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LETTER TO EDITOR

Integrating plasma cell-free DNAwith clinical laboratory
results enhances the prediction of critically ill patients with
COVID-19 at hospital admission

Dear Editor,
Owing to the substantial clinical heterogeneity of

patients infected with SARS-CoV-2,1,2 factors primarily
relying upon clinical and/or laboratory parameters are yet
inadequate to accurately predict COVID-19 patients evolv-
ing to severe or critical illness at early stage.3,4 Recent
studies have revealed an elevated level of cell-free DNA
(cfDNA) in plasma in severe COVID-19 patients due to
massive cell death or irreversible multiorgan injuries dur-
ing pathological conditions.5,6 Therefore, the utilization
of cfDNA profiling may benefit improving the COVID-19
prediction and help understand molecular characteristics
of the life-threatening disease.7,8 Herein, we developed an
M2Model, a LightGBM-based9 machine learning model
with focal loss as an objective function to predict critical
COVID-19 at admission by jointly analysing multimodal
data, including laboratory parameters and cfDNA profiles.
Laboratory results and blood samples were collected

from a total of 399 consecutive hospitalized patients
with COVID-19 (345 noncritical and 54 critical patients;
Table S1). Whole-genome sequencing (WGS) was con-
ducted on plasma cfDNA (Table S2), and we observed
a slight shift towards shorter cfDNA fragments in criti-
cal patients compared to noncritical patients (Figure S1B).
We derived three types of features from the WGS data,
including fragment length ratio (denoted as FRAGL),
transcription start site coverage score (denoted as TSS)
and frequency of 4-nucleotide motifs at 5′ fragment ends
(denoted as MOTIF). Together with laboratory results
(denoted as LAB; Table S3), we acquired four feature-
type-specific datasets with totally 510 features after data
preprocessing (Figures 1A and S1A–D).
By integrating previous four datasets, the M2Model was

trained and evaluated using 100 random training/testing
splits based on the optimal hyperparameters and ranked
features (Figure 1B, Table S6). For comparison, we applied
the same protocol to each dataset, leading to four addi-
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tional single-type feature-basedmodels. The top-predictive
features were finally selected once the corresponding
model yielded the highest average precision but the low-
est focal loss (Figure 1C and S2A–D). Consequently, the
M2Model outperformed other single-type feature-based
models in discriminating critical from noncritical COVID-
19, achieving the highest AUROC (area under ROC curve)
of .955 ± .029 (mean ± SD; Figure 1D) and AUPR (area
under precision-recall curve) of .827 ± .153 (p < .0001;
Figure 1E). The Brier score for calibration assessment of
the M2Model reached the lowest value of .052 ± .025,
suggesting its optimal representation of the true criti-
cal COVID-19 likelihood (p < .0001; Figure 1F). Decision
curve analysis and confusionmatrix also demonstrated the
superior prediction ability of theM2Model over othermod-
els (Figures 1G,H and S3A–D), with sensitivity of 85.19%
(95% confidence interval [CI], 63.6%–100.0%), specificity
of 93.33% (95% CI, 86.2%–98.6%), PPV (positive predictive
value) of 66.67% (95% CI, 48.8%–88.9%), NPV (negative
predictive value) of 97.58% (95% CI, 94.0%–100.0%) and
MCC (Matthews correlation coefficient) of 71.02% (95% CI,
49.8%–88.8%) (Table S4).
Although only 21 (4 LAB and 17 TSS) of 510 com-

bined features (4.12%) were identified as top-predictive
features by the M2Model (Figure 2A), they accounted for
37.9% of total feature importance (Figure 2B). Remarkably,
TSS features alone contributed the most towards critical
COVID-19 prediction (Figure 2C). Visualization of these
21 features showed complex non-linear functions learned
by the M2Model (Figures 2D and S4, S5). Additionally, we
also analysed the top features identified by the single-type
feature-based models (Figures S6–S9).
Of particular interest were the above 17 TSS features, of

which 9were significantly lower in critical thannoncritical
patients (p < .05; Figure 2E), reflecting a great loss of cov-
erage depth in nucleosome-depleted regions around these
TSSs (Figures 2F and S10A). The low values of TSS features
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F IGURE 1 Feature generation and M2Model development for the prediction of critical COVID-19. (A) Flow chart showing generation of
four feature-type specific datasets. Whole-genome sequencing (WGS) was performed with an average depth of 13.6× on plasma cfDNA. The
LAB features were extracted from the electronic medical records (EMRs), whereas features of FRAGL, TSS and MOTIF were derived from the
WGS data. (B) Flow chart presenting the M2Model development to predict critical COVID-19 by integrating the four types of features. (C)
Evaluation of the M2Model by average precision score and focal loss with respect to the number of features that were ranked using the
SHapley Additive exPlanations (SHAP) algorithm (see the Supporting Information). Error bars in red represented the optimal top 21 features.
Error bars: mean ± standard error (SE). (D–G) Comparison of prediction performance of different models in terms of (D) ROC (receiver
operating characteristic) curves, (E) AUPR (area under the precision-recall curve) scores, (F) Brier scores and (G) decision curve analysis. In
(D), the optimal cut-off threshold for each model was determined using Youden’s J statistic. In (G), the decision curve of each model was
presented using the mean of prediction probabilities across 100 iterations of random training/testing splits. Error bars: mean ± standard
deviation (SD). Statistical test: two-side Mann–Whitney U test. (H) Confusion matrix showing the overall performance of the M2Model on
discrimination between critical and noncritical patients at admission, which was accomplished by calculating the mean of predicted
probabilities across 100 iterations against the optimal cut-off threshold as shown in (C)
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F IGURE 2 Top predictive features towards critical illness of COVID-19 prediction identified by the M2Model. (A) Top 21 features
prioritized by M2Model and ranked by the mean absolute SHapley Additive exPlanations (SHAP) values (see the Supporting Information).
The TSS features were represented by the TSS-associated gene symbols. Error bars: mean ± standard error (SE). (B) (Left, black) mean
absolute SHAP values for the ranked individual features in the mixed feature-type dataset and (right, red) cumulative proportion of mean
absolute SHAP values with respect to the number of ranked features. (C) The relative contribution of each type of features within the mixed
feature-type dataset towards critically ill COVID-19 prediction. A point in the boxplot represented an individual patient (n = 399). Boxplots:
each box corresponded to an interval from the 25th to 75th percentile (interquartile range, IQR) and the median, whiskers = 1.5 × IQR. (D)
Non-linear relationships between the risk of critical illness and the identified LAB features. LDH, lactate dehydrogenase; PA, prealbumin;
UA, uric acid; α-HBDH, α-hydroxybutyrate dehydrogenase. Each point in the plots represents a patient in the dataset (n = 399). (E) Boxplots
showing differences in the identified TSS features (n = 17) between critical and noncritical patients. Statistical test: two-side Mann–Whitney U
test. Boxplots: each box corresponded to an interval from the 25th to 75th percentile IQR and the median, whiskers = 1.5 × IQR. (F)
Nucleosome-depleted regions (NDRs) between −250 and +250 bp around TSSs of GSDMD, TNFAIP3, DEFA1B and DEFA1 at chr19:50968972,
and OR1L3 showing lower relative depth in critical patients than in noncritical patients. (G) KEGG pathway and functional GO term
enrichment analyses for TSS-associated genes. The top five enriched KEGG pathways were shown as well as the top five enriched GO terms
for each of three categories. The identified TSS-associated gene symbols were marked on the corresponding KEGG pathway or GO term.
Black dashed line: p = .05
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F IGURE 3 Risk stratification and prognostic utility of multimodal features identified by the M2Model. (A) Predicted probabilities for all
patients determining three risk strata for critical illness of COVID-19. A total of 197, 157 and 45 patients in the dataset were categorized into
low-, medium- and high-risk strata, respectively, with true critical COVID-19 patients of 0 (0%), 16 (10.19%) and 38 (84.44%), respectively.
Patient PU8354 (male, 50-year old) in the noncritical group, predicted to be high risk by M2Model, was highlighted. Upper dashed black line:
cut-off threshold for 98% sensitivity. Lower dashed black line: cut-off threshold for 98% specificity. (B) Contribution of top 21 features towards
critical COVID-19 prediction for the patient PU8354. (Upper) The respective contribution of LAB and TSS features towards the evolution into
the critical illness of COVID-19 from a prior to a posterior probability. The prior probability was an expectation probability yielded by the
M2Model across the training dataset. (Lower) SHapley Additive exPlanations (SHAP) values of the top 21 features for patient PU8354. (C)
Kaplan–Meier curves for cumulative incidence of recovery in the three risk strata. The median duration to recovery was 29.0 days (95% CI,
8.9–56.2) in the low-risk group, 35.0 days (95% CI, 9.9–59.0) in the medium-risk group and 41.0 days (95% confidence interval [CI], 21.0–65.5) in
the high-risk group. The number of patients who had not yet recovered by time was shown. Shaded areas: 95% CI. Statistical test: log-rank test.
(D) The univariate Cox proportional hazard analysis using recovery as an end point. Hazard ratios (green squares) and 95% CI (horizontal
lines) showed the prognostic utility of the 21 features (see the Supporting Information). (E) The Spearman rank correlation coefficients
between the 21 features and the 3 risk strata. (F) Two-way hierarchical clustering analysis of the top 21 features. All values were z-scored
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in critical patients could be linked to up-regulated expres-
sion of the TSS-associated genes,mainly resulting from the
nucleosome occupancy for expressed genes10 (see the Sup-
porting Information). Pathway and functional enrichment
analyses of these genes showed significant correlations
with immune-related responses (p < .05; Figure 2G). For
example, genes with lower values of TSS features in critical
patients such as GSDMD, TNFAIP3, DEFA1 and DEFA1B
at chr19:50968972 were enriched in the top-ranked path-
way of ‘NOD-like receptor’, where the related proteinswere
tightly interactive with each other (Figure S11). Gene set
enrichment analysis indicated that many of these TSS-
associated genes were significantly related to COVID-19
(Table S5).
We next clustered all patients into three risk strata

according to the cut-off values for critical COVID-19 at 98%
sensitivity and 98% specificity (Figure 3A). We illustrated
that our M2Model was able to early predict COVID-19
patients at a risk of deteriorating towards critical illness.
For instance, PU8354 was a noncritical patient at admis-
sion but deteriorated during hospitalization.OurM2Model
exhibited 47% and 26.1% contributions towards critical
COVID-19 prediction at admission by the 4 laboratory
parameters and 17 TSS features, respectively, leading to
an increasing risk of progressing towards critical illness
from a prior probability of 1.2% to a posterior of 74.3%
(Figure 3B). Overall survival analysis showed that the
high-risk critical COVID-19 patients required a signifi-
cantly longer length of hospital stay than other two risk
groups (p < .005; Figure 3C). The univariate Cox pro-
portional hazard analysis with recovery as the end-point
showed that the majority of the identified features were
significantly correlated to decreasing the risk of critical
COVID-19 (p < .05; Figure 3D). The Spearman correlation
analysis also displayed the strong associations between
these features and the three risk strata (Figure 3E). Hierar-
chical clustering analysis demonstrated that these features
were able to yield distinct separation among the three risk
groups (Figure 3F).
In summary, our M2Model was able to reach superior

performance in predicting critical COVID-19 at admis-
sion based on a compact subset of integrated laboratory
parameters and TSS features. The TSS features, reflect-
ing the open status of chromatin regions, displayed the
most contribution to the prediction. The identified features
with clinical and molecular characteristics had utilities
for diagnostics and prognostics, and can serve as mark-
ers to monitor the effect of therapeutic interventions on
critical COVID-19. Additionally, our approach as a clinico-
genomic framework can be easily expanded towards early
prediction of deteriorating patients who were initially
infected with the emerging SARS-CoV-2 variants such
as Omicron. We thereby anticipated that our M2Model

had the potential to provide personalized management for
individual patients with COVID-19.
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