing fetal bovine serum (FBS) 
and OVA for 1 to 3 days. Interleukin (IL)-4 (a), IL-10 (b), and interferon- 𝛾 (IFN-𝛾) (c) were measured by sandwich ELISA. 
Data are expressed as box-and-whisker plots with individual data points. The boxes represent the inner quartiles value 
range with the median indicated as black line. The whiskers represent minimum to maximum interval. * p < 0.05 and ** p 
< 0.01. High-salt diet: HSD, Low-salt diet: LSD, Control diet: CTRL 

3.3. HSD Causes No Change in the Serum Levels of Sodium and Chloride 
To determine the effect of the different salt concentrations on electrolyte homeostasis, 

plasma concentrations of sodium (Na) and chloride (Cl) were evaluated after the 
administration of a special salt diet for 10 weeks (Figure 4). Dietary salt had no effect on 
plasma levels of Na and Cl for all mice from the three groups. 

  
(a) (b) 

Figure 4. Effect of different concentrations of dietary sodium on the levels of serum sodium (Na; (a)) and chloride (Cl; (b)). 
Mice were fed a high- or low-salt diet, or a control diet ad libitum for 10 weeks. Blood samples were collected 1 day after 
administering the specialized diet. Data are expressed as box-and-whisker plots with individual data points. The boxes 
represent the inner quartiles value range with the median indicated as black line. The whiskers represent minimum to 
maximum interval. High-salt diet: HSD, Low salt diet: LSD, Control diet: CTRL. 

Figure 3. Effect of different concentrations of dietary sodium on the production of cytokines by splenocytes. Splenocytes
were isolated from the spleens after OVA challenge and incubated in culture medium containing fetal bovine serum (FBS)
and OVA for 1 to 3 days. Interleukin (IL)-4 (a), IL-10 (b), and interferon- γ (IFN-γ) (c) were measured by sandwich ELISA.
Data are expressed as box-and-whisker plots with individual data points. The boxes represent the inner quartiles value
range with the median indicated as black line. The whiskers represent minimum to maximum interval. * p < 0.05 and
** p < 0.01. High-salt diet: HSD, Low-salt diet: LSD, Control diet: CTRL.

Nutrients 2021, 13, x FOR PEER REVIEW 6 of 10 
 

 

  
(a) (b) 

 

 

(c)  

Figure 3. Effect of different concentrations of dietary sodium on the production of cytokines by splenocytes. Splenocytes 
were isolated from the spleens after OVA challenge and incubated in culture medium containing fetal bovine serum (FBS) 
and OVA for 1 to 3 days. Interleukin (IL)-4 (a), IL-10 (b), and interferon- 𝛾 (IFN-𝛾) (c) were measured by sandwich ELISA. 
Data are expressed as box-and-whisker plots with individual data points. The boxes represent the inner quartiles value 
range with the median indicated as black line. The whiskers represent minimum to maximum interval. * p < 0.05 and ** p 
< 0.01. High-salt diet: HSD, Low-salt diet: LSD, Control diet: CTRL 

3.3. HSD Causes No Change in the Serum Levels of Sodium and Chloride 
To determine the effect of the different salt concentrations on electrolyte homeostasis, 

plasma concentrations of sodium (Na) and chloride (Cl) were evaluated after the 
administration of a special salt diet for 10 weeks (Figure 4). Dietary salt had no effect on 
plasma levels of Na and Cl for all mice from the three groups. 

  
(a) (b) 

Figure 4. Effect of different concentrations of dietary sodium on the levels of serum sodium (Na; (a)) and chloride (Cl; (b)). 
Mice were fed a high- or low-salt diet, or a control diet ad libitum for 10 weeks. Blood samples were collected 1 day after 
administering the specialized diet. Data are expressed as box-and-whisker plots with individual data points. The boxes 
represent the inner quartiles value range with the median indicated as black line. The whiskers represent minimum to 
maximum interval. High-salt diet: HSD, Low salt diet: LSD, Control diet: CTRL. 

Figure 4. Effect of different concentrations of dietary sodium on the levels of serum sodium (Na; (a)) and chloride (Cl; (b)).
Mice were fed a high- or low-salt diet, or a control diet ad libitum for 10 weeks. Blood samples were collected 1 day after
administering the specialized diet. Data are expressed as box-and-whisker plots with individual data points. The boxes
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4. Discussion

HSD is suggested to be an environmental factor that modulates T cell differentiation,
and which may promote the differentiation of naïve T cells into effector cells that are
associated with autoimmune disease, such as Th17 cells. Our present knowledge about the
effect of sodium on Th2-mediated allergic diseases, such as food allergies, is largely limited.
In this study, mice from the HSD and LSD groups were administered a diet supplemented
with 4% or 0.4% NaCl, and compared to mice from the control group, which received
chow containing 1% NaCl. All mice were sensitized with OVA and the CT adjuvant, and
thereafter subjected to an intragastric challenge. We observed a significant increase in the
levels of serum OVA-specific IgG1, IgE, and splenic IL-4, and a significant decrease in the
splenic IL-10 levels of mice from the HSD group (Figures 2 and 3). This indicated that the
intake of a diet supplemented with excessive dietary sodium altered immune homeostasis
and promoted Th2 immune responses in a mouse model for OVA-induced food allergy.
This is the first report to provide experimental evidence for the effect of sodium exposure



Nutrients 2021, 13, 3684 7 of 10

on food allergy. Our results provide evidence that, in addition to its well-described effect
on the induction of proinflammatory Th17 cells and the abrogation of the suppressive
capacity of Tregs, excessive salt intake skews T cell differentiation towards Th2 responses
in a mouse model of food allergy.

Food allergy is an immunologically aberrant reaction to food allergens, mainly pro-
teins. The immunoglobulins, IgG1 and IgE, are both associated with Th2-type immune
responses. Numerous animal studies have already demonstrated that OVA, as a common
allergen, can increase the production of OVA-specific IgG1 and IgE serum antibodies after
sensitization, thereby suggesting the induction of a Th2 response [19–21]. The reports on
the role of NaCl in food allergies are sparse and controversial. One study reported that
cultivating murine CD4+ T cells, in the presence of hypertonic NaCl (40 mM), showed
impaired Th2 cell differentiation [22]. In contrast, another recently published pilot study
demonstrated that hypersalinity enhanced the production of signature Th2 cytokines,
namely IL-4 and IL-13, in memory T cells from healthy human donors [23]. Furthermore,
NaCl could facilitate the differentiation of human and mouse-derived naïve T cells into Th2
cells, independent of Th2-polarizing cytokines, via the osmosensitive transcription nuclear
factor of activated T-cells 5 (NFAT5) and the enzyme serum/glucocorticoid regulated
kinase 1 (SGK-1) [23]. In line with this previously published data, our study revealed that
the levels of serum OVA-specific IgG1, IgE, and splenic IL-4 were significantly elevated in
mice from the HSD group, suggesting that a high-sodium intake potentiated dysregulated
immune responses and directly enhanced the Th2 differentiation in mice. Anti-OVA IgG
levels are relatively non-specific parameters and represent indicators for frequent OVA
exposure [24]. Previous studies showed that some strains of mice failed to mount a signifi-
cant IgE antibody response to ovalbumin despite the presence of an adjuvant [25]. In this
study, we measured both IgE and IgG to confirm the successful elicitation of an allergen’s
immune response to the ovalbumin. Our findings showed that anti-OVA IgG levels were
significantly higher in the HSD and LSD group than in the CTRL groups. The markedly
elevated levels of IgG and IgE indicated a potentiated allergic response in the HSD group.
In the contrary, OVA-specific IgG was significantly reduced in the CTRL group compared to
the LSD group. However, OVA-specific IgE, IgG1 and IgG2a did not significantly differ. It
is possible that there may be other IgG subclasses that may have contributed to the decrease
in OVA-specific IgG to induce the potential tolerance in the CTRL group. However, due to
no difference in the OVA-specific IgE, IgG1, and IgG2a between LSD and the CTRL group,
further studies will be needed to investigate the effect of low salt diet on the food allergy.
Based on these results, we suggest that the intake of chow supplemented with high sodium
upregulates antigen-specific, Th2-related antibody responses in mice.

Functional Tregs are important for maintaining tolerance to innocuous exogenous
antigens and self-antigens. IL-10 is a key cytokine secreted by Tregs that can limit T
cell responses. In addition to the existing evidence that Tregs limits the pathogenesis of
autoimmune diseases and prevents allograft rejection, accumulating evidence suggests that
Tregs might play a critical role in controlling the expression of allergic diseases. In a mouse
model of peanut allergy, CD4+ CD25+ T cell-depleted mice showed impaired oral tolerance
upon the exposure to peanuts and induced an IgE-mediated food hypersensitivity response
after an oral challenge [26]. In the case of rare diseases, such as X-linked autoimmunity–
allergic dysregulation syndrome (XLAAD)/immunodysregulation polyendocrinopathy
enteropathy X-linked (IPEX), the patients lack CD25+ Tregs and could develop severe
eczema, eosinophilia, elevated IgE, and food allergies, which indicated that Tregs were
crucial for the development of allergic diseases [27]. Our results showed a significant
decrease in the IL-10 levels of mice from the HSD in comparison to the control, suggesting
that the function of Tregs was impaired. Moreover, this functional impairment of Tregs
could further promote a type 2 immune response due to the loss of suppression, which was
also observed in the present study with the markedly elevated IgG1, IgE, and IL-4 levels in
the HSD group. This was consistent with previous studies, which showed that excessive
dietary salt had a negative effect on the suppressive function of Tregs via inducing SGK1-
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mediated FOXO1 phosphorylation, which further led to the destabilization of FOXP3 [6,28].
The low IL-10 levels in our study implied that excessive sodium may indirectly skew Th2
polarization by attenuating the Treg function in the mouse model of food allergy. Existing
studies demonstrated how epigenetic mechanisms affected Tregs by decreased levels of
histone acetylation in the allergy to cow’s milk [11]. Whether high-sodium condition also
plays a role in epigenetic modifications by regulating the severity of food allergy should be
investigated in follow-up studies.

The results regarding the effect of salt on the differentiation of Th1 cells are barely
comparable with previous studies. A study in mice showed that HSD had no effect on Th1
cell differentiation [22]. The levels of IgGa2 in OVA-allergy mouse models varied greatly
between studies. Previous studies reported that CT could induce a weak Th1 response
characterized by elevated IgGa2 levels [29–31]. In line with previous studies, we observed
a significant increase in IgG2a levels in the HSD group, which suggested that HSD affected
the frequency of Th1 cells. However, there was no significant change in IFN-γ levels
between mice from the HSD and control groups. The inability of high salt to induce IFN-γ
production is in accordance with the previous findings and could be explained by the low
levels of SGK1 expression in the Th1 cells [3].

Concerning the effect of LSD on the adaptive immune response, we did not observe
any significant influence on Th1- or Th2-related antibodies and cytokines in our study. This
suggested that HSD could have a detrimental effect on human health in many aspects,
while the extreme restriction of salt intake may not have a definite benefit against food
allergy. With regard to the effect of the sodium on electrolyte homeostasis, we found no dif-
ferences in plasma levels of sodium and chloride from the three groups. The accumulating
evidence has shown that sodium could distribute at a different concentration throughout
the human body and may reach hypersalinity in the interstitium regardless of the circu-
lating levels [28,32,33]. A previous study demonstrated that sodium was concentrated in
the colons of mice on an HSD, indicating the direct impact of salt within the colon [34].
In the tissue microenvironment, sodium could regulate the differentiation and function
of immune cells via modulating signaling pathways and contributing to protective or
proinflammatory immunity.

There are several limitations in the present study. First, it was performed in an animal
model and the numbers of animals were limited. We selected a small sample size because
of the effect of a high-salt diet on food allergy was evaluated in vivo for the first time in
the present study, and thus the initial intention was to gather basic evidence regarding the
use of this experimental protocol in more complex experimental designs. Further research
was necessary to investigate involving larger groups of animals to validate reproducibility.
Second, whether HSD exacerbated the severity of the clinical manifestations of food allergy
was not investigated in the current study and should be investigated in the follow-up
study. Moreover, we measured Th cell-dependent immune responses but did not analyze
the types of differentiated T cells which may provide further information on the effect of
sodium on T cell polarization.

5. Conclusions

In conclusion, our findings suggest that HSD may play an essential role in type 2
immune responses in a given microenvironment and extend the pre-existing evidence on
the ability of HSD to affect type 2 driven diseases, such as food allergies. Our findings
provide putative evidence that, although it warrants further research, controlling the intake
of dietary salt by targeting NaCl-induced signaling may be a promising therapeutic strategy
for improving adjuvant therapy in patients with food allergy.
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