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Exactly solvable model for a 
velocity jump observed in crack 
propagation in viscoelastic solids
Naoyuki Sakumichi  1 & Ko Okumura1,2

Needs to impart appropriate elasticity and high toughness to viscoelastic polymer materials are 
ubiquitous in industries such as concerning automobiles and medical devices. One of the major 
problems to overcome for toughening is catastrophic failure linked to a velocity jump, i.e., a sharp 
transition in the velocity of crack propagation occurred in a narrow range of the applied load. However, 
its physical origin has remained an enigma despite previous studies over 60 years. Here, we propose an 
exactly solvable model that exhibits the velocity jump incorporating linear viscoelasticity with a cutoff 
length for a continuum description. With the exact solution, we elucidate the physical origin of the 
velocity jump: it emerges from a dynamic glass transition in the vicinity of the propagating crack tip. We 
further quantify the velocity jump together with slow- and fast-velocity regimes of crack propagation, 
which would stimulate the development of tough polymer materials.

Polymer-based viscoelastic materials are characterized by two elastic moduli E0 and E∞ corresponding to (soft) 
rubbery and (hard) glassy states, respectively1, 2. From this standard picture, one can understand generic features 
of the dependence of fracture energy on the velocity of crack propagation3, 4: the fracture energy G (twice the 
energy required to create a crack surface of unit area5) starts from a static value G0 and increases with the velocity 
V to the value λG0 with the ratio λ ≡ E∞/E0 (≃102–103)6–8. This is because strong dissipation occurs at places 
far from the crack tip, whereas G0 is well described by the cutting energy of chemical bonds and an effective 
cross-link distance9.

To further investigate dynamic properties of G as a function of V, crack propagation experiment performed 
under a fixed-grip (or pure-shear) condition possesses significant advantages. We illustrate this experiment in 
Fig. 1a–d: a long sheet of height L is subject to a fixed strain ε before and after the initiation of crack propagation, 
unlike other experiments based on peeling, tearing, cyclic loads, etc.10, 11. Advantages of the fixed-grip experiment 
are also stressed in ref. 12, and here we emphasize the following two points. (i) A steady-state crack propagation is 
realized with no work done by the external force, which leads to the equality G = wL10, 13 with the initially applied 
elastic energy density

 ∫ε σ≡
ε

w d( ) ( ) , (1)0

where σ is the stress. (ii) The experiment shown in Fig. 1e14 and many other experiments15–17 indicate that the G-V 
plots exhibit an intriguing structure for elastomers: the velocity V jumps at a critical value G = Gc, causing a tran-
sition from the slow-velocity ( V 1 mm/s) to fast-velocity ( V 103 mm/s) regime. This G-V structure reveals 
that toughness is achieved by increasing the critical value Gc because such an increase reduces the risk of a velocity 
jump, which can trigger catastrophic failure.

Theoretical understanding of the velocity jump has been very limited, although it is important for toughening 
polymer materials. Previous theories based on linear fracture mechanics5 and linear viscoelasticity1 are unable 
to reproduce the velocity jump12, 18, 19. Although there is a theory that reproduces the jump20, the theory predicts 
an extremely high-temperature region near the crack tip whereas only a slight temperature-increase was experi-
mentally observed21.

In this article, we propose a minimal model that exhibits the velocity jump observed in the fixed-grip crack 
propagation, incorporating linear viscoelasticity with using the two elastic moduli E0 and E∞. This is performed 
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with a spirit similar to the ones with which one of the authors constructed simple and useful models for biolog-
ical composites22–24. From the proposed model, we obtain successfully an exact analytical relation between the 
initially applied energy density w and the crack propagation velocity V. As a result, we find simple expressions 
characterizing the transition point. These expressions provide guiding principles to reduce the risk of the jump, 
which can trigger catastrophic failure. Furthermore, we elucidate the physical mechanism that leads to the jump, 
indicating a direct link to dynamic emergence of a glassy state at the crack tip, and our results imply that the jump 
could be universally observed in a broad class of viscoelastic materials in addition to elastomers.

Results
Minimal model that exhibits the velocity jump. To construct the minimal model, we start from the 
two-dimensional square-lattice model (Fig. 2a), often used to simulate the structure and dynamics of sheet mate-
rials, with the lattice spacing l and the sheet height L under zero strain. Then, we derive a simplified model 
illustrated in Fig. 2b by decimating most of the lattice points. As shown in Fig. 2c, the survivors (lattice points) 
represent the minimum number of variables essential to describe crack propagation. To realize a crack propa-
gation in the x-direction (i.e., horizontal direction), we assume that each bond is broken if the local strain at the 
crack tip is larger than the critical strain εc. For simplicity, we assume that the sheet is symmetric about the x-axis, 
and thus we consider only the lattice points on the upper side.

We explain the forces acting on each remaining lattice point on the upper side illustrated in Fig. 2d. We assume 
that Poisson’s ratio is zero. Thus, the forces always orient towards the y-direction (i.e., vertical direction) and each 
point can move only in the y-direction (see Supplementary Section I for details). Let ui be the y-coordinate of the 
i-th point. The equation of motion of lattice points in the y-direction is given by

∂
∂

= − + − ++ −m
t

u K u u u u F( ) ,
(2)i i i i i i

2

2 1 1

where − + −+ −K u u u u( )i i i i1 1  represents linear-elastic shear force acting from the left and right 
nearest-neighbor points, and Fi represents viscoelastic tensile force acting from the top boundary and the point 
below. The tensile force Fi is described by a Zener element in Fig. 2e characterized by two elastic moduli (E0 and 
E∞) and viscous dissipation (η), as in de Gennes’ trumpet model6–8. As illustrated in Fig. 2d, Fi takes two different 
forms, depending on whether the i-th lattice point is located on the rear (i.e., left) or front (i.e., right) side of the 
crack tip because one of the four forces is missing on the rear side. We relegate the explicit form of Fi to 
Supplementary Section III to avoid complication. Instead, we give the explicit form of Fi in the limit, E∞ → ∞, in 

Figure 1. Velocity jump observed in the fixed-grip crack propagation. (a–d) Schematic illustrations of the 
fixed-grip crack propagation investigated in the present study. To achieve a constant-velocity crack propagation, 
we perform the following four steps: (a) we clamp the top and bottom edges of the sheet of height L; (b) we 
stretch the sheet to a fixed strain ε; (c) we introduce a small crack to initiate crack propagation; (d) after a short 
transient time, the crack propagates at a constant velocity V under the fixed strain ε. In the fixed-grip crack 
propagation, the fracture energy G and the energy release rate, which is expressed as wL under the fixed-grip 
condition, take the same value: G = wL. Here, w is the initially applied energy density. (e) Typical experimental 
results, G vs. V, obtained from the fixed-grip crack propagation by using elastomers filled with carbon black 
particles (taken from ref. 14). With increase in fracture energy, the slow-velocity regime (straight line on the 
low-velocity side) is terminated by an abrupt velocity jump, after which follows the fast-velocity regime (straight 
line on the high-velocity side). Here, 〈M〉 represent the average molar mass between nearest cross-links. In this 
series of experiments, a systematic increase in the cross-link distance leads to increase in the transition energy. 
Toughening is achieved by increasing the fracture energy at the transition point.
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which a Zener element reduces to a Kelvin-Voigt element (Fig. 2f). In this limit, the tensile forces on the rear and 
front sides take the following form:

α η

α η
=











− +
∂
∂

− +
∂
∂

F
c l E u

t
u

c L E u
t

u

[ ( )] rear side

[ ( )] front side,
(3)

i

i i

i i

0

0

where α and c are constants.
A Zener element25–27 is one of the simplest models to represent typical viscoelastic behavior around a glass 

transition for polymer materials. As illustrated in Fig. 3a, when stretched with an adequately slow speed, a Zener 
element exhibits (rubbery) soft-elastic behavior, because the dashpot moves freely without any friction: the elastic 
modulus is small and approximately given by E0. On the other hand, when stretched with an adequately fast 
speed, a Zener element exhibits (glassy) hard-elastic behavior, because the dashpot does not have enough time to 
move: the elastic modulus is large and approximately given by E∞. For a conventional elastomer, 
λ ≡ ∞ E E/ 100

3. The relation between stress (σ) and strain () of Zener element is given by

σ




+


 =





+


t d

dt
t t d

dt
E t1 ( ) 1 ( ),

(4)fast slow 0

with η η≡ ∞t E E/ /fast 1  and η η η≡ + t E E E/ / /slow 0 1 0. As shown in Fig. 3b, equation (4) gives a dynamic 
modulus (i.e., the ratio of stress to strain under oscillatory conditions), mimicking a typical viscoelastic behavior 
around a glass transition for polymer materials.

Figure 2. Minimal model for the straight-line crack propagation. (a) Two-dimensional square-lattice model 
of a sheet with a line crack. Here, l is the lattice spacing. Each lattice point interacts with the nearest-neighbor 
points. We introduce a line crack by cutting bonds, i.e., we set the interactions of the corresponding bonds to 
zero. (b) Minimal model obtained by coarse-graining the lattice in (a). We decimate all the lattice points except 
for the points on the two horizontal lines on which the two surfaces of the line crack are positioned, where L 
is the height of the sheet under zero strain. (c) Mechanism of the crack propagation. When the spring at the 
crack tip (encircled by a blue ellipse) is stretched to the critical strain εc, the bond at the tip breaks, and, after a 
certain time, the next bond at the tip is stretched to εc. This cycle continues during the crack propagation. (d) 
Forces acting on a lattice point. On each point in (c) located at the front side of the crack tip, four forces act: 
(i) one from the top boundary, (ii) one from the point below, and (iii, iv) the remaining two reflecting shear 
and acting from the left and right nearest-neighbor points. For each point located at the rear side, one force 
from the point below is missing. (e) Zener element. This element is a parallel connection of two components: a 
spring (elastic modulus E0) and a Maxwell element, i.e., a serial connection of another spring (modulus E1) and 
a dashpot (viscosity η). (f) Kelvin-Voigt element obtained from a Zener element in the large E1 limit, in which 
λ ≡ E∞/E0 → ∞.
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Exact analytical relation between w and V. The minimal model allows us to derive an exact analytical 
relationship between w = G/L and V, in a continuum limit in the x-direction, in which we replace 
ui − ui+1 + ui − ui−1 with l2∂2u(x, t)/∂x2 in equation (2). For simplicity, we further take the overdamped (i.e., iner-
tialess) limit, i.e., we neglect the inertial term m∂2u/∂t2. The latter limit is valid if the crack propagation velocity 
under question is much smaller than the shear wave velocity l K m/ . Under the two limits, we rewrite equation 
(2) as

=
∂
∂

+ .l K
x

u x t F x t0 ( , ) ( , )
(5)

2
2

2

Here, the form of F(x, t) changes depending on whether the position x is located on the rear or front side of the 
crack tip as implied above, and equation (5) satisfies appropriate boundary conditions at x = ±∞ and matching 
conditions at the crack tip.

We now explain the main result: an exact analytical relation between w and V (see Methods for the deriva-
tion). Since the present model is initially (i.e., before the crack propagates) at rest with a fixed ε without shear, it 
behaves as a linear elastic material governed by σ = E0ε and the initially applied energy density is given by 
w = E0ε2/2. Let N ≡ L/l be the dimensionless parameter of the length scale in the y-direction. For ε ε≤ N/c  the 
crack does not propagate (V = 0) and for ε ε λ λ≥ + −N/( 1)c  any constant-velocity solutions do not exist. 
(When ε ε λ λ→ + −N/( 1)c , the velocity V diverges to infinity, which is an artifact resulting from the over-
damped limit). The crack propagates with a constant velocity only in the range ε ε ε λ λ< < + −N N/ /( 1)c c , 
or equivalently, in the range w0 < w < w∞. Here, ε≡w E N( /(2 ))c0 0

2  and w∞ are the minimum and maximum values 
of w for the propagation with a constant velocity, respectively. In this range, the relation between w and V is given 
by
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with a reference velocity µ≡ −
η ( )V E1l

N0
1
2

1
0 , where μ is an effective shear modulus. We note that V0 scales as 

l/t0 with the (largest) relaxation time t0 ≡ η/E0, in practical cases with l L, in which μ scales as E0. In equation 
(6), the dimensionless length scale ξN is the positive real solution of the following cubic equation for ξ:

ξ λ
λ

ξ ξ
λ

+
−

− −
−

=
V

V
N NV

V( 1) ( 1)
0,

(7)
3

0

2

0

which has a unique positive real solution as guaranteed by Lemma 1 in Supplementary Section III-B. The explicit 
form of ξN is given by Cardano’s formula28 for the solution of a cubic equation. We obtain ξ1 by substituting N = 1 
to ξN.

As illustrated in Fig. 4a, equation (6) guarantees the existence of the velocity jump for λ ≡ N L l/ . The 
existence condition λ  N  is derived in Supplementary Section IV-B (see, Theorem 3) and is well satisfied in 
conventional elastomers for regular specimen sizes (λ  103, L 10 cm, and l 10 nm). Since a Zener element 
generally represents typical viscoelastic behavior around a glass transition, the present model is relevant to a 
broad class of materials beyond elastomers: the velocity jump is expected to be a universal phenomenon in 

Figure 3. Three types of dynamic responses of a Zener element: soft-elastic, viscoelastic, and hard-elastic 
responses. (a) Dynamical response of a Zener element to adequately slow or fast stretch (see, text). (b) Dynamic 
modulus E(ω) = ReE(ω) + iImE(ω) as a function of an angular frequency of strain oscillation ω in a Zener 
element. Here, ReE(ω) and ImE(ω) are the storage and loss moduli, respectively. We plot E(ω) = E0(1 + iωtslow)/
(1 + iωtfast) obtained from the stress-strain relation in equation (4), with η ∞t E/fast  and ηt E/slow 0. In the 
(rubbery) soft-elastic and (glassy) hard-elastic regimes, the dynamics are elastic and characterized by E0 and E∞, 
respectively, whereas in the viscoelastic regime the dynamics is governed by η, E0, and E∞.
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polymer materials such as gels and resins. Note that the present model does not reproduce the velocity jump for 
 λN  (including the Kelvin-Voigt limit, λ → ∞) as illustrated in Fig. 4b. Figure 4c–e demonstrates how equation 

(6) depends on λ and N.

Guiding principles to develop tough polymer materials. The exact relation in equation (6) leads to 
simple expressions for the four points characterizing the w − V curve given in Fig. 4a, such as (w0, V0) and 
λ λw V( , )0 0 . In particular, the point λ λw V( , )0 0  shows that the velocity jump occurs at w = wjump, where

λ
ε

≡ = .∞w w lE
L2 (8)

c
jump 0

2

The transition energy density wjump given in equation (8) is consistent with empirical knowledge in polymer sci-
ence. For instance, Fig. 1e experimentally shows that the transition energy Gc = wjumpL increases as the cross-link 
distance (i.e., the parameter l) increases14. This feature is consistent with equation (8) because E∞ and εc are 
approximately constant even for different 〈M〉 in Fig. 1e (see, e.g., ref. 17).

Equation (8) gives the following guiding principles to develop tough polymer materials (i.e., to reduce the 
risk of a velocity jump, which can trigger catastrophic failure): the transition energy density wjump is enhanced 
with increase in (i) the modulus E∞ of the glassy state and/or (ii) the lattice spacing l. Here, we can regard l as a 
characteristic length scale below which the continuum description is no longer valid: l is the largest length scale 
among scales such as the cross-link distance, the size of filler particles, the filler-particle distance, and the length 
scale of possible inhomogeneous structures in the sample. Equation (8) indicates that we can keep the appropriate 
principal elasticity E0 to develop tough polymer materials in principle, which is a practical advantage.

We here remark on the two sharp changes at w = w0 and = +
λ

−( )w w
N

1 1 2

0 in Fig. 4a. The former results 
from a fundamental property of the log-log plot: w linearly approaches a constant value w0 as V approaches zero. 

Jump

Slow

Fast

No propagation No propagation

(Typical elastmers) (Kelvin-Voigt limit)

Figure 4. Reproduced velocity jump and simple characterization of the w-V curve. (a,b) Two representative 
plots of the crack propagation velocity V as a function of the initially applied energy density w. The cases (a) 
with and (b) without velocity jump are obtained for λ<  N1  and  λ N1 , respectively. (These plots are 
obtained for (a) λ = 103, N = 109 and (b) λ → ∞, N = 109). Four characteristic velocity-scales and three energy-
scales are indicated in (a), which are important for toughening. (c–e) V/V0 vs. ε ε=w w N/( ) / c0

2 2, obtained from 
equation (1) on a log-log scale. The normalization factors for velocity and energy are ηV lE /0 0  and 

ε≡w E l L/(2 )c0 0
2 , respectively. The cases with velocity jump are demonstrated for various λ with a fixed N in (c) 

and for various N with a fixed λ in (d). The Kelvin-Voigt limit, λ → ∞, is shown for various N in (e) as an 
example of the case without velocity jump.
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(See equation (16) in Methods). As for the latter, V diverges to infinity as w approaches +
λ

−( ) w
N

1 1 2

0 (see equa-
tion (17) in Methods). However, as already mentioned, this divergence of V is an artifact coming from the over-
damped limit, in which we neglect the inertial term in our governing equation. If we added the inertial term, the 
divergence would be suppressed.

Physical origin of the velocity jump. To elucidate the physical origin of the velocity jump, we focus on 
a crossover among the three types of dynamic responses of Zener elements, corresponding to soft-elastic, vis-
coelastic, and hard-elastic regimes (Fig. 3b), depending on the time scale of the propagation dynamics. Since we 
are interested in a crack propagation closely related to relaxation responses (rather than oscillatory responses in 
Fig. 3b) of Zener elements, we introduce the two parameters





σ

σ
Ψ ≡ Ψ ≡

t

t
and ,d

dt

d
dt

soft
slow

hard
fast

to characterize the dynamic responses behind equation (4): (i) when Ψ  1soft  (and Ψ  1hard ), equation (4) 
reduces to σ = E0 , which corresponds to the soft-elastic regime; (ii) when Ψ  1hard  (and Ψ  1soft ), equation 
(4) reduces to σ = ∞E  (with omission of an integral constant), which corresponds to the hard-elastic regime; 
(iii) when Ψ 1soft  and Ψ 1hard , viscous dissipation terms in equation (4) play a role in the dynamics, which 
corresponds to the viscoelastic regime.

By using the parameters Ψsoft and Ψhard, we show in Fig. 5 dynamic responses of the “short” and “long” Zener 
elements (see Fig. 5a) in the present model. To clarify physical pictures for the slow-velocity (w0 < w < wjump) and 
fast-velocity (wjump < w < w∞) crack propagations and the velocity jump (w = wjump), we should pay attention to 
the moving Zener elements near the crack tip. In other words, the Zener elements far from the crack tip are 

Figure 5. Dynamic responses of Zener elements. (a) “Short” and “long” Zener elements of natural length l and 
(L − l)/2, respectively. Here, we set the origin of the x-coordinate at the crack tip. (b,c) Representative behavior 
of dynamic responses of Zener elements for conventional elastomers (λ = 103 and N = 109). We show 
relaxational responses of Zener elements during a constant-velocity crack propagation, in contrast to vibrational 
responses in Fig. 3. The four curves are contours for Ψsoft = 100, 3 and Ψhard = 3, 100 as a function of the initially 
applied energy density w and the distance from the crack tip χ ≡ x/x0. The conditions Ψ  1soft  and Ψ  1hard  
correspond to soft- and hard-elastic regimes, respectively (see the text for details). Explicit forms of Ψsoft, Ψhard, 
and x0 are given in Methods. Red dashed lines correspond to the velocity jump (wjump) and black dashed lines 
correspond to the minimum (w0) and maximum (w∞) values of w for with constant-velocity propagation.
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almost in equilibrium and do not affect crack-propagation dynamics. For example, soft-elastic regimes in Fig. 5b,c 
are almost in equilibrium and play a minor role for crack propagations. Thus, we now focus on the viscoelastic 
and hard-elastic regimes in Fig. 5b,c. Figure 5b shows that the “short” Zener element in the vicinity of the crack 
tip is viscoelastic in the slow-velocity propagation (w0 < w < wjump) but is hard-elastic in the fast-velocity propa-
gation (wjump < w < w∞), with an abrupt change at the velocity jump (w = wjump). Figure 5c shows that the “long” 
Zener elements near the crack tip are soft-elastic and viscoelastic in slow- and fast-velocity propagations, respec-
tively, with an abrupt change at w = wjump. Note that the viscoelastic regime far from the crack tip on the rear side 
( χ−  1) in Fig. 5c is almost in equilibrium and accompanied by exponentially-small viscous dissipation. In fact, 
the stress (σ), strain (), and their time derivatives (given by equation (23) in Method) decay with the same expo-
nential factor as the distance from the crack tip is increased, whereas Ψsoft and Ψhard, by definition, take finite val-
ues even at far distances.

From the above observations, we can draw physical pictures for the slow- and fast-velocity crack propagations 
and the velocity jump as illustrated in Fig. 6: (i) the slow-velocity and fast-velocity crack propagations are charac-
terized by viscous dissipation in the vicinity of the crack tip (Fig. 5b) and on the rear side (Fig. 5c), respectively, as 
illustrated in Fig. 6a and c; (ii) The velocity jump starts with the emergence of a hard-elastic regime near ahead of 
the crack tip (Fig. 5b) and ends with the emergence of a viscoelastic regime on the rear side (Fig. 5c), as illustrated 
in Fig. 6b. Since the appearance of a hard-elastic regime is a sign of the dynamic glass transition, we can interpret 
the onset of the velocity jump at w = wjump (Fig. 6b) as the dynamic glass transition at the crack tip. Note that 
the glass transition occurs practically only in the close vicinity of the crack tip because the transition requires a 
strong stretch and such a stretch can occur only for short elements. This fact implies that a glass transition is easy 
to occur in crack propagation, and thus, we expect that even materials such as gels, in which glass transitions are 
difficult to occur, could exhibit a velocity jump.

Discussion
In summary, we have proposed a minimal model that exhibits the velocity jump in viscoelastic solids for which 
an exact analytical solution is available. The exact relation given in equation (6) allows us to characterize the 
transition point as in equation (8) and such a simple expression is useful as guiding principles to develop tough 
polymer materials. In addition, we have elucidated the physical origin of the velocity jump as a dynamic glass 
transition in the vicinity of the propagating crack tip (see, Figs 5 and 6). Our result implies that the discontinuous 
transition in the crack propagation velocity is a universal phenomenon that could be observed in a broad class of 
viscoelastic materials.

The present results are useful both from practical and fundamental viewpoints. (i) Conventionally the devel-
opment of new materials tends to be achieved by trials and errors; however, the expressions characterizing the 
marked points on the curve in Fig. 4a are simple enough to remove such trials and errors, and pave the way for a 
more efficient development of tough polymer materials. (ii) The minimal model proposed in this article is not 
restricted to the fixed-grip geometry; we can easily handle other types of crack experiments in the present frame-
work by considering the time dependence of applied strain ε. For example, tensile and cyclic experiments are 
treated by setting ε(t) = vt and ε(t) = A sin (ωt), respectively. Here, v is the tensile velocity, and A and ω are the 
amplitude and the angular frequency of the oscillation. We will study this line of research elsewhere. (iii) The 
present results involve an interesting analogy to conventional phase transitions. There appear two quantities ξN 
and ξ1 associated with the front and rear sides, respectively, that play a role for the order parameter of the velocity 
jump in a sense that it changes form one characteristic value to the other as a function of an external control 
parameter (see Supplementary Fig. S4c). (iv) Connection to reaction-diffusion systems is an important issue to be 
explored. Equation (9) in Methods for Kelvin-Voigt limit (λ → ∞) belongs to the class of reaction-diffusion equa-
tion, = +∂

∂
∂

∂
u D u R u[ ]

t x

2

2 , and the counterpart for arbitrary λ forms a generalized class. Accordingly, the present 
generalization could enrich physical scenarios in reaction-diffusion systems in different disciplines, e.g., pattern 

Figure 6. Physical pictures on the crack propagation revealed by the present exact solution. We draw the three 
illustrations based on Fig. 5. (a) The slow-velocity propagation is characterized by viscous dissipation in the 
vicinity of the crack tip. (b) The velocity jump induced by emergence of a hard-elastic regime (as a result of a 
dynamic glass transition) in the close vicinity of the crack tip. (c) The fast-velocity propagation is characterized 
by viscous dissipation on the rear side (with the hard-elastic regime in the close vicinity of the crack tip). Note 
that away from the crack tip viscous dissipation in the viscoelastic regime decays with the distance from the tip 
(see the text for details).

http://S4c
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formation in chemical reaction systems and morphogenesis in biology. In return, crack problems in viscoelastic 
materials can benefit from the field of reaction-diffusion systems. The present crack problem corresponds to a 
linear reaction term R[u] ∝ u, and nonlinear extension (e.g., Ramberg-Osgood stress-strain relation) is important 
for dealing with more practical materials. Such an extension could be solved with the aid of the accumulated 
mathematical knowledge in a well-developed field of reaction-diffusion systems29.

After completion of the present analytical work, experimental30 and numerical31 studies on the velocity jump 
were published. First, we compare the present study with the experimental study30. Figure 3d in ref. 30 suggests that 
the G-V plots, which exhibit the velocity jump, do not change when the specimen thickness is changed in the range 
0.7–2.0 mm. This independence from thickness supports our two-dimensional modeling. Figure 12a in ref. 30 
shows that wjump is approximately proportional to the “fracture toughness” wc, when experiments were carried out 
with changing silica-filler content, cross-linker concentration, and temperature. Here, wc is obtained from the area 
defined on the stress-strain curve:  ∫ε σ≡ =

εw w d( ) ( )c c 0
c . (See equation (1)). Although wc is calculated from a 

non-linear stress-strain curve in experiments, wc can also be calculated in our linear model, in which σ(ε) = E0ε and 
ε=w E /2c c0

2 . Thus, in our model, equation (8) is rewritten as wjump = wcλl/L, i.e., wjump is proportional to wc. This 
feature is consistent with Figure 12a in ref. 30. Other results in ref. 30 are based on nonlinear elasticity and cannot 
be directly compared with ours. Second, we compare our analytical study with the numerical study31, which quali-
tatively reproduces the velocity jump by using a finite-element-method (FEM). Their numerical model takes into 
account nonlinear viscoelasticity introducing 30 material parameters, by quantitatively fitting the result of the 
experiment in ref. 17. Although they qualitatively reproduced jumps, their simulation result of the G-V plot shown 
in Fig. 1 in ref. 31 is not in quantitative agreement with the corresponding G-V plot in ref. 17. This discrepancy may 
be because of the finiteness of elements, which causes problems especially in the vicinity of the crack tip. In their 
study, they have not clarified the following two fundamental points: (i) whether nonlinear elasticity is necessary for 
the velocity jump; (ii) the relationship between the velocity jump and glass transition of the materials. Unlike their 
complicated numerical model, we have considered a minimal model based on linear viscoelasticity with only three 
material parameters (E0, E∞, and η), aiming at the elucidation of the physics of the velocity jump in a simple and 
clear manner. As a result, we have solved the model exactly and clarified the existence condition of the velocity jump 
and the relationship between the velocity jump and glass transition.

Methods
Derivation of the relation between w and V. To explain how to derive the exact relation between w and 
V given in equation (6), we first consider a more simplified model consisting of Kelvin-Voigt elements illustrated 
in Fig. 2f. This simpler model is obtained from the present model in the limit λ → ∞. Although this simpler 
model does not reproduce the velocity jump (see Fig. 4b and e), it is useful to understand the mathematical struc-
ture of the present model.

In this simpler model, the equation of motion of lattice points in the y-direction is given by equation (5) with 
equation (3). Thus, the equations of motion (divided by a constant α) are given by

η

η











=
∂
∂

+ − −
∂
∂

=
∂
∂

+ − −
∂
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k
x

u x t c lE u x t l
t

u x t

k
x

u x t c LE u x t L
t

u x t

0 ( , ) ( , ) ( , )

0 ( , ) ( , ) ( , ),
(9)

2

2 0

2

2 0

for the rear and front sides, respectively. Here, k ≡ l2K/α and c are independent of position (x) and time (t). To 
seek a solution corresponding to a constant-velocity crack propagation, we substitute a solution of the form  
u(x, t) = f(x − Vt) into equations (9) to obtain linear ordinary differential equations (ODE):

η
η






= − + ′ + ″
= − + ′ + ″

c lE f x lV f x kf x
c LE f x LV f x kf x

0 ( ) ( ) ( )
0 ( ) ( ) ( ), (10)

0

0

for the rear and front sides, respectively.
We can solve equation (10) with appropriate boundary conditions at x = ±∞ and matching conditions for the 

rear and front solutions at the crack tip (See Supplementary Section II for the details). As a result, we find that 
crack propagates only in the range ε< <N1/ 1 or equivalently w0 < w < w0N, and the velocity is exactly given 
by

ε
ε ε ε

=
−

− −


  

V
V

N
N N

1
(1 )( 1)

,
(11)0

2

with ε ε ε≡ = w w N/ /( )c 0 . Equation (11) for the model consisting of Kelvin-Voigt elements is the counterpart 
of equation (6) for the model consisting of Zener elements. In fact, by taking the limit λ → ∞ in equation (6), we 
have equation (11), which does not reproduce the velocity jump (Fig. 4e), unlike equation (6).

We next briefly describe how to generalize the above procedure to the model consisting of Zener elements 
illustrated in Fig. 2e. The counterparts of equation (9) is expressed as the following set of equation of motion, in 
which two variables u and u2 are coupled:
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2

2 0 2

2
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Here, η= ∂
∂

E u u
t1 1 2, with the elongation of dashpot u2 and the total elongation u = u1 + u2. By noting the relation 

= +η ∂
∂

u u u
E t 2 2

1
, the set of equation of motion can be written only in terms of u2 by removing the variables u and 

u1. Substituting u2(x, t) = f2(x − Vt) into equation (12) as before, we obtain a third-order linear ODE for f2, which 
can be solved under the boundary conditions including matching conditions for the rear and front solutions. As 
a result, we obtain equation (6) together with equation (7), which is a characteristic equation for the third-order 
linear ODE for f2. We explain the details of the derivation in Supplementary Section III.

Theorems. We give the theorems used to obtain the main result in equation (6) and to plot Fig. 3. The details 
and proofs of the theorems are relegated to Supplementary Section III.

Through the procedures explained above, we obtain the following third-order linear ODE and boundary con-
ditions, which describe constant-velocity crack propagation:
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c

Here, we introduce the dimensionless parameters ν ≡ V/V0 and χ ≡ x/x0. The latter is the distance along the x-axis 
from the crack tip normalized by the reference length scale ≡ − µ( )x l 1

N E0
1

2 0
.

The relation between initially applied strain and crack-propagation velocity is given by the following theorem:

Theorem 1. If equations (13) and (14) hold, then

ε ε
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Asymptotic forms in low- and high-velocity regimes are given by the following theorem:

Theorem 2. If λ > 1 and N > 1, then
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The existence condition of the velocity jump is given by the following theorem:

Theorem 3. If 1 < λ < ∞, 1 < N < ∞, and < <λ
λ

− V V N V1
0 0, then the initially applied strain ε = ε(ν, λ, N) is 

bounded as follows:
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ν λ
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According to Theorem 3, we have the approximate expression ε λ��
N

 in the range of ν,

λ
λ

ν−
.  N1

(19)
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Ψsoft and Ψhard for short and long Zener elements. We give explicit forms of the parameters Ψsoft and 
Ψhard used to plot Fig. 5b,c. By using results obtained in Supplementary Section III, we have Ψsoft and Ψhard for 
“short” Zener elements as
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1

respectively. Equations (20) together with equation (6) give contour plots in Fig. 5b.
Expressions for the “long” Zener elements are different depending on whether the element is located at the 

front or rear side of the crack tip. On the front side, we have
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On the rear side, we have
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Note that χ < 0 on the rear side. Here, ξN,1, ξN,2, and ξN with ξN,1 < ξN,2 < 0 < ξN are the solutions of the cubic 
equation (7) for ξ with =

γ

γ γ γ

+

−
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1

( )
2

1 2 1
 and = −

γ

γ γ γ
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−
D2

1
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 where γ1 ≡ −ξ1/ξN,1 and γ2 ≡ −ξ1/ξN,2. 

≡ ⋅ε ε λ ξ

λ ξ ν
−
−

−

− +
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N0 1

( 1)

( 1)
c 1

1
 is a positive constant. Equations (21) and (22) together with equation (6) give contour 

plots in Fig. 5c.
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