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The Banting Medal for Scientific Achievement Award is the
American Diabetes Association’s highest scientific award and
honors an individual who has made significant, long-term contri-
butions to the understanding of diabetes, its treatment, and/or
prevention. The award is named after Nobel Prize winner Sir
Frederick Banting, who codiscovered insulin treatment for
diabetes.

Dr. Eisenbarth received the American Diabetes Association’s
Banting Medal for Scientific Achievement at the Association’s
69th Scientific Sessions, June 5–9, 2009, in New Orleans, Louisi-
ana. He presented the Banting Lecture, An Unfinished Journey—
Type 1 Diabetes—Molecular Pathogenesis to Prevention, on
Sunday, June 7, 2009.

T
he majority of individuals, but not all, developing
what is routinely diagnosed as type 1 diabetes
have the immune-mediated form of the disease
(type 1A) that results from T cell–mediated

specific �-cell destruction. Studies of the NOD mouse
model suggest that the root cause of type 1 diabetes
involves germline-encoded sequences forming trimolecu-
lar complexes consisting of the insulin peptide B:9-23
presented by the class II major histocompatibility complex
(MHC) molecule I-Ag7 and recognized by T cell receptors
having a specific germline-encoded �-chain sequence
(TRAV-5D-4*04 V�). Utilizing genetic, autoantibody, and
metabolic parameters it is now possible to predict type 1A
diabetes in humans, and immune therapy can delay, but
not permanently prevent, destruction of �-cells. With an
increasing incidence and an estimated 1 million individu-
als in the U.S. developing type 1A diabetes, safe prevention
has become a major international goal. Achieving this goal
may come from incremental modification of immune ther-
apies currently being tested and/or may involve a deeper
understanding of the autoimmune trimolecular complexes
underlying the disorder’s pathogenesis.

Type 1A diabetes is associated with both devastating
chronic complications and acute life-threatening ketoaci-
dosis and hypoglycemia (1–3). There are multiple path-
ways being pursued to “cure” this disease or at least
dramatically ameliorate the burden it imposes on patients
and their families. Continuous glucose monitoring is al-
ready improving the lives of many patients by providing
“real time” information with alarms for hypo- and hyper-
glycemia (4,5). Multiple groups are now studying devices
that will control insulin pumps, in particular turning off

insulin delivery to prevent hypoglycemia (6). In developed
countries, such devices will hopefully rapidly become the
standard of care for patients with insulin-dependent
diabetes.

Though many patients do not consider such mechanical
devices, especially the current “first” generation of de-
vices, as a true cure, these therapies will set the bar in
evaluating immunologic therapies considered for preven-
tion of diabetes and �-cell replacement. Thus, the bar will
be high and hopefully ever higher over the next decade. At
present, pancreatic (long term) (7) as well as islet trans-
plantation (short term) (8,9) can cure type 1 diabetes but,
for most patients, with unacceptable risks associated with
immune suppression. It is likely that autoimmunity, in
addition to alloimmunity, limits the therapeutic potential
of either of these forms of transplantation (10).

The field addressing the immunology of type 1 diabetes
has grown rapidly, with thousands of relevant publica-
tions. This review can only recognize a portion of that
literature and will emphasize a relatively simple hypothe-
sis that hopefully allows presentation with a clear focus:
Autoimmune type 1 diabetes results from specific �-cell
destruction due to chronic T cell targeting of insulin, and
the major molecular determinants of such targeting are
hardwired in the genome.

Though there are clear phenotypic differences, it is
remarkable at a molecular level how similar the NOD
mouse and human type 1 diabetes may be. I will first
review the pathogenesis of disease in the NOD mouse
(where it is easier to attempt to disprove the above
specific hypothesis) and then in type 1 diabetes of humans,
ending with an outline of the status of clinical trials. I
believe the root cause of type 1 diabetes of the NOD
mouse is three genome encoded sequences, which are
shown in Fig. 1. The relevant sequences are thought to be:

The insulin peptide B:9-23 sequence (11);
The susceptible MHC I-Ag7 sequence (12);
A specific T cell receptor (TCR) V� sequence (13).

B:9-23 INSULIN PEPTIDE

The first component of the trimolecular complex essential
for the development of diabetes in NOD mice is a peptide
of insulin, namely amino acids 9 to 23. A growing body of
evidence indicates autoimmunity directed at insulin is
central to the pathogenesis of type 1A diabetes of the NOD
mouse (11,14–21). The major advance in defining a role for
T cells targeting insulin was the cloning of T cells directly
from islets of NOD mice by Daniel and colleagues (22).
They discovered that the majority of CD4 T cell clones
derived from such islets reacted with insulin, and of those
that reacted with insulin, more than 90% were stimulated
by the B:9-23 peptide (23). These T cell clones were able to
accelerate the development of diabetes in NOD mice and a
subset was able to cause diabetes in immunodeficient
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mice. T cell clones and TCR transgenics (21) targeting islet
autoantigens can produce or prevent diabetes. Though in
this review I will emphasize CD4 T cells, CD8 T cells,
including T cells targeting the insulin B:15-23 sequence,
are of parallel importance. Class II alleles (and thus
potentially CD4 T cells), however, predominate in deter-
mining diabetes risk of humans and animal models
(24–26).

Mice have two insulin genes. Deleting the insulin 1 gene
prevents the development of diabetes for 90% of NOD mice
(27). Deleting the insulin 2 gene dramatically accelerates
the development of diabetes (17,27). Both insulin genes
are expressed in islets, while only insulin 2 is expressed in
the thymus. It is likely that the toleragenic influence of
small amounts of insulin produced within thymic epithelial
cells (i.e., the induction of central tolerance) accounts for
the different phenotypes of the insulin gene knockout NOD
strains. In contrast, deleting other autoantigens, e.g.,
GAD65 (28), IGRP (15), IA-2 (29), and IA-2beta (30), does
not alter the progression to diabetes of NOD mice.

To test whether targeting of insulin is essential for the
development of diabetes we combined insulin 1 and
insulin 2 knockouts. To prevent metabolic diabetes in the
double knockouts, a preproinsulin transgene was intro-
duced with a mutated sequence of insulin B:9-23 (31). The
specific mutation was chosen (Tyrosine to Alanine at
position B16 of insulin) because the anti-B:9-23 T cell
clones created by Daniel and colleagues were not stimu-
lated by this mutated peptide. NOD mice with only the
mutated insulin do not develop diabetes and are protected,
albeit not completely, from both expression of insulin
autoantibodies and insulitis (31). Replacing the missing

native insulin sequence with transplantation of islets with
the native insulin sequence or immunization with native
B:9-23 peptide, or a transgene coding for native insulin,
restores development of insulin autoantibodies (32).
These latter studies are complex in that though the trans-
planted islets have the native insulin sequence, the endog-
enous islets of the pancreas do not. Thus, to demonstrate
induction of diabetes following transplantation of native
B:9-23 islets into double-knockout mice, splenocytes from
the mice are transferred into an immunodeficient mouse
recipient that has the native B:9-23 sequence in its islets.
Of note, islets with the native insulin sequence trans-
planted under the kidney capsule after 4 weeks of age
induce insulin autoantibodies, and thus neither the spe-
cific anatomic location (i.e., pancreas) nor the neonatal
presence of the inducing insulin B:9-23 epitope are critical
to disease development (32).

Given the number of islet autoantigens recognized by T
cells of the NOD mouse, an important question relates to
the hierarchy of antigen recognition. Multiple investigators
have demonstrated that techniques designed to induce
“recessive” tolerance to insulin prevent diabetes (11,14–
17). Recent studies by Krishnamurthy and coworkers
demonstrate that the immune response to insulin is “up-
stream” of the response to the major islet autoantigen
IGRP (15,33). Of note, though IGRP CD8-reactive T cells
are very prominent in the NOD mouse model, mice with
I-E promoter-driven proinsulin, introduced for the purpose
of inducing tolerance to insulin, do not develop IGRP-
reactive T cells. Even TCR transgenic mice targeting IGRP
with blocked response to insulin do not spontaneously
develop diabetes (33). Thus, the immune response to IGRP

MHC PEPTIDE

TCR

MHC

MHC
TCR

FIG. 1. Hypothesized “primary” pathogenic trimolecular complex of the NOD class II presenting molecule: I-Ag7/insulin peptide amino acids B
chain 9-23/TCR with TRAV5D-4*04.
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is both downstream of the immune response to proinsulin
and not necessary for progression to diabetes. Whether
responses to all islet autoantigens, except insulin, are
dispensable cannot be answered at present in that several
prominent autoreactive T cell clones target antigens that
are either unknown or have not yet been knocked out in
NOD mice (e.g., chromagranin, the target of BDC2.5 T
cells) (34a).

Lack of a critical role of specific islet autoantigens,
demonstrated by knockout experiments, does not rule out
the importance of such autoantigens following intermolec-
ular epitope spreading. Detection of autoantibodies or T
cell responses to such autoantigens may also be important
for diabetes prediction, and immunization with such au-
toantigens may still induce forms of dominant tolerance
(34). Once NOD mice have developed diabetes, islet
transplants with only the B16:A mutated insulin sequence
are rapidly destroyed. This indicates that once autoimmu-
nity is advanced, anti-islet autoimmunity directed at non-
insulin molecules is sufficient for islet destruction, or that
in the transplant setting recognition of the B16:A altered
epitopes (or other epitopes of insulin) suffice to target
�-cell destruction. Of note, in contrast to transplanted
islets, islets within the pancreas with mutated B16:A
sequence resist destruction following transfer of spleno-
cytes from diabetic NOD mice. This suggests that though
not completely protective in this setting, lack of the
critical B:9-23 sequence remains important despite epitope
spreading (32).

In contrast to antigen knockout experiments, where to
date only knocking out the insulin genes influences the
development of diabetes, multiple islet autoantigens and
their peptides can be administered in a variety of ways to
prevent the development of diabetes of NOD mice (34–
36). Such dominant suppression of disease is typically
associated with the enhancement of regulatory T cells.
There is evidence for regulatory CD4 (37–40), CD8 (24,41),
and even B lymphocytes (42). The insulin B:9-23 peptide,
when administered by intranasal or subcutaneous in-
jection (especially when given in incomplete Freund’s
adjuvant) prevents diabetes (43,44). Of note, despite pre-
vention of diabetes, subcutaneous injection of the B:9-23
peptide induces insulin autoantibodies presumably by
activating CD4 T cells, and these antibodies bind to insulin
but not the immunizing peptide (indicated by absorption
studies) (45). Even normal Balb/c mice show such a
response to the insulin peptide B:9-23 (46). With the
appropriate class II molecules (i.e., I-Ag7 of the NOD or
related I-Ad of Balb/c mice that have the same I-A alpha
chain sequence), the peptide induces insulin autoantibod-
ies, presumably due to activation of anti-B:9-23 CD4 T
cells. Despite induction of insulin autoantibodies, insulitis
does not develop unless the innate immune system is
activated (e.g., via poly-IC injection) (47).

I-Ag7

The TCRs of murine CD4 T cells recognize their target
peptides presented in the groove of the antigen-presenting
class II, I-E, and I-A molecules, and CD8 T cells target
peptides in the groove of class I K, and D molecules
(48,49). The homologous molecules of humans are DQ for
I-A, DR for I-E (HLA-A, -B, and -C for mouse K and D).
These presenting molecules are extremely polymorphic.
The amino acid sequence lining the groove binds peptides
and determines immune targeting. As in humans (50) and

rat models of type 1 diabetes (51), class II molecules are
critical for diabetes of the NOD mouse (12,52). The genetic
effect is so large that it could be demonstrated with just
eight diabetic mice, all being homozygous for the NODs
unique major histocompatibility region (having I-Ag7 and
lacking I-E) in a cross of NOD mice with a control strain
(having I-Ak and I-Ek) (12,52). The class II molecules likely
act by altering the TCR repertoire and enhancing the
targeting of specific peptides by T cells. In particular, the
I-Ag7 molecule, as well as human DR4-associated DQ8 and
DR3-associated DQ2, have an unusual binding pocket
(pocket 9) that lacks an aspartic acid (52,53). It has been
hypothesized that such a lack of aspartic acid would favor
presentation of autoantigenic peptides that have a charged
residue that could bind in this unusual pocket 9. Recent
studies in collaboration with the Kappler laboratory (B.
Stadinski, unpublished data) suggest just the opposite,
namely that the B:9-23 peptide recognized by pathogenic
TCRs recognize the peptide in a low-affinity alternative
register. Insulin is produced in the thymus of mouse and
humans by specialized thymic epithelial cells and can
result in deletion of insulin reactive T cells. It is likely that
T cells with TCRs targeting B:9-23 in the thymus rarely
encounter the peptide in this low-affinity register and thus
escape central (i.e., thymic) deletion. These T cells that
escape can then destroy �-cells in the pancreatic islets
with their huge local concentration of insulin.

TCRs WITH TRAV5D-4*04 �-CHAIN SEGMENT

The third element of the trimolecular complex is the TCR
made up of an �- and �-chain. TCRs are formed by random
selection and recombination of gene segments (e.g., for
the TCR �-chain, V� and J� TCR segments) that form
billions of unique TCRs (48). The final TCR resembles a
barrel with six fingers (the complementarity determining
regions [CDRs]) extending from the barrel. Three CDR are
provided by the TCR �-chain and three by its �-chain. It is
these fingers that bind to the MHC-peptide complex and
lead to the activation of T cells bearing the receptor. For
classic recognition of a target peptide, all of the fingers
(i.e., CDR1, CDR2, and CDR3 for both TCR �- and
�-chains) are involved in recognition, and the CDR3 region
is often predominant. The CDR1 and CDR2 elements are
genome encoded sequences of both V� and V� TCR
segments. In contrast, the CDR3 �-chain element is formed
at the interface of the randomly combining V� and J� gene
segments, as well as V,D,J for the TCR �-chain. In addition,
the joining is imprecise, with addition and subtraction
of nucleotides leading to additional CDR3 sequence
variation.

Given the specific and unique properties of I-Ag7 and the
B:9-23 peptide related to development of autoimmune
diabetes, it was perhaps to be expected that the patho-
genic NOD anti-B:9-23 TCR would be unusual. Sequencing
of the TCR from the clones discovered by Wegmann et al.
revealed that the majority utilized a specific V� segment,
termed TRAV5D-4*04. (Note: Each unique V� segment is
given a number.) Unexpectedly, there was no conservation
of what is termed the N-region of CDR3 (i.e., the region
created by joining V and J plus nucleotide insertions and
deletions) and no conservation of the TCR �-chain ele-
ments (54). We hypothesized that if we created mice with
just this conserved V� chain, allowing the mice to create
multiple �-chains, we would induce islet autoimmunity
(14). Using the technology of Vignali and colleagues (55),
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we have produced transgenic and retrogenic mice with
multiple different �-chain sequences containing TRAV-5D-
4*04 (i.e., C� knockout background). The great majority of
such mice develop insulin autoantibodies, and a subset
develop diabetes (13,56). With the creation of TCR hybrid-
omas from these mice, we estimate that �1 per 100 TCRs
with a TRAV-5D-4*04 containing anti-B:9-23 �-chain re-
spond to the B:9-23 peptide (56).

There is, as of yet, no crystal structure of the complete
trimolecular complex discussed above (i.e., I-Ag7:peptide
B:9-23:TCR with TRAV5D-4*04). We hypothesize that when
such a structure is elucidated, it will reveal the anti-B:9-23
TCR bind at an unusual angle such that the primary contacts
are the CDR1 and CDR2 portions of the TRAV5D-4*04
V�-chain interacting with specific side chains of the B:9-23
peptide. The other CDR TCR elements will play a secondary
role. Thus, we believe an accident of nature of NOD mice
encoded in the genome sequences of the B:9-23 insulin
peptide, the presenting I-Ag7 molecule, and the TCR V� 5D-4
segment results in susceptibility to diabetes if tolerance
mechanisms fail (14). The apparently low-affinity register in
which the peptide needs to bind for recognition makes
deletion of pathogenic anti-B:9-23 T cells in the thymus
unlikely, and the extreme concentration of insulin in islet
�-cells (i.e., approximately one-third of protein in �-cells is
insulin) enhances peripheral immunological recognition. The
simple rules for TCR recognition of insulin peptide B:9-23,
dominated by a single V� segment, presumably enhances the
numbers of targeting T cells.

Two of the elements of the trimolecular complex target-
ing insulin are common to many mouse strains (TRAV5D-4
�-chain sequences) or all strains (insulin B:9-23 sequence).
That said, I-Ag7 is a unique NOD contribution. Other
genetic polymorphisms related to maintenance of toler-
ance (57) and environmental factors (or lack of protective
environmental factors such as certain viral infections)
influence activation of autoimmunity (58). Given what may
be the very large number of T cells able to target the B:9-23
peptide, we believe the interaction between �-cells and the
immune system of the NOD is similar to that of a swarm of
bees. Once tolerance is broken, there are numerous indi-
vidual T cells sharing common features of their TCRs,
poised to target insulin.

The aforementioned hypothesis has not yet been sub-
jected to a number of crucial tests. Thus, a crucial predic-
tion is that knocking out the TRAV-5D-4*04 gene segment
should prevent diabetes and insulin autoantibodies, simi-
lar to the effect of mutating the B:9-23 insulin peptide (11).
In addition to genetic approaches to disprove the hypoth-
esis that the shared V� sequence is critical, development
of therapeutics that are able to specifically block the above
trimolecular complex are actively being explored.

We are taking two approaches to therapeutic targeting
of the above NOD trimolecular complex. In collaboration
with David Ostrov, who has defined a series of small
molecules using a DOCKING program (59) that screens an
NCI library of 140,000 small molecules designed to be
“drug” candidates, we have identified small molecules that
can modulate anti-B:9-23 TCR signaling (A. Michels, un-
published data). We believe families of small molecules
binding to specific pockets of I-Ag7 will be able to both
enhance and suppress TCR responses to the B:9-23 pep-
tide, as well as alter specific cytokine responses of the
dominant TRAV5D-4*04 B:9-23 T cells of NOD mice.

In addition, we have evidence that antibodies that recog-
nize the B:9-23 peptide bound in the groove of I-Ag7 can block

in vitro presentation of the B:9-23 peptide (L. Zhang, unpub-
lished data). With this, the induction of such antibodies for
their ability to prevent disease will soon be tested.

STAGES OF HUMAN TYPE 1 DIABETES

In 1986, we proposed a model of chronic autoimmune
development of type 1A diabetes with disease pathogene-
sis divided into a series of stages (Fig. 2) (60,61). Technol-
ogy to directly assess �-cell mass in humans is still lacking,
and thus a useful debate continues as to whether there is
a relapsing remitting course contributing to �-cell destruc-
tion and whether for some patients, the process of �-cell
destruction is acute. In this model, the x-axis of Fig. 2
never specified exact times, with such a lack intentional,
given inter-individual heterogeneity (even between
monozygotic twins, both progressing to diabetes) (62).
Different individuals progress at different rates to overt
diabetes, and decades can elapse between the develop-
ment of diabetes in one monozygotic twin and the devel-
opment of islet autoantibodies in their twin mate (62). The
model highlighted the potential to predict type 1A diabe-
tes, a notion borne of multiple studies (63,64) as well as
prevention trials (65,66).

For some of the stages there has been dramatic
progress, while for others progress has been more limited;
for all stages, however, a research infrastructure (67) that
holds the promise of addressing fundamental questions
over the next decade has been put in place.
Stage 1: Genetic susceptibility. Type 1A diabetes is
usually polygenic in etiology, but there are two highly
informative rare “monogenic” autoimmune syndromes
associated with this disease: APS-1 (autoimmune poly-
endocrine syndrome type 1) (68) and IPEX syndrome
(Immune Dysregulation, Polyendocrinopathy, Enterop-
athy, X-linked) (69).

IPEX syndrome results from mutations of the FoxP3
gene, a transcription factor that is essential for the devel-
opment of regulatory T cells (70). In the absence of FoxP3,
children develop overwhelming autoimmunity, and it is
estimated that 80% develop type 1 diabetes. Diabetes can
present as early as the first days of life. This syndrome
clearly demonstrates the crucial role played by regulatory
T cells and that most humans would develop type 1
diabetes unless pathogenic T cells are held in check. Bone
marrow transplantation, by providing dominant regulatory
T cells, is a consideration for children diagnosed with this
fatal autoimmune syndrome (71). It is possible to generate
antigen specific T cell lines expressing FoxP3 with regu-
latory properties, and this too is being explored as a
potential therapy (38).

APS-1 is more common than IPEX syndrome but still
rare, though increased in a few populations (e.g., Iranian,
Jewish) (68). The syndrome is characterized by mucocu-
taneous candidiasis, Addison’s disease, and hypopara-
thyroidism and results from mutations of the AIRE (auto-
immune regulator) gene, another transcription factor. The
disease is usually inherited in an autosomal recessive
manner, but a single family with a dominant mutation has
been described, and animal models for both have been
created (72). The AIRE gene has a major role in enhancing
the expression of peripheral antigens such as insulin
within the thymic medullary epithelial cells (73,74). Tiny
amounts of “peripheral” (i.e., not in the thymus) antigens
such as insulin, antigens expressed within the thymus, are
associated with negative selection of autoreactive T cells
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and protection from autoimmunity. Patients with APS-1
develop a series of autoimmune disorders over time and
usually patients express more autoantibodies than specific
diseases (68). Of note, 100% of these patients are reported
to have autoantibodies reacting with interferon-� (75).
Type 1 diabetes occurs in �18% of these patients, and
development of diabetes is influenced by the dominantly
protective HLA allele DQB1*0602 and insulin gene poly-
morphisms (76,77).

In combination, these two syndromes illustrate ex-
tremes of genetic determination of autoimmune diabetes
when one or more pathways that are essential to mainte-
nance of tolerance are disrupted. The genome of humans
favors the development type 1 diabetes when mutations in
genes controlling tolerance override the normal polygenic
prevention of autoimmunity.

APS-2 syndrome is much more common than APS-1
(69). APS-2 syndrome is characterized by the occurrence
of multiple autoimmune disorders in the same individual
(e.g., type 1A diabetes, Addison’s disease, thyroiditis,
celiac disease, etc.) (78). It has a complex inheritance
similar but not identical to type 1A diabetes (69,79). In
particular, the highest risk HLA genotype (DR3/4-DQ2/8)
for Addison’s disease has DRB1*0404 and not DRB1*0401
with DQB1*0302 (80,81). Patients with type 1A diabetes
are at increased risk for the development of the series of
autoimmune disorders of the APS-2 syndrome and in
particular Addison’s disease, celiac disease, thyroid auto-
immunity, and pernicious anemia (82). We routinely
screen patients with type 1 diabetes for associated auto-
immunity targeting the adrenal, intestine, and thyroid with
measurement of 21 hydroxylase autoantibodies for Addi-
son’s disease (1.5% positive) and transglutaminase autoan-
tibodies for celiac disease (10% positive) and with TSH

determination. Within the 1st year after the diagnosis of
type 1 diabetes, approximately one-third of patients al-
ready express autoantibodies reacting with one or more of
these target organs (83).

Type 1A diabetes has become one of the best studied
complex genetic disorders (84,85). Approximately 1 in 300
individuals in the U.S. develop type 1A diabetes versus
approximately 1 in 20 first-degree relatives. Here too, we
note that the risk of siblings and offspring of a father with
type 1 diabetes is greater than the risk of offspring of a
mother. With very long–term follow up, the majority of
monozygotic twins of a patient with type 1 diabetes
develop islet autoimmunity (i.e., �70%) and diabetes (i.e.,
�60%) (62). As many as 30 years can elapse between
development of diabetes of the first twin and the second
twin. In contrast, the risk of diabetes in dizygotic twins
might not differ from that of siblings, with �5% developing
diabetes (86).

Despite the strong genetic predisposition, as evidenced
above, the great majority of individuals developing type 1A
diabetes, �90%, do not have a first-degree relative with
diabetes. Though 40% of individuals in the general Denver
population have the high-risk HLA alleles DR3 or DR4,
only 2.4% have the highest risk genotype, namely DR3 and
DR4, and such heterozygous individuals make up �30% of
children developing diabetes (87). Thus, HLA genotype,
inherited from both parents, is most important for the
development of type 1 diabetes, with susceptible alleles
very common in the general population (88).

Similar to the NOD mouse model, the major genetic
determinants of type 1A diabetes are polymorphisms of
class II MHC genes DQ DR, and DP, in this order (50). The
highest-risk genotype consists of a DR3 haplotype
DRB1*0301-DQA1*0501-DQB1*0201 on one chromosome

“Stages” in Development of Type 1A Diabetes
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FIG. 2. Model of the development of type 1A diabetes highlighting chronic progressive nature of the disease. Modified and reprinted with
permission from N Engl J Med 1986;314:1360–1368.
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and a DR4 haplotype on the other (DRB1*0401-
DQA1*0301-DQB1*0302, i.e., in shorthand DR3/4-DQ2/8)
(88). Between 30 and 50% of children developing type 1A
diabetes have this genotype (89). (Note: The younger the
onset of disease, the greater the DR3/4-DQ2/8 genotype.)
The absolute risk in the general population with this
genotype is �5%. The DRB1*0403 allele decreases risk of
DR4 haplotypes, and certain DP alleles also alter risk (e.g.,
decreased with DPB1*0402) (90). In addition, there are
several extremely potent protective HLA alleles. In partic-
ular, DQB1*0602 occurs in �20% of the general population
but in only 1% of patients developing type 1A diabetes.

The DAISY study, headed by Marian Rewers, has HLA
typed more than 30,000 newborns in Denver, Colorado,
and followed prospectively from birth more than 1,000
general population newborns with HLA risk alleles, as well
as 1,000 first-degree relatives independent of HLA (91).
Siblings of a patient with type 1 diabetes have a diabetes
risk that is several-fold that of offspring, despite both
siblings and offspring sharing approximately one-half of
their genome with their proband. There could be multiple
genetic and environmental reasons for the higher risk of
siblings, but the simplest explanation would be the pres-
ence of additional polymorphisms of genes within the
MHC that increase risk for certain haplotypes beyond the
sequence of HLA DR and DQ alleles. That this may be
the case is suggested by the extreme risk of DR3/4-DQ2/8
siblings who shared both HLA haplotypes identical by
descent with their sibling proband compared with DR3/4-
DQ2/8 siblings sharing only one or no haplotype identical
by descent (Fig. 3) (92). The risk of activating islet
autoimmunity in the DAISY study for such siblings was as
high as 70%, and such siblings make up a major portion of
all of the DAISY children progressing to islet autoimmu-
nity and then diabetes (92). With typing for DR DQ, and DP
in the DAISY study, risks as high as 20% can be defined in
the general population (90). Nevertheless, a risk of 20% of

DR3/DR4 heterozygotes of the general population is much
less than the 70% of DR3/4 siblings with MHC inherited
identical by descent, suggesting that there remain addi-
tional polymorphisms of genes in the MHC to be discov-
ered. We have evidence that one of the loci is at the far
telomeric end of the MHC (93), and there is evidence that
specific class I HLA alleles (or loci in linkage disequilib-
rium with these alleles) contribute to risk, in particular
HLA-B39, present in �2–4% of patients, and HLA-A24 has
been associated with earlier onset of type 1A diabetes
(94,95). Of note, the presence of HLA B39 increases the
risk of DR8 haplotypes to that conferred by DR4 haplo-
types (J. Baschal, unpublished data).

Given the existence of almost total conservation of
multiple haplotypes (96) for millions of base pairs across
the MHC (the two best known conserved haplotypes:
HLA-A1,B8,DR3 haplotype [97,98] and HLA-A30,B18,DR3
“Basque” haplotype [99]) makes the search for such non-
HLA disease determinants in the MHC difficult (96). The
Basque haplotype is higher risk than the A1,B8,DR3 hap-
lotype even though both haplotypes have the same se-
quence for their DR and DQ alleles. Both haplotypes, given
the presence of DR3, increase diabetes risk (100).

Given the dramatic protection provided by certain spe-
cific HLA alleles, the question has been raised as to
whether provision of such alleles might be considered
therapeutically or assessed in family planning. The alleles
protecting and determining risk are presumably “normal”
HLA alleles determining the targeting of specific self-
molecules; for instance, the DR2-DQB1*0602 haplotype
that provides dominant protection from type 1A diabetes
is the highest risk haplotype for multiple sclerosis (101).

There has been an explosion in identifying non-MHC
loci contributing to genetic risk, with �40 loci confirmed
(Fig. 4) (84,102). All of these genetic loci together have a
much smaller influence on diabetes risk than the MHC,
with many having odds ratios (ORs) of �1.2. (Note: An OR
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of 1.0 indicates no risk, and the MHC OR is �6). After the
MHC, the next most important locus is that of the insulin
gene. Protective polymorphisms in a sequence 5� of the
insulin gene increases the amount of insulin expressed in
the thymus and is associated with decreased diabetes risk,
probably by increasing thymic deletion of T cells targeting
insulin (103,104).

The PTPN22 gene is the third most important locus
(105–107). A change of a single amino acid (R640W)
increases the risk of diabetes, with an OR of �2. The
molecule (lyp) encoded by the PTPN22 gene is a lympho-
cyte-specific tyrosine phosphatase, and the disease-asso-
ciated polymorphism increases inhibition of TCR
signaling, likely through a gain of function (107). How such
a gain of function contributes to diabetes risk is unknown,
but the predominant hypothesis is that it may decrease
negative selection of T cells in the thymus. Multiple other
specific genes have been implicated including CTLA4 and
CCR5 and the IL2 receptor, as well as multiple loci with
one or more potentially relevant genes. A helicase (IFIh1)
involved in interferon signaling has several rare variants
associated with disease risk as well as common single
nucleotide polymorphisms (108). Almost all of the identi-
fied loci appear to alter risk of diabetes by effects on the
immune system (84). Interestingly, the genetic polymor-
phisms associated with type 2 diabetes do not generally
influence the development of type 1A diabetes (109,110),
though there are conflicting reports of an association of
polymorphisms of TCF7L2 gene with latent autoimmune
diabetes in adults (111,112). On balance, it would appear
that the genetics of type 1A diabetes and type 2 diabetes
are distinct, with type 1A diabetes an immune-mediated
disorder.

The search for rare variants of genes contributing to
type 1 diabetes risk has hardly begun, but it is likely that
multiple such variants exist. In addition, it is likely that
either single or more likely multiple loci within the MHC
remain to be discovered, some of which may modulate
risk more dramatically than currently discovered common
variants outside of the MHC (92,94). Multiple common
pathways underlie genetic susceptibility to type 1 diabetes
including T cell targeting of peptide antigens (HLA class I
and class II) in general, as well as targeting of proinsulin/
insulin and, in particular, TCR signaling (e.g., PTPN22,
CTLA4), tolerance maintenance (e.g., foxP3 and AIRE),
and innate immune responses (e.g., IFIh1). It is now
possible to identify individuals with high or extreme risk
of type 1A diabetes related to defined HLA genotypes/
haplotypes, with smaller contributions from the insulin
locus and PTPN22 (113). Common SNPs of loci with ORs
�1.2 do not facilitate genetic prediction but will hopefully
identify important pathogenic mechanisms (114). Though
very high–risk individuals can be identified with HLA
analysis (e.g., DR3/4 heterozygotes), they comprise �50%
of those developing type 1A diabetes, and there has been
a trend over the last 50 years for the percentage of patients
with DR3/4 to decrease (115,116). High-risk general popu-
lation individuals may be appropriate for preventive trials
similar to relatives of patients with type 1 diabetes, and
their identification has the potential to prevent morbidity
and mortality at the time of diabetes onset if genetic
screening is combined with islet autoantibody determina-
tion (117).
Stage II: Triggering-environment. The least amount of
knowledge gains over the past two decades has, arguably,
been made in defining environmental factors contributing

FIG. 4. Results of genome-wide association studies in type 1 diabetes. Modified and reprinted with permission from N Engl J Med
2009;360:1646–1654.
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to the development of type 1 diabetes. It is nevertheless
clear that environmental determinants are important given
the remarkable doubling of type 1 diabetes incidence in
most Western countries over the past 20 years (118–120).
This is too rapid a change for a common genetic disorder
to be ascribed to genetic alteration (alone) of the popula-
tion. A leading hypothesis to explain such an increase in
incidence is the “hygiene” hypothesis, positing decreased
infections increasing multiple immune-mediated disorders
including asthma and diabetes (121,122). Both the NOD
mouse and BB rat, when raised in a germ-free environ-
ment, have been reported to alter diabetes, with recent
studies suggesting that intestinal microbiota in animal
models modulates development of diabetes (123). Another
hypothesis posits that insulin resistance somehow “accel-
erates” the pathogenesis of type 1 and type 2 diabetes and
that type 1 and type 2 diabetes have similar genetic causes,
though differing in terms of MHC alleles (124,125). Current
genetic analysis as reviewed does not support this hypoth-
esis (126), though insulin resistance associated with obe-
sity influences progression to type 1 diabetes, presumably
as insulin secretion fails (127).

It is noteworthy that certain medications clearly induce
development of type 1A diabetes. In particular, interferon
therapy is associated with diabetes in animal models
(128), and in humans this treatment can induce islet
autoantibodies and accelerate diabetes progression lead-
ing to ketoacidosis (129,130). Methimizole (131,132), pen-
icillamine (133), and lipoic acid (134) (i.e., sulfhydryl-
containing drugs) can induce autoantibodies, with titers of
the antibodies, at times, high enough to influence metab-
olism (e.g., insulin autoimmune syndrome: Hirata disease
associated with DRB1*0406) (131).

Other contenders for environmental factors are dietary,
with reports that cows milk (135), early introduction of
cereals (136,137), decreased levels of n-3 fatty acids (138),
and vitamin D contribute to diabetes risk (139). Large
current trials and prospective observational studies will
hopefully rigorously test these hypotheses (67). Of note,
both metabolomics (140) and analysis of mRNA arrays
(141) are being applied to identify abnormalities poten-
tially preceding the occurrence of anti-islet autoantibod-
ies. Both a power and potential weakness of these studies
is that the analysis of multiple parameters, and thus testing
of thousands of hypotheses at the same time, will yield
many false-positive results. Thus, replication studies will
be crucial.

Many studies of viral infections inducing diabetes pre-
ceded the discovery that type 1A diabetes is a chronic
autoimmune disease. Thus investigators searched for viral
infection at the time of diabetes onset, including studies of
pancreas from patients that died at diabetes onset. Con-
genital rubella infection and enteroviral infections have
been studied in most detail, with at present a lack of clear
consensus as to their importance (142,143). A major
difficulty may relate to the induction of islet autoimmunity
years prior to the development of diabetes and the likeli-
hood that viruses triggering islet autoimmunity may be
many, ubiquitous, and act over a very short time period. All
of the preceding would be lessons learned from virus-
induced autoimmune diabetes in rat models.

Perhaps the best animal model of the triggering of type
1A diabetes comes from the discovery that infection with
the Kilham rat virus (KRV) induces diabetes in diabetes-
resistant BB rats (144). BB-DR rats were bred to be a
normal rat control strain and lack the lymphopenia of the

BB original strain that spontaneously developed diabetes
(51). The KRV infection was discovered to induce diabetes
when a subset of BB-DR rats spontaneously developed
diabetes and it was subsequently discovered that the strain
had become infected with the virus. It is now known that
multiple rat strains, all with the same class II MHC alleles
(i.e., RT1-U) and specific TCR loci, develop diabetes (at
varying frequency) when infected with several different
viruses or when stimulated with immunologic inducers
including toll-like receptor (TLR) agonists (145,146). In a
similar manner, mice engineered to express the B7 mole-
cule on the surface of islet �-cells develop diabetes when
given poly-IC, a viral RNA mimic and activator of TLR3
(147). In this model, poly-IC induces interferon-�. Antibod-
ies to interferon-� block diabetogenesis, and interferon
itself can induce diabetes. The KRV does not infect islet
�-cells and only needs to be transiently present to induce
diabetes. If a virus induces diabetes in humans, we believe
its discovery will depend upon monitoring individuals for
acute infections and initial appearance of islet autoanti-
bodies on a relatively short time scale, and the inducing
virus(es) will be ubiquitous.
Stage III: Active autoimmunity. The immunocytochem-
ical (ICA) assay measures a combination of autoantibodies
reacting with multiple defined autoantigens (except insu-
lin), and its discovery was central to the search for defined
molecular targets (148). The ICA assay is difficult to
standardize and interpret given this heterogeneity and the
need to utilize frozen human pancreatic sections as
substrate.

The clearest indication of the presence of islet autoim-
munity is the expression of islet autoantibodies (149). At
present, four major islet autoantigens (i.e., insulin, GAD65,
IA-2, and Znt8) have been identified, and assays for these
autoantibodies have been validated in international work-
shops. ZnT8, the most recently defined autoantigen, is the
islet-specific zinc transporter involved in transport of zinc
into insulin secretary granules (150). It is of interest that a
common polymorphism of ZnT8 that changes a single
amino acid is a major target of anti-ZnT8 autoantibodies.
Patients homozygous for specific ZnT8 variants more often
make autoantibodies to their own genome encoded vari-
ant, demonstrating the autoimmune nature of the targeting
(151).

The simplest rule for predicting type 1A diabetes is that
expression of two or more of the four “biochemical”
autoantibodies predict diabetes (63,152). It is currently
unknown why such combinatorial prediction is so effec-
tive, but the null hypothesis is that it simply relates to
statistical probabilities. With a combination of the bino-
mial theorem and Bayes theorem, one can calculate posi-
tive and negative predictive values of combinatorial
autoantibody testing. Specifically, one can derive the prob-
ability for instance of detecting one or more, or two or
more, islet autoantibodies with the four assays currently
utilized, with assays having a specificity set at the 99th
percentile. Approximately 4% of normal individuals will be
positive for one or more autoantibodies, while only 0.06%
will be positive for two or more autoantibodies (i.e., 6 in
10,000 normal individuals). For assays with specificity at
the 95th percentile, the corresponding false-positive fre-
quencies are 19 and 1.4%. Both for research and clinical
care, assays with false-positive rates of 5%, when multiple
assays are combined, are very problematic and potentially
underlie some confusion concerning expression of islet
autoantibodies in populations at low risk for type 1A
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diabetes, such as patients clinically identified as having
type 2 diabetes. In such populations, expression of two or
more autoantibodies, set at the 95 percentile, remains
reasonably specific (i.e., 1.4% “false positive”) but not the
presence of one or more autoantibodies.

A “biologic” false-positive islet autoantibody result is
not synonymous with lack of autoantibodies binding to the
assayed autoantigen or confirmation, even over time, of
the presence of the autoantibody. Thus, true autoantibod-
ies may be present, but the epitope that they recognize, the
level of the autoantibody, or the lack of expression of
multiple autoantibodies is such that its presence may not
indicate an increased diabetes risk. This is well illustrated
by the isolated presence of low-affinity insulin autoanti-
bodies, where most children with such autoantibodies do
not progress to diabetes (64,153). Recently Hampe and
colleagues have reported the presence of anti-idiotypic
antibodies in normal individuals whose removal results in
normal sera becoming positive for GAD65 autoantibodies
(154). The experimental system is complex, with the
potential for monoclonal human anti-GAD65 autoantibod-
ies to be eluted off of beads. Further studies are needed to
test this novel finding (154).

Similarly, lack of all islet autoantibodies cannot be
equated with absence of type 1A diabetes (155). As chil-
dren are followed to the development of diabetes, a wide
fluctuation in autoantibodies over years is often observed,
with one autoantibody falling and another autoantibody
increasing. A small subset of autoantibody-positive chil-
dren loses expression of all autoantibodies prior to diabe-
tes onset. If a child presents with diabetes and all four
standard biochemical autoantibodies are absent, consider-
ation of monogenic forms of diabetes is in order, as rare
forms of diabetes can greatly influence choice of therapy,
e.g., sulfonylureas, or prognosis, e.g., DIDMOAD (diabetes
insipidus, diabetes mellitus, optic atrophy, and deafness)/
Wolfram syndrome (156). It is estimated that 10% of
children with diabetes lacking all islet autoantibodies have
definable monogenic forms of diabetes (A. Hattersley,
personal communication).

Insulin autoantibodies are unique in that their levels and
frequency of positivity are inversely related to the age at
which diabetes develops (157). Within several weeks of
the introduction of insulin therapy, almost all individuals
express insulin antibodies that cannot at present be dis-
tinguished from insulin autoantibodies. Insulin autoanti-
bodies are often, but not always, the first autoantibody
to appear in children followed from birth, followed by
the appearance of GAD65, and then IA-2 and ZnT8
(153,158,159). Standard ELISAs should, in general, be
avoided for the measurement of these autoantibodies
(160), though a novel GAD assay using plate-bound anti-
GAD autoantibody rather than plate-bound antigen (as for
standard ELISAs) performs well in international work-
shops (161).

There will likely be need for point-of-care screening
assays for islet autoantibodies, and this need will be acute
if preventive therapies are introduced into clinical prac-
tice. Most of the cost of screening for islet autoantibodies
now relates to shipping samples to laboratories and the
paperwork involved. If point-of-care screening assays
were available, it would allow direct testing in a physicians
office and referral for confirmation and staging of the
relatively uncommon individual expressing one or more
autoantibodies. At present, the insulin autoantibody is the
most difficult for laboratories to master, and most fluid-

phase radioassays for GAD65, IA-2, and ZnT8 perform well
in international workshops (162).
Stage IV: Progressive metabolic abnormalities. There
are multiple ways to assess metabolic progression of
patients developing diabetes. One of the most specific is
the intravenous glucose tolerance test. Most patients
within 1 year of diabetes have a 1 � 3 min insulin secretion
following a bolus of glucose less than the first percentile of
normal control subjects (163). This is also one of the least
convenient methodologies utilizing an intravenous injec-
tion. Oral glucose tolerance testing with measurement of
glucose is also highly predictive of deterioration (164). In
studies such as DAISY, we now utilize fingerstick measure-
ment of A1C, with the great majority (but not all) of
children developing diabetes demonstrating a gradual rise
of A1C in the normal range within the 1 to 2 years prior to
overt diabetes (165). With rising A1C, an oral glucose
tolerance is utilized to confirm diabetes.
Stage V: Overt diabetes. The development of overt type
1A diabetes is often acute (166). This is perhaps not
unexpected for an autoimmune organ-specific disease, and
we see similar sudden dramatic increases in ACTH in
patients expressing 21 hydroxylase autoantibodies, who
develop overt Addison’s disease. It is likely that the
majority of patients presenting with type 1A diabetes have
had the disease for months to a year prior to diagnosis;
they present with high A1C and at times glucose �1,000
mg/dl (117). The children who die at onset frequently have
a history that the first health care providers to evaluate the
child missed the diagnosis of diabetes, and a several day
delay in treatment can be fatal. Such acute presentations
are prevented in children pre-identified for diabetes risk in
studies such as DAISY (117). Once diabetes has developed,
loss of C-peptide secretion is the primary parameter to
follow further disease progression (167).
Stage VI: Insulin dependence. A controversy has arisen
relative to the quantitative preservation of C-peptide and
�-cells in patients with long-term type 1 diabetes, with
important evidence of preservation in some insulin-ex-
pressing cells within the pancreas of some long-term
patients with childhood-onset diabetes, as well as apopto-
sis of �-cells (168,169). Fortunately a large set of pancre-
ases of cadaveric donors is rapidly becoming available for
histologic analysis through the nPOD program headed by
Mark Atkinson. An advantage of these pancreases is the
availability of the whole pancreas for analysis of multiple
regions of the organ. Pancreases from cadaveric donors
with type 1 diabetes, as well as nondiabetic cadaveric
donors, are being analyzed, and the slides are posted on a
Web site for international scientific study (www.jdrfnpod.
org). The slides can be viewed via desktop computer as if
through a microscope. It is already apparent that a subset
of childhood-onset patients with a clinical diagnosis of
type 1 diabetes has large numbers of �-cells, with �-cells in
100% of their islets, but it is likely that these patients do
not have type 1A diabetes (170), and their disease may be
related to ketosis-prone forms of diabetes occurring in
minority populations of the U.S (171). Most of the pancre-
ases from patients with long-term childhood-onset diabe-
tes in nPOD have no �-cells within islets. Approximately
10% have limited areas with insulin containing �-cells. This
heterogeneity with lobular areas with �-cells remaining
(reported decades ago by Foulis and coworkers studying
recent-onset patients [172,173]) likely explains the slow
progression to type 1A diabetes. It is reminiscent of the
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destruction of melanocytes in patches of skin of patients
with vitiligo (Fig. 5).

TRIALS FOR PREVENTION OF �-CELL DESTRUCTION

Though multiple interventions have failed to prevent ei-
ther progression to type 1 diabetes or loss of �-cell
function postdiagnosis, we are entering an era where
several immunotherapies can almost certainly ameliorate
�-cell loss (174,175), with several phase III trials underway
or planned. Key information nevertheless remains lacking
in terms of the long-term efficacy and safety and each
therapeutic pathway, thus necessitating the need for fur-
ther study. One can broadly divide therapies into those
that are generally immunosuppressive and immunomodu-
latory versus antigen specific. The immunomodulatory/
immunosuppressive trials have a higher probability of
efficacy, based on current data, but likely involve greater
risk. I will highlight just four therapies, each with some
evidence of efficacy, given both the void of “positive” trials
and paucity of large well-controlled studies.

The National Institutes of Health (NIH) Diabetes Pre-
vention Trial evaluated both parenteral insulin and oral
insulin (to induce “oral tolerance”) in cytoplasmic islet
autoantibody–positive relatives of patients with type 1
diabetes. Relatives were staged in terms of their expres-
sion of insulin autoantibodies, metabolic abnormalities,
and presence of the protective HLA allele DQB1*0602. In
addition, GAD65 and ICA512 autoantibodies were mea-
sured though not included in the prediction of disease risk.
These large studies, as well as the ENDIT prevention study
utilizing nicotinamide, demonstrated the ability to predict
type 1 diabetes on a relatively large scale and to assign

various levels of risk for disease (65,66,159,176,177). Over-
all, none of these studies influenced progression to diabe-
tes, though in one subgroup of the oral insulin trial, those
with high levels of insulin autoantibodies, oral insulin
significantly slowed progression to diabetes (Fig. 6). Given
the subgroup analysis, the NIH TrialNet group is now
seeking to confirm whether oral insulin can ameliorate
progression to diabetes of islet autoantibody–positive rel-
atives expressing multiple islet autoantibodies as well as
those having insulin autoantibodies.

The primary outcome variable in trials at the onset of
type 1 diabetes is preservation of C-peptide. GAD65 is a
prominent target of the autoimmunity of humans, with
GAD65 autoantibodies one of the best predictors of pro-
gression to diabetes. GAD65 in the adjuvant alum in a
randomized placebo controlled small trial delayed loss of
C-peptide, though without improving A1C or decreasing
insulin requirements in the treated patients (178). Confir-
matory studies of GAD65 vaccination are underway, in-
cluding a new-onset TrialNet study, with plans for a
prevention study.

Two studies, using single courses of two different anti-
CD3 antibodies, significantly delayed the loss of C-peptide
secretion (173,174). The anti-CD3 antibodies were modi-
fied to decrease cytokine release and limit acute toxicity.
The delay in loss of C-peptide lasted for �6–12 months,
followed by what appears to be resumption of C-peptide
decline parallel to (though delayed) control subjects.
Decreased insulin utilization was associated with de-
creased loss of C-peptide. There is evidence that in addi-
tion to acute and transient depletion of T cells, the therapy
induces regulatory T cells and, in particular, evidence for

nPOD (Atkinson)
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FIG. 5. nPOD pancreas 608 of cadaveric donor with long-term type 1 diabetes, showing lobular loss of �-cells. Picture provided by R. Gianani from
nPOD Web site (www.jdrfnpod.org).
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regulatory CD8 T cells (41,179). Longer follow up and
evaluation of a larger number of individuals in phase III
trials will be essential to judge efficacy and potential
toxicity.

A recent TrialNet study indicates that the anti–B-cell
antibody, anti-CD20, as a single course, significantly delays
loss of C-peptide, improves A1C, and decreases insulin
requirement (180). Anti-CD20 essentially eliminates B-
lymphocytes from the circulation for months to a year but
does not target plasma cells. Thus, many antibodies are
unchanged with this therapy, while selected autoantibod-
ies are markedly inhibited (181). Anti-CD20 has been
utilized as therapy for B-cell lymphoma and shows efficacy
in multiple sclerosis and rheumatoid arthritis. Thus, there
is considerably more experience with this therapy than
with anti-CD3. Nevertheless, further study is essential
(including more than a single drug course) to evaluate
both efficacy and safety as a single agent in patients
developing diabetes and those with new-onset diabetes.
Newer anti-CD20 antibodies and a series of therapeutics
targeting B-cells are in development. From animal studies
there is evidence of regulatory B-cell induction, and B-
cells themselves are likely important for the presentation
of islet autoantigens (42).

To date none of the aforementioned therapies have
demonstrated long-term permanent arrest of disease
progression. It is remarkable that despite being such a
slow destructive process, the autoimmunity underlying
type 1A diabetes is so resistant to immunotherapy. It is
likely that the therapies showing promise to date in the
above trials do not eliminate the underlying T cell
memory driving �-cell destruction, and that multiple
courses of therapy or combinatorial therapies will need

to be developed to achieve long-term immunologic
remission (182). That said, long-term continuous immu-
nosuppression is almost certainly not an option as a
therapy for type 1 diabetes.

Approximately 1 in 300 randomly selected cadaveric
donors from the general population express multiple
islet autoantibodies (183,184), and thus it is likely that
�1 million individuals in the U.S. are in the process of
developing type 1 diabetes. As immunomodulatory/im-
munosuppressive therapies improve or, hopefully, anti-
gen specific therapies are developed, we believe it is
likely that chronic active insulitis will become a treat-
able entity similar to chronic active hepatitis. North
American patients with new-onset diabetes and rela-
tives of patients with type 1 diabetes can be evaluated
for islet autoantibodies and participation in trials by
calling 1-800-HALT-DM1 or accessing the TrialNet Web
site (www.diabetestrialnet.org).

ACKNOWLEDGMENTS

This work is supported by grants from the National Institutes
of Health (DK32083, DK55969, DK62718, AI50864, DK32493,
DK064605), the Immune Tolerance Network, the Diabetes
Endocrine Research Center (P30 DK57516), the American
Diabetes Association, the Juvenile Diabetes Foundation,
the Helmsley Foundation, the Children’s Diabetes Foun-
dation, and the Brehm Coalition.

G.S.E. has been a paid consultant for and has received
stock options from Bayhill Therapeutics. No other poten-
tial conflicts of interest relevant to this article were
reported.

Insulin Effect Most Evident in Subjects
with Baseline IAA ≥ 300 

N=63 (Ins.) and 69 (Plac.)

Pr
op

or
tio

n 
Fr

ee
 o

f D
ia

be
te

s

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0
Oral Insulin

Placebo

Log-rank P=0.01
Peto Pr. P=0.01
Hazard Ratio: 0.41 (0.21, 0.80)

Projected  10 year
delay 

Years Followed

Control

Treated

Ann NY Acad Sci 2008;1150:190–196

FIG. 6. A subgroup of islet autoantibody–positive relatives with the highest levels of insulin autoantibodies showed delayed progression to
diabetes when treated with oral insulin to induce mucosal tolerance.
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119. Harjutsalo V, Sjöberg L, Tuomilehto J. Time trends in the incidence of
type 1 diabetes in Finnish children: a cohort study. Lancet 2008;371:1777–
1782

120. Writing Group for the SEARCH for Diabetes in Youth Study Group,
Dabelea D, Bell RA, D’Agostino RB Jr, Imperatore G, Johansen JM, Linder
B, Liu LL, Loots B, Marcovina S, Mayer-Davis EJ, Pettitt DJ, Waitzfelder
B. Incidence of diabetes in youth in the United States. JAMA 2007;297:
2716–2724

121. Bach JF. The effect of infections on susceptibility to autoimmune and
allergic diseases. N Engl J Med 2002;347:911–920

122. Gale EA. A missing link in the hygiene hypothesis? Diabetologia 2002;45:
588–594

123. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC,
Hu C, Wong FS, Szot GL, Bluestone JA, Gordon JI, Chervonsky AV. Innate
immunity and intestinal microbiota in the development of type 1 diabetes.
Nature 2008;455:1109–1113

124. Gale EA. To boldly go—or to go too boldly? The accelerator hypothesis
revisited. Diabetologia 2007;50:1571–1575

125. Fourlanos S, Harrison LC, Colman PG. The accelerator hypothesis and
increasing incidence of type 1 diabetes. Curr Opin Endocrinol Diabetes
Obes 2008;15:321–325

126. Raj SM, Howson JM, Walker NM, Cooper JD, Smyth DJ, Field SF, Stevens
HE, Todd JA. No association of multiple type 2 diabetes loci with type 1
diabetes. Diabetologia 2009;52:2109–2116

127. Fourlanos S, Narendran P, Byrnes GB, Colman PG, Harrison LC. Insulin
resistance is a risk factor for progression to type 1 diabetes. Diabetologia
2004;47:1661–1667

128. Li Q, Xu B, Michie SA, Rubins KH, Schreriber RD, McDevitt HO.
Interferon-alpha initiates type 1 diabetes in nonobese diabetic mice. Proc
Natl Acad Sci U S A 2008;105:12439–12444

129. Schreuder TC, Gelderblom HC, Weegink CJ, Hamann D, Reesink HW,
Devries JH, Hoekstra JB, Jansen PL: High incidence of type 1 diabetes
mellitus during or shortly after treatment with pegylated interferon alpha
for chronic hepatitis C virus infection. Liver Int 2008;28:39–46

130. Weintrob N, Sprecher E, Israel S, Pinhas-Hamiel O, Kwon OJ, Bloch K,
Abramov N, Arbel A, Josefsberg Z, Brautbar C, Vardi P. Type 1 diabetes
environmental factors and correspondence analysis of HLA class II genes
in the Yemenite Jewish community in Israel. Diabetes Care 2001;24:650–
653

131. Ito Y, Nieda M, Uchigata Y, Nishimura M, Tokunaga K, Kuwata S, Obata
F, Tadokoro K, Hirata Y, Omori Y. Recognition of human insulin in the
context of HLA-DRB1*0406 products by T cells of insulin autoimmune
syndrome patients and healthy donors. J Immunol 1993;151:5770–5776

132. Uchigata Y, Hirata Y, Omori Y, Iwamoto Y, Tokunaga K. Worldwide
differences in the incidence of insulin autoimmune syndrome (Hirata
disease) with respect to the evolution of HLA-DR4 alleles. Hum Immunol
2000;61:154–157

133. Vardi P, Brik R, Barzilai D, Lorber M, Scharf Y. Frequent induction of
insulin autoantibodies by D-penicillamine in patients with rheumatoid
arthritis. J Rheumatol 1992;19:1527–1530

134. Furukawa N, Miyamura N, Nishida K, Motoshima H, Taketa K, Araki E.
Possible relevance of alpha lipoic acid contained in a health supplement
in a case of insulin autoimmune syndrome. Diabetes Res Clin Pract
2007;75:366–367

135. Akerblom HK, Virtanen SM, Ilonen J, Savilahti E, Vaarala O, Reunanen A,
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