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Abstract: Two key factors bear on reaction rates for the conjugate addition of alkenyl boronic acids to
heteroaryl-appended enones: the proximity of inductively electron-withdrawing heteroatoms to the
site of bond formation and the resonance contribution of available heteroatom lone pairs to stabilize
the developing positive charge at the enone β-position. For the former, the closer the heteroatom
is to the enone β-carbon, the faster the reaction. For the latter, greater resonance stabilization
of the benzylic cationic charge accelerates the reaction. Thus, reaction rates are increased by the
closer proximity of inductive electron-withdrawing elements, but if resonance effects are involved,
then increased rates are observed with electron-donating ability. Evidence for these trends in isomeric
substrates is presented, and the application of these insights has allowed for reaction conditions that
provide improved reactivity with previously problematic substrates.

Keywords: enantioselective conjugate addition; heterocycles; pyrrole; indole

1. Introduction

Heteroaromatics routinely appear as key pharmacophores in small molecule drugs [1–5],
as common motifs in natural products [6–8], and as important functional groups in ma-
terials [9]. The ability to synthesize heteroaromatic systems attached to stereocenters is
becoming increasingly important, especially as greater three-dimensionality in compounds
is increasingly desired (Figure 1) [10–16].

Concordantly, many recent reports have described efforts to develop new strategies
and catalysts to synthesize heteroaryl-bearing stereocenters with absolute stereocontrol.
To cite limited examples, transition metal-mediated couplings [17–26], Petasis-like reac-
tions [27–29], C—H functionalizations [30–35], Friedel–Crafts reactions [36–86], and con-
jugate additions have provided significant advances [87–107]. We have contributed to
this area by demonstrating that α-chiral heterocycles can be synthesized through 3,3′-
(bisperfluoroaryl)-BINOL (6)-catalyzed conjugate addition of aryl, alkenyl, and alkynyl
boronic acids and trifluoroborate salts to β-heteroaryl-appended enones and enals [87–90].
When heteroaryl trifluoroborate salts are used as nucleophiles, bis-heteroaryl stereocenters
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are formed [90]. We have consistently encountered two problematic but synthetically
important substrates, however: β-(2-indolyl)-enones and β-(pyrrolyl)-enones (Figure 2).
This was especially vexing as the α-chiral indole 8 was a proposed intermediate for an
enantioselective synthesis of flinderole C (1). This report describes why these substrates
are problematic, how resonance effects impact the reaction rate and success, and how to
increase these substrates’ reactivity.
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The use of boronate esters and boronic acids as nucleophiles in catalyzed conjugate
additions to enones dates to Suzuki [99,108–112]. More recent efforts have led to transition
metal-catalyzed and organocatalyzed enantioselective versions of this reaction. For the lat-
ter cases, examples exist of BINOL-based ligands pioneered by Chong [113–116], 〈-hydroxy
acids reported by Sugiura [117–120], and thiourea catalysts from Takemoto [121]. Those re-
ports, however, primarily dealt with aryl-substituted stereocenter formation, and so they
offered little information on how to address heterocycle incorporation and the problematic
2-indole and 2-pyrrole substrates.

2. Results

In looking at data collected from the many heteroaromatic substrates that we had
examined, patterns emerged for how the point of enone attachment on furan, pyridine,
and imidazole rings affected the reaction rate (Figure 3). In the furanyl enone 11, where the
enone is attached at the 2-position, the conjugate addition reaction occurs in only 8 h,
while its counterpart, 12, which is attached at the 3-position, is not complete until 24 h.
Pellegrinet and Goodman established that the initial step in the organocatalyzed conjugate
addition mechanism is the formation of a discreet Lewis acid/base adduct between the
enone and the catalyst ligated boronate ester [118,122]. One may draw equally viable
resonance structures that stabilize the putative Lewis acid/base interaction for the 2- and
3-furan isomers (19 and 21, Figure 4) [122,123]. Since the difference in reaction rate was not
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readily correlated to resonance stabilization, we considered the possibility that proximity
to the furan oxygen played a role. Similarly, in β-pyridyl-enones, the reactivity does not
correlate to any typical resonance effects in that the 2-pyridine and 4-pyridine substrates do
not exhibit similar rates. Rather, the trend still appears correlated with the proximity of the
heteroatom to the reacting site, with 2-pyridyl 13 being formed within 3 h and 4-pyridyl
15 taking 21 h for complete reaction, which again implicates inductive electronic effects.
Recruitment of the Lewis acidic nucleophile by the pyridyl nitrogen in a similar manner to
Takemoto’s work [121] cannot be fully ruled out, either. For the imidazole substrates 16
and 17, similar resonance structures may be drawn for either isomer as seen for the furans,
so resonance effects did not explain the reactivity difference. Again, having more nitrogens
closer to the site of reactivity as seen in the 2-imidizole isomer gave a faster reaction than
for the 4-imidazole isomer. Taken together, these substrates suggest that proximity to the
inductively electron-withdrawing heteroatom in a heteroaromatic substituent accelerates
this conjugate addition. They also exhibited high levels of enantioselectivity.
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However, the trend described in the previous paragraph is opposite to that for the
indole-substituted enones, where the high-performing 3-indole substrates bear the nitrogen
further from the enone β-carbon than the poor-performing 2-indolo-enones (Figure 5).
Moreover, inconsistent and unpredictable yields of 8 were routinely obtained. An early
thought for the discrepancy was that the enone 7 has substitution at both the 2- and
3-positions, which would increase steric repulsion at the reactive site. However, con-
trol experiments with 22–25 in Figure 6 dispelled that notion, as the inferior reactivity was
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clearly due to the indole position of substitution and therefore more likely to be due to
the system’s electronics. We reasoned that for these substrates, resonance effects might
have played a larger role than the inductive effects seen in Figure 3. A relationship study
for resonance effects and reaction rates using a Hammett plot analysis of aryl-substituted
enones shed some mechanistic insight on what may have been occurring for the indole
substrates [124]. In that study, a clear Hammett parameter correlation was seen for electron-
donating substituents on the β-aromatic ring accelerating the reaction, which suggested
that the stabilization of the benzylic cationic charge in 27b increased the reaction rate,
likely because the formation of zwitterionic intermediate 27a is necessary for the reaction
(Figure 6). While the resonance structures for charge stabilization for the 2/3-furan and
2/4-imidazole substrates were similar, those for the indoles 28 and 30 are quite different
in relative energy because of the additional fused aromatic ring. The 3-indoloenone can
stabilize the charge with the resonance structure 29b, which maintains the aromaticity in
the fused benzene ring, but similar resonance stabilization in the 2-indoloenone 31b would
require the loss of aromaticity. This phenomenon is the reason behind the well-established
Friedel–Crafts reactivity patterns seen for indoles, where electrophilic substitution pref-
erentially occurs at the 3-position, and would also make the enone 28 more Lewis basic
than 30. To compensate for this energy difference, we proposed that we needed to make
the 2-indoles more electron-rich for the key Lewis acid/base interaction illustrated in 31a.
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We also looked more closely at the problems with pyrrole substrates. Control exper-
iments showed that the issues stemmed both from high reactivity found in the starting
materials and even greater instability of the products. As evidence of the latter, when pure
ketone 9 was reintroduced to the reaction conditions, it readily decomposed. When the
starting material alone was stirred with the base and no other reactants, it also formed a
new unstable product which could not be isolated or fully characterized. After the conju-
gate addition, the pyrrole in 32 is electron-rich and nucleophilic, has no protecting group,
and bears no steric blocking groups (Figure 7). Various side reactions were consequently
seen, such as a pyrrole nitrogen attack on the ketone carbonyl, forming a cyclized product
that could be observed in the NMR of the crude reaction mixture but was not stable enough
to isolate [19,20]. The Lewis acidic catalyst complex was thought to be promoting the side
reactions, and so a less electron-deficient BINOL catalyst was sought as well as milder
reaction conditions.

Initially, we thought that a base additive could deprotonate the hydrogen of the pyrrole
or indole substituent, at least partially, which would result in a greater electron density
in the ring [124,125]. That electron density would then in turn be donated to activate the
enone as in Figure 8. As a result, we evaluated a variety of bases to test this theory (Table 1).
Note that in the original conditions reported for boronic acid nucleophiles (see Figure 2),
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Mg(Ot-Bu)2 is used only in sufficient quantities to deprotonate the catalyst. Moreover,
t-BuOH replicated its effects, suggesting that their function was most likely to serve as
a proton transfer agent. The Mg salt was usually slightly better, so metal coordination
or pH adjustment may play a role in those conditions. Regardless, Mg(Ot-Bu)2 did not
provide useful reactivity for 2-indole substrates (22 and 23, Figure 5). The carbonate bases
generally outperformed the other bases in 24 h of reaction (entries 2–6). More soluble bases,
such as Cs2CO3 and Na2CO3, produced less of the conjugate addition product compared
to a less soluble base, such as (NH4)2CO3 (entries 3–6). It usually took several hours for the
(NH4)2CO3 to dissolve in the solution. Bases that were stronger also resulted in a significant
decrease in yield (entry 8, 9, and 17). Overall, the use of a full equivalent of (NH4)2CO3 and
3,3’-diiodo-BINOL (34, Table 1) as a catalyst significantly addressed the deficient reactivity
of the indole substrates and the hyper-reactivity of the pyrrole compounds.
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Table 1. Optimizations of additives with 2-pyrrolyl enone. 0.20 mmol 27 with 0.02 mmol catalyst
(20 mol %), 0.4 mmol of boronic acid, 0.4 mmol additive, 100 mg 4 Å MS, and 4 mL PhMe, stirred at
reflux for 24 h.
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Entry Additive Yield

1 Mg(Ot-Bu)2 10%
2 (NH4)2CO3 64%
3 K2CO3 53%
4 Cs2CO3 35%
5 Li2CO3 29%
6 Na2CO3 4%
7 K3PO4 34%
8 NaHMDS 13%
9 LiHMDS 6%

10 KOH 5%
11 NaOH 4%
12 KOt-Bu 4%
13 NaOt-Bu 3%
14 LiOt-Bu 0%
15 NH4Cl 2%
16 NH4HSO4 0%
17 DBU 3%

Since (NH4)2CO3 showed much better outcomes for the pyrrole substrate, we tested
those conditions on a variety of indoles and pyrroles, which provided a variety of interest-
ing results (Figure 8). We found that when we protected the unsubstituted 2-pyrrolyl-enone
34, we obtained nearly identical results to the unprotected version (33). This outcome in-
validated our initial hypothesis for the role of a base in deprotonating an indole or pyrrole
nitrogen. We also found that as more substituents were incorporated onto the pyrrole,
the desired reactivity faltered (35–37). In a control experiment, when the purified products
were reintroduced into the reaction conditions, they decomposed. Another indication of
how reactive these substituted pyrrole substrates are is that they decompose in ambient
lighting more quickly than the unsubstituted starting material 9. Due to this high reac-
tivity, the most substituted products are not stable enough to be isolated in useful yield.
Another possibility for decreased conjugate addition yields could be a result of sterics.
As more substituents are added to the ring, especially at the 3-position of the pyrrole,
the sterics of these substituents could be causing allylic strain, inhibiting the conjugate
addition reaction, and allowing more time for side reactions and decomposition to occur.
A similar trend with pyrroles has been observed by the Qiu group [124].

A control experiment of stirring the pyrrolyl-enone with just (NH4)2CO3 in toluene
without light at 90 ◦C without a catalyst or organoboron nucleophile resulted in an un-
wanted reaction that produced a side product too unstable to isolate. This indicated to us
that the base has both an advantageous effect on the conjugate addition and an adverse ef-
fect on the starting material stability, creating a conflicted system. Typically, trifluoroborate
salts work better in conjugate addition reactions because of their prolonged stability over
their boronic acid counterparts [124]. Interestingly, though, in all of the pyrrole substrates
(Figure 10) and some of the indole substrates (Figure 9), the boronic acids resulted in higher
yields than their trifluoroborate counterparts. These findings led us to believe the base,
(NH4)2CO3, could also be helping to promote boroxine formation from the boronic acid
or maintain a favorable pKa for the conjugate addition reaction to occur. For the indole
substrates in Figure 9, (NH4)2CO3 also improved the yield for the conjugate addition
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product. The unsubstituted indoles 28 and 39 resulted in moderate yields with both the
boronic acid and trifluoroborate salt. The mono-substituted indoles 40 and 41 resulted in
better yields when the trifluoroborate salt nucleophile was used compared to when the
boronic acid was used. Both the pyrrole and indole products were formed with excellent
enantioselectivity (Figures 8 and 9).
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A variety of alkenyl boronic acids also show compatibility with these reaction condi-
tions with the problematic 2-pyrroyl-enone (Figure 10). In most cases, the products that
were formed in fair to good yields show excellent enantioselectivity (44–48).
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3. Conclusions

Two problematic series of substrates, β-(2-indole)-enones and β-(2-pyrrole)-enones,
were thoroughly examined in the enantioselective organocatalyzed conjugate addition of
alkenyl boronic acids or trifluoroborates. Analysis of isomer-related reaction rate trends
showed that (1) the proximity of a heteroatom to the enone β-carbon was favorable to the
reaction rate and (2) increased resonance electron donation also increased the reaction rate.
The use of (NH4)2CO3 promoted the conjugate addition reaction better than Mg(Ot-Bu)2
or other additives. The use of a less electron-deficient catalyst in conjunction with the new
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base minimized side product formation and provided the most advantageous environment
for the conjugate addition to sensitive substrates to date.

4. Materials and Methods
4.1. Materials

Commercially available compounds were purchased from Aldrich (Burlington, MA,
USA), Acros (Geel, Belgium), Alfa Aesar (Ward Hill, MA, USA), Ark Pharm (Chicago, IL,
USA), and Combi-block (San Diego, CA, USA) and were used without further purification.

4.2. General Considerations

All reactions were carried out in flame- or oven-dried glassware. THF, toluene, and
CH2Cl2 were purged with argon and dried over activated alumina columns. Flash chro-
matography was performed on 60 Å silica gel (EMD Chemicals Inc (St. Louis, MO, USA)).
Preparative plate chromatography was performed on EMD silica gel plates, 60 Å, with
UV-254 indicator. Chemical names were generated using Cambridge Soft ChemBioDraw
Ultra 12.0. Analysis by HPLC was performed on a Shimadzu Prominence LC (LC-20AB)
equipped with an SPD-20A UV-Vis detector and a Chiralpak or Chiralcel (250 × 4.6 mm)
column (see below for column details). Analytical thin layer chromatography was per-
formed on EMD silica gel/TLC plates with a fluorescent detector at 254 nm. The 1H
and 13C-NMR spectra were recorded on a JEOL ECA-600, JEOL ECA-500, or ECX-400P
spectrometer using residual solvent peak as an internal standard (CDCl3: 7.26 ppm for
1H-NMR and 77.0 ppm for 13C-NMR; C6D6: 7.15 ppm for 1H-NMR and 128.6 ppm for
13C-NMR).

HPLC Columns for Separation of Enantiomers:

Chiralpak AY-3: Amylose tris-(5-chloro-2-methylphenylcarbamate) coated on 3 µm
silica gel; Chiralpak AD-H: Amylose tris-(3,5-dimethylphenylcarbamate) coated on 5 µm
silica gel; Chiralpak ID: Amylose tris-(3-chlorophenylcarbamate) immobilized on 5 µm
silica gel; Chiralcel OJ-H: Cellulose tris-(4-methylbenzoate) coated on 5 µm silica gel;
Chiralcel OD-H: Cellulose tris-(3,5-dimethylphenylcarbamate) coated on 5 µm silica gel;
Chiralpak AS-H: Amylose tris-[(S)-α-methylbenzylcarbamate) coated on 5 µm silica gel.
(E)-4-(furan-2-yl)but-3-en-2-one(11) [48], (E)-4-(furan-3-yl)but-3-en-2-one(12) [48], (E)-4-
(pyridin-2-yl)but-3-en-2-one (13) [48], (S)-6-methyl-4-(pyridin-3-yl)hept-5-en-2-one(14) [48],
(S)-6-methyl-4-(pyridin-4-yl)hept-5-en-2-one (15) [48], (S)-4-(1H-imidazol-2-yl)-6-methylhept-
5-en-2-one (16) [48], (S)-4-(1H-imidazol-5-yl)-6-methylhept-5-en-2-one (17) [48],(E)-4-(1H-pyrrol-
2- yl)but-3-en-2-one [48],(E)-4-(1-benzyl-1H-pyrrol-2-yl)but-3-en-2-one [89],(E)-4-(1H-indol-3-
yl)but-3-en-2-one and Benzyl (E)-(2-(2-(3-oxobut-1-en-1-yl)-1H-indol-3-yl)ethyl)carbamate [87],
benzyl (S,E)-(2-(2-(5-oxo-1-phenylhex-1-en-3-yl)-1H-indol-3-yl)ethyl)carbamate [87], tert-
butyl (S,E)-3-(2-(((benzyloxy)carbonyl)amino)ethyl)-2-(5-oxo-1-phenylhex-1-en-3-yl)-1H-
indole-1- carboxylate [87], 1,2 (E)-4-(1H-indol-2-yl)but-3-en-2-one (30) [87], (E)-4-(1H-
pyrrol-3-yl)but-3-en-2-one [87], (S)-4-(1H-indol-2-yl)-6-methylhept-5-en-2-one (22) [87], (S)-
6-methyl-4-(1H-pyrrol-2-yl)hept-5-en-2-one (10) [87], (S)-4-(1H-indol-2-yl)-6-methylhept-
5-en-2-one, (S,E)-4-(1H-indol-3-yl)-6-phenylhex-5-en-2-one(67) [87], benzyl (S,E)-(2-(2-(5-
oxo-1-phenylhex-1-en-3-yl)-1H-indol-3-yl)ethyl)carbamate (42) [48], tert-butyl (S,E)-3-(2-
(((benzyloxy)carbonyl)amino)ethyl)-2-(5-oxo-1-phenylhex-1-en-3-yl)-1H-indole-1- carboxy-
late(43) [87], (S,E)-6-phenyl-4-(1H-pyrrol-2-yl)hex-5-en-2-one (33) [89], (S,E)-4-(1H-indol-2-
yl)-6-phenylhex-5-en-2-one (39) [48], and (E)-4-(1-benzyl-1H-pyrrol-2-yl)but-3-en-2-one [48]
were synthesized following literature procedures.

4.3. General Procedure for the Synthesis of Starting Materials (Enone)

Carboxaldehyde (2 mmol), 1-(triphenylphosphoranylidene)-2-propanone (1.2 equiv,
764 mg), and toluene (4 mL) were added to a flask equipped with a stir bar and a condenser.
The reaction mixture was refluxed for 10 h. After completion, the reaction mixture was
concentrated via rotary evaporation. The crude mixture was purified via flash column
chromatography with an appropriate eluent on silica gel.
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4.3.1. (E)-4-(5-methyl-1H-pyrrol-2-yl)but-3-en-2-one

See the general procedure for enone formation above; in addition, the reaction was
shielded from light by covering the reaction and product with aluminum foil. The product
will decompose in prolonged exposure to light. An amount of 1 g of 5-methyl-1H-pyrrole-
2-carbaldehyde was used. The crude reaction mixture was purified via flash column
chromatography with a 10–20% gradient of ethyl acetate in hexanes as eluent on silica gel.
Yield: 56%
1H-NMR (500 MHz, chloroform-D) δ 8.45 (s, 1H), 7.51 (d, J = 16.0 Hz, 1H), 7.08 (s, 1H),
6.82 (s, 1H), 6.48−6.43 (m, 2H), 2.32 (s, 3H)
1H-NMR (600 MHz, Benzene-D6) δ 7.18 (s, 2H), 6.39 (s, 1H), 6.34 (s, 1H), 5.93 (s, 1H),
1.96 (s, 3H), 1.33(s, 3H).
13C-NMR (126 MHz, chloroform-D) δ 198.6, 133.6, 121.4, 119.1, 117.6 113.3, 110.8, 110.0,
31.3, 13.9
IR(neat): 3283, 1613, 1560, 1477, 1423, 1358, 1263, 959, 764, 700, 489 cm−1

HRMS-ESI m/z Calculated for C9H11NO [M + H]+ 150.0913, found 150.0916.

4.3.2. (E)-4-(3,5-dimethyl-1H-pyrrol-2-yl)but-3-en-2-one

See the general procedure for enone formation above; in addition, the reaction was
shielded from light by covering the reaction and product with aluminum foil. The product
will decompose in prolonged exposure to light. An amount of 1 g of 3,5-dimethyl-1H-
pyrrole-2-carbaldehyde was used. The crude reaction mixture was purified via flash
column chromatography with a 10–20% gradient of ethyl acetate in hexanes as eluent on
silica gel. Yield: 70%
1H-NMR (400 MHz, chloroform-D) δ 8.53 (s, 1H), 7.41 (d, J = 15.6 Hz, 1H), 6.16 (d,
J = 16.0 Hz, 1H), 5.89 (d, J = 17.8 Hz, 1H), 2.29 (d, J = 11.2 Hz, 6H), 2.18 (s, 3H), 1.80 (s, 2H)
13C-NMR (101 MHz, chloroform-D) δ 198.4, 131.1, 130.6, 127.2, 112.3, 111.2, 31.1, 13.8,
13.5, 11.5
IR (neat): 3292, 3246, 1600, 1559, 1433, 1358, 1258, 953, 839, 785, 711, 668 cm−1

HRMS-ESI m/z Calculated for C10H13NO [M + Na]+ 290.1515, found 290.1525.

4.3.3. (E)-4-(4-ethyl-3,5-dimethyl-1H-pyrrol-2-yl)but-3-en-2-one

See the general procedure for enone formation above; in addition, the reaction was
shielded from light by covering the reaction and product with aluminum foil. The product
will decompose in prolonged exposure to light. An amount of 1 g of 4-ethyl-3,5-dimethyl-
1H-pyrrole-2-carbaldehyde was used. The crude reaction mixture was purified via flash
column chromatography with a 10–20% gradient of ethyl acetate in hexanes as eluent on
silica gel. Yield: 55%
IR(neat): 3254, 2961, 2912, 2855, 1612, 1570, 1444, 1253, 950 cm−1.
HRMS-ESI m/z Calculated for C12H17NO [M + H]+ 192.1383, found 192.1386.

4.3.4. (E)-4-(3-methyl-1H-indol-2-yl)but-3-en-2-one

A mixture of 3-methyl-1H-indole-2-carbaldehyde (0.1 mmol), but-3-yn-2-one (0.15 mmol),
and Sc(OTf)3 (10 mol%) in MeCN (0.5 mL) was stirred at 21 ◦C for the appropriate time.
After complete conversion, as indicated by TLC, the reaction mixture was diluted with
H2O and extracted with EtOAc. The combined organic layers were dried over MgSO4,
concentrated in vacuo, and purified by column chromatography with a 5–30% gradient of
ethyl acetate in hexanes as eluent on silica gel.
1H-NMR (500 MHz, chloroform-D): δ 8.60 (brs, NH), 7.66 (d, J = 16.5 Hz, 1H), 7.58 (d,
J = 8.0 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H) 7.29–7.25 (m, 1H), 7.11 (t, J = 8.0 Hz, 1H), 6.50 (d,
J = 16.5 Hz, 1H), 2.44 (s, 3H), 2.41 (s, 3H).
13C-NMR (125 MHz, chloroform-D): δ 198.1, 137.7, 131.1, 129.9, 129.0, 125.4, 122.8, 119.9,
119.9, 119.9, 111.1, 27.4, 9.0.
IR(neat): 3299, 1634, 1598, 1257, 1235, 953, 747, 622, 459 cm−1.
HRMS-ESI m/z Calculated for C13H13NO [M + H]+ 200.1070, found 200.1072.
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4.4. Procedure for Boronic Acid Synthesis: 2-Methylprop-1-Enylboronic Acid

LiCl (1.008 g, 24 mmol, 1.2 equiv) was added to a 250 mL flask and the flask was
flame dried under high vacuum. The flask was then back filled with argon. Then, 0.5 M
2-Methyl-1-propenyl magnesium bromide in THF (40 mL, 20 mmol, 1.0 equiv) and Et2O
(50 mL) were added. The solution was cooled to−78 ◦C. Trimethyl borate (2.5 mL, 22 mmol,
1.1 equiv) was added dropwise and the reaction was allowed to slowly warm to room
temperature and stir overnight. The next day, it was quenched with 1 M HCl (30 mL) until
the reaction mixture became clear and then stirred for 1 h. It was then extracted with Et2O
(3 times) and washed with sat. aqueous NaHCO3 and brine solution. The organic layer
was dried with Na2SO4 and then concentrated via rotary evaporation. The crude solid was
purified via column chromatography with a 20–30% gradient of ethyl acetate in hexanes as
eluent on silica gel to afford a white solid (1.105 g, 11.06 mmol, 55% yield). All spectral
properties were identical to those reported in the literature.

4.5. General Procedure for 1,4-Conjugate Addition (Mg(t-BuO)2 as Additive)

Here, 4 Å powdered molecular sieves (100 mg) were added to a flask equipped with
a stir bar and a condenser and the flask was flame dried under high vacuum. The flask
was then back filled with argon. The heterocycle-appended enone (0.2 mmol, 1.0 equiv),
Mg(t-BuO)2 (3.4 mg, 0.02 mmol, 0.1 equiv), boronic acid (3 equiv), and BINOL catalyst
(0.04 mmol, 0.2 equiv) were then added. Freshly dried toluene (4 mL) was added and the
reaction was heated to reflux in a 70–78 ◦C oil bath and allowed to stir at this temperature
(see each product for specific reaction times). After completion, methanol was added and
the reaction mixture was concentrated via rotary evaporation. The crude reaction mixture
was then dry loaded onto silica gel and purified via flash column chromatography on silica
gel with appropriate eluents. All spectral properties.

(S)-6-methyl-4-(1H-pyrrol-2-yl)hept-5-en-2-one (10)
1H-NMR (400 MHz, chloroform-D): δ 8.41 (brs, NH), 6.66 (dd, J = 4.0, 2.4 Hz, 1H), 6.11 (dd,
J = 5.6, 2.8 Hz, 1H), 5.89–5.88 (m, 1H), 5.27–5.24 (m, 1H), 4.11 (ddd, J = 9.5, 6.8, 6.8 Hz, 1H),
2.89 (dd, J = 17.2, 7.6 Hz, 1H), 2.73 (dd, J = 17.2, 6.0 Hz, 1H), 2.14 (s, 3H), 1.75 (d, J = 1.6 Hz,
3H), 1.70 (d, J = 1.6 Hz, 3H).
13C-NMR (125 MHz, chloroform-D): δ 208.8, 134.5, 133.4, 125.0, 116.5, 108.0, 103.8, 50.0,
32.4, 30.6, 25.8,18.0.

4.6. General Procedure for 1,4-Conjugate Addition ((NH4)2CO3 as an Additive)

Here, 4 Å powdered molecular sieves (100 mg) were added to a flask equipped with
a stir bar and a condenser and the flask was flame dried under high vacuum. The flask
was then back filled with argon. The heterocycle-appended enone (0.2 mmol, 1.0 equiv),
(NH4)2CO3 (38 mg, 0.4 mmol, 2.0 equiv), boronic acid (2 equiv), and BINOL catalyst
(0.04 mmol, 0.2 equiv) were then added. Freshly dried toluene (4 mL) was added and
the reaction was heated to 90 ◦C in an oil bath and allowed to stir at this temperature
for 24 h. After completion, the reaction mixture was concentrated via rotary evaporation.
The crude reaction mixture was then dry loaded onto silica gel and purified via flash
column chromatography on silica gel with eluents of 10–30% ethyl acetate in hexanes.

(S,E)-4-(3-methyl-1H-indol-2-yl)-6-phenylhex-5-en-2-one(40)

See the general procedure for enone formation above. The crude reaction mixture
was purified via flash column chromatography with a 10–30% gradient of ethyl acetate in
hexanes as eluent on silica gel.
1H-NMR (500 MHz, chloroform-D) δ 8.31 (s, 1H), 7.67 (d, J = 16.0 Hz, 1H), 7.59 (d, J = 8.0 Hz,
1H), 7.35–7.27 (m, 2H), 7.12 (t, J = 7.4 Hz, 1H), 6.45 (d, J = 16.0 Hz, 1H), 3.50 (s, 1H), 2.45 (s,
3H), 2.41 (s, 3H), 1.36–1.25 (m, 1H)
13C-NMR (101 MHz, chloroform-D) δ 184.5, 138.9, 128.6, 128.4, 127.6, 126.5, 125.8, 124.9,
124.3, 122.9, 121.2, 110.6, 108.7, 74.5, 35.5, 19.0, 13.3
IR(neat): 3090, 3070, 3035, 1477, 1034, 669 cm−1.
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HRMS-ESI m/z Calculated for C21H21NO [M + Na]+ 326.1515, found 326.1518.

(S,E)-4-(2-methyl-1H-indol-3-yl)-6-phenylhex-5-en-2-one(41)

See the general procedure for enone formation above. The crude reaction mixture
was purified via flash column chromatography with a 10–30% gradient of ethyl acetate in
hexanes as eluent on silica gel.
1H-NMR (600 MHz, Benzene-D) δ 7.60 (d, J = 7.6 Hz, 1H), 7.17–7.11 (m, 5H), 7.01 (t,
J = 7.2 Hz, 3H), 6.94 (t, J = 7.2 Hz, 1H), 6.50 (dd, J = 15.8, 5.5 Hz, 1H), 6.40 (d, J = 15.8 Hz,
1H), 6.36 (s, 1H), 4.40 (q, J = 6.4 Hz, 1H), 2.87 (q, J = 8.5 Hz, 1H), 2.57 (dd, J = 16.5, 5.5 Hz,
1H), 2.06 (s, 3H), 1.44 (s, 3H)
13C-NMR (101 MHz, chloroform-D) δ 208.0, 135.5, 132.2, 129.3, 128.5, 128.4, 127.1, 126.3,
121.0, 119.3, 119.2, 110.6, 48.2, 35.1, 30.9, 12.2.
IR(neat): 3091, 3071, 3035, 1477, 1035, 668 cm−1.
HRMS-ESI m/z Calculated for C21H21NO [M + H]+ 326.1515, found 326.1520.

(S,E)-4-(5-methyl-1H-pyrrol-2-yl)-6-phenylhex-5-en-2-one (35)

See the general procedure for enone formation above. The crude reaction mixture
was purified via flash column chromatography with a 10–30% gradient of ethyl acetate in
hexanes as eluent on silica gel.
1H-NMR (400 MHz, chloroform-D) δ 8.04 (s, 1H), 7.36–7.28 (m, 4H), 7.23 (d, J = 6.6 Hz, 1H),
6.48 (d, J = 16.2 Hz, 1H), 6.30 (q, J = 7.9 Hz, 1H), 5.78 (d, J = 11.4 Hz, 2H), 4.05–4.01 (m, 1H),
3.03–2.89 (m, 2H), 2.22 (s, 3H), 2.17 (s, 3H)
13C-NMR (101 MHz, chloroform-D) δ 208.2, 131.8, 130.8, 130.5, 128.7, 128.4, 127.6, 127.3,
126.4, 105.7, 104.7, 48.9, 37.0, 30.8, 13.1.
IR(neat): 3090, 3070, 3035, 1959, 1814, 1477, 1034, 668 cm−1.
HRMS-ESI m/z Calculated for C17H19NO [M + Na]+ 276.1359, found 276.1358.

(S,E)-4-(3,5-dimethyl-1H-pyrrol-2-yl)-6-phenylhex-5-en-2-one (36)

See the general procedure for enone formation above. The crude reaction mixture
was purified via flash column chromatography with a 10–30% gradient of ethyl acetate in
hexanes as eluent on silica gel.
1H-NMR (400 MHz, chloroform-D) δ 7.86 (s, 1H), 7.36–7.28 (m, 5H), 7.22–7.18 (m, 1H),
6.36 (d, J = 2.3 Hz, 1H), 5.65 (s, 1H), 4.07 (dd, J = 11.5, 6.3 Hz, 1H), 2.94 (d, J = 6.4 Hz, 2H),
2.19 (s, 3H), 2.13 (s, 3H), 2.02 (s, 3H).
13C-NMR (101 MHz, chloroform-D) δ 208.2, 137.1, 130.8, 129.7, 128.6, 127.4, 126.3, 126.0,
114.6, 108.2, 48.5, 35.5, 30.7, 29.8, 13.1, 11.2
IR(neat): 3090, 3070, 3035, 1959, 1814, 1477, 1034, 668 cm−1.
HRMS-ESI m/z Calculated for C18H21NO [M + Na]+ 290.1515, found 290.1525.

(S,E)-4-(4-ethyl-3,5-dimethyl-1H-pyrrol-2-yl)-6-phenylhex-5-en-2-one(37)

See the general procedure for enone formation above. The crude reaction mixture
could not be purified, so an NMR standard, 4-methylnitrobenzoate, was used to obtain
the yield. All reactants were added to the reaction mixture along with 0.1 mmol of 4-
methylnitrobenzoate. The aryl peaks for the 4-methylnitrobenzoate were compared with
the typical quartet around 4.0–4.4 ppm, indicating that the beta-bond formed during the
conjugate addition reaction.

(S,E)-6-phenyl-4-(1H-pyrrol-3-yl)hex-5-en-2-one (38)

See the general procedure for enone formation above. The crude reaction mixture
was purified via flash column chromatography with a 10–30% gradient of ethyl acetate in
hexanes as eluent on silica gel.
1H-NMR (500 MHz, chloroform-D) δ 8.08 (s, 1H), 7.34 (d, J = 7.4 Hz, 2H), 7.28 (d, J = 7.4 Hz,
2H), 7.18 (t, J = 7.2 Hz, 1H), 6.75 (s, 1H), 6.62 (s, 1H), 6.42 (d, J = 15.5 Hz, 1H), 6.30 (q,
J = 7.8 Hz, 1H), 6.13 (s, 1H), 4.03 (q, J = 7.3 Hz, 1H), 2.86 (qd, J = 15.8, 7.2 Hz, 2H), 2.12 (s, 3H).
13C-NMR (151 MHz, Benzene-D) δ 204.4, 138.7, 137.3, 133.6, 132.1, 129.9, 128.5, 128.4, 128.3,
128.0, 127.9, 127.8, 127.6, 127.3, 127.2, 126.6, 126.3, 121.7, 107.6, 106.1, 50.1, 48.3, 35.3, 29.7
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IR(neat): 3090, 3080, 3035, 1959, 1814, 1477, 1034, 668 cm−1.
HRMS-ESI m/z Calculated for C16H17NO [M + Na]+ 262.1202, found 262.1208.

(S,E)-4-(1H-pyrrol-2-yl)-6-(p-tolyl)hex-5-en-2-one (44)

See the general procedure for enone formation above. The crude reaction mixture
was purified via flash column chromatography with a 10–20% gradient of ethyl acetate in
hexanes as eluent on silica gel.
1H-NMR (600 MHz, Benzene-D) δ 7.52 (s, 1H), 7.29–7.22 (m, 2H), 7.12 (t, J = 7.6 Hz, 2H),
7.06–7.03 (m, 1H), 6.38–6.23 (m, 2H), 5.98 (d, J = 2.7 Hz, 2H), 3.95 (q, J = 6.9 Hz, 1H),
2.53–2.34 (m, 2H), 1.93 (t, J = 15.5 Hz, 3H), 1.58 (s, 3H)
13C-NMR (151 MHz, Benzene-D) δ 206.0, 134.7, 132.9, 130.2, 129.3, 128.3, 127.9, 127.8, 127.6,
126.4, 116.9, 108.2, 104.9, 48.6, 36.8
IR(neat): 3380, 3022, 2920, 1706, 1512, 1358, 967, 794, 720 cm−1.
HRMS-ESI m/z Calculated for C17H19NO [M + Na]+ 276.1359, found 276.1361.

(S,E)-6-([1,1′-biphenyl]-4-yl)-4-(1H-pyrrol-2-yl)hex-5-en-2-one (45)

See the general procedure for enone formation above. The crude reaction mixture
was purified via flash column chromatography with a 10–20% gradient of ethyl acetate in
hexanes as eluent on silica gel.
1H-NMR (600 MHz, Benzene-D) δ 7.72 (s, 1H), 7.47 (dd, J = 23.7, 7.9 Hz, 4H), 7.27 (d,
J = 8.2 Hz, 2H), 7.23 (t, J = 7.6 Hz, 2H), 7.14 (d, J = 6.9 Hz, 1H), 6.41–6.24 (m, 4H), 6.09 (s, 1H),
3.97 (q, J = 6.9 Hz, 1H), 2.48 (q, J = 8.2 Hz, 1H), 2.35 (dd, J = 17.2, 6.2 Hz, 1H), 1.56 (s, 3H)
13C-NMR (151 MHz, chloroform-D) 208.2, 130.7, 128.9, 127.4, 127.0, 126.8, 117.3, 108.2, 104.7,
100.0, 77.3, 77.1, 76.9, 74.8, 49.0, 36.9, 11.3
IR(neat): 3334, 3027, 2925, 1697, 964, 720, 691 cm−1.
HRMS-ESI m/z Calculated for C22H21NO [M + Na]+ 338.1515, found 338.1520.

(S,E)-4-(1H-pyrrol-2-yl)-6-(4-(trifluoromethyl)phenyl)hex-5-en-2-one (46)

See the general procedure for enone formation above. The crude reaction mixture
was purified via flash column chromatography with a 10–20% gradient of ethyl acetate in
hexanes as eluent on silica gel.
1H-NMR (600 MHz, Benzene-D) δ 7.72 (s, 1H), 7.47 (dd, J = 23.7, 7.9 Hz, 4H), 7.27 (d,
J = 8.2 Hz, 2H), 7.23 (t, J = 7.6 Hz, 2H), 7.14 (d, J = 6.9 Hz, 1H), 6.41–6.24 (m, 4H), 6.09 (s, 1H),
3.97 (q, J = 6.9 Hz, 1H), 2.48 (q, J = 8.2 Hz, 1H), 2.35 (dd, J = 17.2, 6.2 Hz, 1H), 1.56 (s, 3H)
13C-NMR (151 MHz, chloroform-D) δ 208.0, 133.4, 132.7, 129.4, 126.5, 125.6, 117.4, 108.2,
104.9, 77.3, 77.1, 76.9, 76.8, 48.9, 36.8, 30.7
IR(neat): 3407, 2924, 1704, 1363, 1325, 1222, 529 cm−1

HRMS-ESI m/z Calculated for C17H16F3NO [M + H]+ 308.1257, found 308.1254.

(S,E)-4-(1H-pyrrol-2-yl)non-5-en-2-one (47)

See the general procedure for enone formation above. The crude reaction mixture
was purified via flash column chromatography with a 10–20% gradient of ethyl acetate in
hexanes as eluent on silica gel.
1H-NMR (600 MHz, chloroform-D) δ 8.38 (s, 1H), 6.68 (q, J = 2.3 Hz, 1H), 6.11 (q, J = 3.0 Hz,
1H), 5.88 (s, 1H), 5.55–5.54 (m, 2H), 3.87 (q, J = 6.6 Hz, 1H), 2.90–2.72 (m, 2H), 2.16 (d,
J = 20.6 Hz, 3H), 2.02–1.99 (m, 2H), 1.42–1.36 (m, 2H), 0.90–0.87 (m, 3H)
13C-NMR (151 MHz, chloroform-D) δ 208.7, 134.1, 131.8, 130.6, 116.9, 108.0, 104.3, 77.3, 77.1,
76.9, 49.4, 36.7, 34.6, 30.7, 22.6, 13.8
IR(neat): 3378, 2957, 2927, 1704, 1357, 966, 712 cm−1.
HRMS-ESI m/z Calculated for C13H19NO [M + Na]+ 228.1359, found 228.1359.

Supplementary Materials: The following are available online.
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