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Abstract 

Background:  Gorlin-Goltz syndrome (GS) is an inherited disease characterized by predisposition to basal cell car-
cinomas (BCCs) and various developmental defects, whose numerous disease-causing PTCH1 mutations have been 
identified in the hedgehog (Hh) signaling pathway.

Methods:  In this study, whole exome sequencing was used to screen for both somatic and germline deleteri-
ous mutations in three sisters with a lethal GS. The mutations we found were confirmed by subcloning and Sanger 
sequencing of the genomic DNA. RNA-seq was performed to profile gene expression in paired BCCs samples and the 
expression levels for selected genes were validated by quantitative PCR.

Results:  The clinical and histopathologic features were analyzed for the proband in the three-generation GS family. 
We identified the insertion mutation PTCH1 c.1341dupA (p. L448Tfs*49), which segregated with BCC phenotype and 
contributed to the death of two in four patients from a Chinese family with GS. Compared with adjacent non-cancer-
ous tissues (ANCT), four second-hit mutations were found in four of the six pairs of BCC from three patients. Of note, 
somatic genomic alterations in all six BCC samples were mainly clustered into non-clock-like Signature 7 (ultraviolet 
mutagenesis) and 11 (related to certain alkylating agents). Both RNA-seq and quantitative RT-PCR confirmed that the 
mRNA levels of PTCH1 and its effector GLI1 were markedly upregulated in six pairs of BCC samples versus ANCT.

Conclusions:  The distinct non-clock-like signatures of BCCs indicated that GS was not a life-threatening illness. The 
main reasons for untimely death of GS patients were PTCH1 mutation, exposure to intense ultraviolet radiationand the 
poor economic conditions.
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Background
Gorlin-Goltz syndrome (GS, OMIM #109400), also 
called nevoid basal cell carcinoma syndrome (NBCCS), 
is a rare autosomal dominant disorder that predispose to 

early onset tumours, such as multiple BCCs and medul-
loblastoma [1]. It is generally recognized that the life 
expectancy is not significantly affected by GS [2]. Here, 
we collected one three-generation family with GS from 
Hainan province of China. Unfortunately, two patients 
died of cachexia resulting from aggressive BCCs at the 
age of 54 and 39  years, respectively. To investigate the 
genetic cause of the untimely death, we performed WES 
to detect the causative germline and somatic mutations. 
Moreover, RNA-Seq based transcriptomics, combined 
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with quantitative RT-PCR, were used to determine 
preferential expressions of the genes related to GS. It 
is of note that GS is mostly caused by mutations in the 
patched 1 (PTCH1) gene in hedgehog (Hh) signaling 
pathway [3]. More recently, patched 2 (PTCH2) is no 
longer considered a highly susceptible gene for GS [4]. 
Although the germline mutation in PTCH1 c.1341dupA 
(p. L448Tfs*49) we found in this family has been listed 
in the Human Gene Mutation Database (HGMD®), no 
clinical data are available from those patients. This study 
provided the clinical information and PTCH1 mutations 
identified in three sisters with a lethal GS.

Methods
Sample collection
A three-generation GS family was identified from Hainan 
Province of China (Fig.  1a). All family members and 
non-familial cases were carefully examined by at least 2 
dermatologists, and the diagnosis was confirmed by his-
tological examination of skin biopsy specimens on the 
proband (II-6). With patents’ written informed consent, 
13 blood samples were collected from the family mem-
bers. Moreover, six pairwise BCCs and ANCT were 
dissected from 3 affected females (II-2, II-4, II-6). All 
procedures followed the guidelines of the Helsinki Dec-
laration and were approved by the Scientific Ethics Com-
mittee of Affiliated Haikou People’s Hospital, Xiangya 
School of Medicine.

Whole exome sequencing (WES) and data analyses
Genomic DNA (gDNA) was extracted from peripheral 
blood and the frozen tissues with DNeasy Blood & Tis-
sue Kit (Qiagen, Germany) according to the manufactur-
er’s protocol. The purity and concentration of the gDNA 
met the sequencing requirements. WES was performed 
using gDNA with a SureSelectXT Reagent kit (Agilent, 
USA), SureSelectXT Human All Exon V6 (Agilent, USA), 
TruSeq PE Cluster Kit v3-cBot-HS (Illumina, USA), and 
HiSeq SBS Kit V4 (Illumina, USA). Quantification was 
performed with an Agilent Bioanalyzer (Agilent Tech-
nologies, USA), and multiplexed sequencing was done on 
HiSeq 2500 sequencers with 2 × 150 paired-end modules 
(Illumina, USA). Total sequencing depth was performed 
at 100× coverage.

Before variant calling, the raw sequence reads were 
mapped to human genome reference (hg19). Then, PCR 
duplicates were marked to mitigate the possible biases 
and the base quality scores were recalibrated by using 
the Genome Analysis Toolkit (GATK) [5]. For germline 
single nucleotide variants (SNVs) and insertion/dele-
tion variants (indels), the GATK4 HaplotypeCaller was 
used to produce a genomic variant call format (GVCF) 

file. Next, the GVCFs from multiple samples were con-
solidated into a GenomicsDB datastore, followed by 
joint genotyping and variant quality score recalibration 
(VQSR) filtering to produce the final callsets with the 
balance between sensitivity and precision [5]. Exome-
wide sequence variants were filtered with the sequencing 
depth < 5×. For somatic short variants (SNVs and Indels), 
the GATK4 MuTect2 was used to analyze somatic muta-
tions in BCCs and ANCT, and the confident somatic calls 
were filtered by GATK4 FilterMutectCalls and FilterByO-
rientationBias tools [5].

The Ensembl variant effect predictor (VEP) and vcf-
2maf tools were applied to generate the somatic mutation 
annotation format (MAF) files [6]. Moreover, ANNOVAR 
was also used to annotate population frequencies of vari-
ations [7]. The variants were identified as low-frequent 
functional mutation with < 0.01 frequency in ExAC03 
database [8] and 1000 genome database [9], < 0.05 fre-
quency in GeneskyDB database. According to the results, 
the variants were extracted as one of these functional 
annotations: “Frame_Shift_Del”, “Frame_Shift_Ins”, “In_
Frame_Del”, “In_Frame_Ins”, “Missense_Mutation”, “Non-
sense_Mutation”, “Nonstop_Mutation”, “Splice_Site” or 
“Translation_Start_Site”.

Subcloning and Sanger re‑sequencing of the genomic DNA
Genomic DNA was extracted from each pair of BCCs and 
ANCT using a TIANamp Genomic DNA Kit (TransGen 
Biotech, Beijing, China). PCR amplification products 
were subcloned into the pEASY®-Blunt Cloning Vector 
(TransGen Biotech, Beijing, China) followed by Escheri-
chia coli transformation and blue-white screening. The 
colonies were analyzed by colony PCR, moreover, cap-
illary electrophoresis was performed on an ABI Prism 
3130xl Genetic Analyzer (Applied Biosystems, USA) to 
screen the somatic mutations through the diverse length 
of colony PCR products. Fragment analysis was per-
formed using the Peak Scanner Software v1.0 (Applied 
Biosystems, USA).

RNA‑seq
RNA quality was accessed by an Agilent Bioanalyzer 
and those samples with RNA integrity number (RIN) 
higher than 7 were used to construct RNA-seq librar-
ies by adapter ligation. RNA-seq libraries were pre-
pared from 1 μg of total RNA using VAHTS mRNA-seq 
V3 Library Prep Kit (Vazyme Biotech) according to 
manufacturer’s instruction. mRNA was purified with 
oligo-dT magnetic beads, followed by fragmenta-
tion, end repair, adapter ligation and PCR amplifica-
tion. The analysis of final RNA quality and integrity 
was performed with Agilent BioAnalyzer and Qubit 
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Fluorometer (Invitrogen, USA). All libraries were 
sequenced on Illumina NovaSeq platform to gener-
ate 150  bp paired-end reads. Raw sequencing data 
(.fastq files) was processed using STAR (spliced tran-
scripts alignment to a reference) to generate read align-
ments with hg19. Effective read counts for genes were 
obtained with featureCounts under default settings, 
standardized and analyzed using DEseq2.

Real‑time quantitative PCR (qPCR)
The mRNA expression levels of PTCH1 (NM_000264.3) 
and GLI1 (NM_005269.3) were evaluated by real-time 
qPCR, using total RNA from BCC and ANCT from 
three sisters with GS. The total RNA of each sample was 
reverse transcribed to cDNA using the PrimeScript RT 
Reagent Kit (Takra, Japan). qPCR reactions were con-
ducted in triplicate using the TB Green Premix Ex Taq 
II (Takara, Japan) and the ABI 7300 system (Applied 

Fig. 1  a The pedigree chart of three-generation familial GS. Squares and circles denote males and females, respectively. Affected and unaffected 
individuals are represented by black and open symbols, respectively. Slash lines and dot marks indicate death and disease-carrying genotype, 
respectively. The initial proband was indicated by an arrow. b Sanger sequencing chromatograms of proband (II-6, affected) and normal control (II-7, 
unaffected) at the c.1341dupA mutation site indicated by arrow
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Biosystems, USA). The primers were designed with the 
Primer 3 software (http://​bioin​fo.​ut.​ee/​prime​r3-0.​4.0). 
qRT-PCR data were analyzed by two-tailed paired-sam-
ple t-tests and statistical comparisons were considered 
significantly different at P < 0.01.

Results
Clinical features
In this family, the earliest onset of the disease was at 
16  years old, and the average onset age was 19  years. 
The proband (II-6) complained of multiple hyperpig-
mented nodules on her body (Fig.  2a). She had ocular 
hypertelorism, but no obvious palmar and/or plantar 
pits. Cranial CT and upper-limb X-ray showed ectopic 
calcifications of the falx cerebri and abnormalities in 
bone density, respectively (Fig.  2b and c). Histopatho-
logic examination of biopsy specimen from her right face 
revealed compact basaloid cell nests with peripheral pali-
sading that extend into the dermis (Fig.  3a). Except for 
CK10 (Fig. 3b), Bcl-2 and BerEp4 immunoreactivity were 
observed (Fig.  3c and d). There were three other family 
members affected by this disease. Hence, the diagnosis of 
GS was made based on three major and two minor cri-
teria, established in 2011 [10]. Among them, the patient 

(II-2) died of cachexia resulting from aggressive BCCs on 
her neck four months after the diagnosis. Similarly, it was 
told that the patient (I-1) died of giant BCCs on his nose 
in 2010.

Germline and somatic mutations in the PTCH1 tumor 
suppressor gene
In this study, the paternal germline mutation c.1341dupA 
(p.L448Tfs*49) in PTCH1 cosegregated with multiple 
BCCs (Fig.  1b), which was identified by WES and con-
firmed by Sanger sequencing. To our knowledge, this 
insertion mutation has been listed on HGMD® and 
molecular genetics of Kitasato University School of 
Medicine website. But no clinical data are available from 
those patients. Moreover, we analyzed WES data from 
6 paired BCC/ANCT and their matched blood samples. 
As Table  1 indicated, different somatic PTCH1 muta-
tions were found in four of the six paired BCC samples. 
Those somatic mutations were present on the wild-type 
maternal allele, which was confirmed by subcloning of 
genomic DNA and Sanger sequencing. Moreover, addi-
tional driver mutations in ERBB2 and PPP6C were found 
in two of the six BCCs (Additional file  1). Loss of het-
erozygosity of PPP6C and PTCH1 were observed in two 

Fig. 2  BCC lesions on the back (a), falx cerebri calcification on cranial CT b and low-density shadow on upper-limb X-ray c of the proband, which is 
indicated by arrows

http://bioinfo.ut.ee/primer3-0.4.0
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and three of the six BCCs, respectively (Additional file 2). 
These results showed the two-hit mutational inactivation 
of PTCH1 and the genomic heterogeneity in BCCs. These 
results revealed the genomic heterogeneity in BCCs, as 
supported by previous findings [11].

Distinct mutational signatures of the BCCs from three 
sisters
The mutational 0signature analysis was performed on 
the exomes of six BCC-ANCT pairs, inferring DNA 
damage and repair processes during the evolution of 
cancer. As indicated in Fig. 4, Signature 7 and 11 were 
distinctly detected in BCCs with either one or two 
PTCH1 mutations using the deconstructSigs R package. 
Of note, Signature 7 in a brown color predominated 
over Signature 11 in a yellow color. It is known that 
Signature 7 represents ultraviolet (UV) light related 
patterns of mutations, which show C > T transitions at 
dipyrimidines and CC > TT double nucleotide substi-
tutions [12]. Whereas Signature 11 is statistically asso-
ciated with the C > T substitutions pattern of agents 
treatment [13]. Both Signature 7 and 11 are non-clock-
like mutational signature patterns, which are associated 
with better prognosis [14]. It might explain why GS has 
little effect on the life expectancy of patients.

Loss‑of‑function and over‑expression of PTCH1 leading 
to activation of the Hh pathway in BCCs
Transcriptional analysis by RNA-seq showed up-reg-
ulation of the Hh pathway genes in BCCs (Fig.  5a). In 
particular, our finding showed that PTCH1 and PTCH2 
shared similar expression patterns with GLI1 and GLI2. 
We quantified the expression of PTCH1 and its target 
GLI1 genes in six pairwise samples to confirm the results 
obtained by RNA-seq. The results indicated that the tran-
script levels of PTCH1 (Fig. 5b) and GLI1 (Fig. 5c) were 
relatively higher in BCCs compared with ANCT. The 
presence of inactivating mutations in PTCH1 promote 
autocrine activation of Hh signaling and genesis of BCCs. 
It is reported that the binding of Hh ligands to up-regu-
lated PTCH1 receptors can activate smoothened (SMO) 
and lead to the overexpression of down-stream transcrip-
tion factors. Moreover, transcription factor GLI2 directly 
activates GLI1 and forms a positive feedback loop to pro-
mote BCCs [15, 16].

Discussion
It is known that GS is not a life-threatening illness and 
has a near-normal life expectancy [2]. Except that compli-
cation was given as the underlying cause of death, around 
10% (3/32) of deaths has been reported due to invasive 

Fig. 3  Histopathologic examination of biopsy specimen showed compact basaloid cell nests with peripheral palisading that extend into the 
dermis (a, HE × 100). Except for CK10 (b, SP × 100), Bcl-2 and BerEp4 immunoreactivity were observed (c and d, SP × 100 and 200, respectively)
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lesions and intracranial involvement [17, 18]. However, in 
this three-generation GS family, one male (I-1) and one 
female (II-2) died as a direct result of aggressive BCCs, 
whose ages were 54 and 39 years respectively. There were 
three main reasons for their untimely death, including 
driver gene mutations, exposure to intense UV radiation 
and the poor economic conditions.

To our knowledge, the activation of Hh pathway repre-
sents the initial tumorigenic event in BCCs. In this study, 
the PTCH1 c.1341dupA (p.L448Tfs*49) mutation was 
identified in this GS family. Besides this germline muta-
tion, different somatic PTCH1 mutations were found 
in four of the six paired BCC samples. These findings 
provided the evidence of two-hit mutational inactiva-
tion of PTCH1 and the genomic heterogeneity of BCCs, 
which supported the Knudson’s two-hit tumor progres-
sion hypothesis [19]. It is generally accepted that PTCH1 
is one of the most common driver genes in BCCs. The 
concept of “driver” and “passenger” genes in cancer was 
proposed by Stratton et al. [20]. In contrast to the passen-
ger gene, the driver gene is critical for oncogenesis. The 
driver and passenger gene mutations might be regarded 
as “mountain” and “hill” [21], respectively. The driver 
mutations are defined as making important contribu-
tions to cancer development, as compared to the passen-
ger mutations. Previous studies have suggested the driver 

pivotal role of PTCH1, TP53, and SMO in BCCs devel-
opment [22]. Moreover, PPP6C and ERBB2 are reported 
as additional driver genes in BCCs [11], which were also 
found in two of the six BCC samples from three sisters. 
The major limitation of this study was that we didn’t per-
form additional confirmation of these driver genes due to 
a limited budget and time.

The three-generation family with GS lives in a rural 
area of Hainan province, located in the southernmost 
part of China. This is the reason that they are exposed to 
intense UV radiation for a long time. It is believed that 
UV radiation plays a crucial role in the onset of skin 
carcinogenesis through DNA damage and immune sup-
pression. Of note, UVB is directly absorbed by DNA and 
induce UV-signature DNA damages [23]. In this study, 
the results of WES showed that Signature 7 and 11 were 
mainly present with similarities in six pairs BCC versus 
ANCT, making it possible to decipher their mutational 
patterns. It is discovered that Signature 7 shows a higher 
prevalence of C > T mutations [13], attributed to pyrimi-
dine dimers caused by UV exposure. In addition, Signa-
ture 11 exhibits a mutational pattern resembling that of 
alkylating agent treatment, associated with mutations 
occurred on guanine [24]. However, it is said that this 
family never underwent chemical treatment, and possi-
ble reasons need to be further explored. As mentioned 

Fig. 4  Two distinct mutational signatures were present in six pairs BCC and ANCT, which are Signature7 (brown) and Signature11 (yellow)
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above, both Signature 7 and 11 belong to non-clock-
like mutational patterns, which means those mutational 
processes may occurred in an episodic manner, gener-
ating sudden mutations in a short time, rather than at 
a steady rate [14]. By comparison, clock-like signature 
is associated with worse prognosis, tumor progression 
and immune resistance to immune checkpoint inhibitor 
therapy [25]. Moreover, those non-clock-like mutational 
signatures might be consistent with the near-normal life 
expectancy of GS patients.

Notably, poor economic conditions of this family were 
the primary reason for the delay in seeking medical treat-
ment. In recent years, our government provided special 
funding to support medical examinations in rural areas. 
The two patients who died might have survived longer if 
they went to hospital and received surgical treatment in 
time.

Conclusions
Taken together, this study provided clinical information 
and mutation analyses of PTCH1 in a three-generation 
family with GS, which has been listed on HGMD®. The 
main reasons for untimely deaths of GS patients were 
driver gene mutations, exposure to intense UV radiation 
and the poor economic conditions. Although the genetic 
background can’t be changed, it has been well established 
that restricting exposure to UV light is mandatory for GS 
patients.
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performed on six pairs of BCC and ANCT from three sisters with GS. Expression levels are colored with a red-to-green gradient, where red and green 
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pairs of BCC versus ANCT, confirmed by real-time qPCR. **p value < 0.01 (two-tailed paired-sample t-tests; n = 12)
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