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Genome-wide sequencing-based identification of
methylation quantitative trait loci and their role in
schizophrenia risk
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DNA methylation (DNAm) is an epigenetic regulator of gene expression and a hallmark of
gene-environment interaction. Using whole-genome bisulfite sequencing, we have surveyed
DNAm in 344 samples of human postmortem brain tissue from neurotypical subjects and
individuals with schizophrenia. We identify genetic influence on local methylation levels
throughout the genome, both at CpG sites and CpH sites, with 86% of SNPs and 55% of
CpGs being part of methylation quantitative trait loci (meQTLs). These associations can
further be clustered into regions that are differentially methylated by a given SNP, high-
lighting the genes and regions with which these loci are epigenetically associated. These
findings can be used to better characterize schizophrenia GWAS-identified variants as epi-
genetic risk variants. Regions differentially methylated by schizophrenia risk-SNPs explain
much of the heritability associated with risk loci, despite covering only a fraction of the
genomic space. We provide a comprehensive, single base resolution view of association
between genetic variation and genomic methylation, and implicate schizophrenia GWAS-
associated variants as influencing the epigenetic plasticity of the brain.
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ARTICLE

NA methylation (DNAm) plays an important role in the

epigenetic regulation of gene expression. It varies

throughout development and among tissue types, and has
been thought to be a high-fidelity representation of the interac-
tion between genes and environment. While some variation in
DNAm can be attributed to developmental and exogenous fac-
tors, such as diet! and cigarette smoking?, Davies et al.? identified
some inter-individual variation that is consistent across tissue
types. This provided evidence that DNA sequence drives DNA
methylation levels, at sites known as methylation quantitative
trait loci (meQTLs). Inter-individual DNAm differences have
since been confirmed by twin studies*°. Initial studies found
methylation association with sequence variants at specific loci®.
These epigenetic associations likely extend beyond losing the “C”
or “G” allele in CpG dinucleotides (for example, through dea-
mination of the cytosine base in this genomic context)”.

Genome-wide studies are necessary to fully understand the
extent and genomic properties of meQTLs. However, so far, most
large-scale studies have used microarray technologies that only
measure a small proportion of CpGs®-10. The largest study to date
to test associations between genotype and DNAm used MBD-seq,
a method lacking single base-pair resolution!!. Yet even with
limited resolution, these initial studies have found that local
genetic influence on DNAm is extensive throughout the genome,
and meQTLs are enriched at regulatory sites!?13,

Currently, a major puzzle in the field of functional genomics is
understanding the molecular effects of genetic risk loci and var-
iants identified by genome-wide association studies (GWAS) for
many common disorders and traits which do not involve coding
sequences. This is particularly challenging in tissues like brain that
are difficult to access or model, leaving little clarity into genetic
mechanisms behind psychiatric disorders such as schizo-
phrenia (SCZD). While schizophrenia is highly heritable!4, and
GWAS have identified a growing number of significant loci'>!,
only few loci have been functionally resolved!”. Genome-wide
gene expression QTL (eQTL) approaches!®19, and their
extensions?0-22, have prioritized variants and associated genes, but
many genomic loci fail to associate with nearby gene expression.
In contrast, associating schizophrenia risk variants with a stable
epigenetic mark like DNAm provide clues for potential epigenetic
mechanisms of action?>?4. Indeed, previous meQTL maps using
microarray technologies implicated a larger number of SCZD risk
loci than eQTL maps, while only measuring a fraction of the
methylome!®. DNAm itself may further reflect the cumulative
effects of environmental exposures across the lifespan®?, and may
represent a surrogate of “E” in GxE interactions that contribute to
risks for many disorders?® that can further act as a mediator of
genetic risk on gene expression.

Unlike microarray technologies, whole-genome bisulfite
sequencing (WGBS) has the advantage of measuring cytosine
methylation at single base-pair resolution, as well as measuring
CpH (H=A, T, or C) DNA methylation levels (in addition to
CpGs). While CpH sites are generally unmethylated in somatic
tissues, neurons in the human brain have uniquely high levels of
CpHm?’. By leveraging this technology, we have created the most
extensive genomic meQTL map in human postmortem brain
tissue to date, and use this information to fine-tune our under-
standing of the molecular mechanisms of genetic and epigenetic
risk for schizophrenia.

Results

Components of global variation in large-scale WGBS data sets.
We performed whole-genome bisulfite sequencing (WGBS) to
gain a comprehensive view of genetic influence on DNAm in the
adult human brain using two brain regions: the hippocampus and

the dorsolateral prefrontal cortex (DLPFC). These regions have
been prominently implicated in the pathogenesis of many psy-
chiatric disorders, particularly schizophrenia?®. After data pro-
cessing and quality control (see “Methods” section), we analyzed
165 DLPFC samples and 179 hippocampal samples from a total
of 183 adult donors aged 18-96 years (161 donors had data from
both regions, Supplementary Dataset 1). Data were generated
across two large diagnosis- and region-balanced batches. We
assessed 29,401,795 CpG sites across the epigenome, with an
average post-processing coverage of 17.3 reads per CpG site. 78%
of sites were highly (>80%) methylated while a minority were
lowly or unmethylated (8% are <20%, Supplementary Fig. S1).
While the technical effects of measuring DNAm levels using
microarrays are well-established??, particularly in human brain
tissue!?, corresponding assessments using WGBS data have been
limited due to available comparisons being relatively small stu-
dies. We, therefore, assessed the contributions of different bio-
logical and technical variables on genome-wide CpG DNAm
levels measured with WGBS.

First, we performed principal component analysis (PCA) across
the raw DNAm levels of the million most variable CpGs. The top
principal components were associated with quantitative/genotype-
defined ancestry (PC1: 6.5% variance explained, Supplementary
Fig. S2), estimated neuronal fraction (PC2: 3.34%), processing batch
(PC4: 1.37%), and brain region (PC5: 0.84%). The major batch
effects resulted from the inclusion of ENCODE “blacklist”
regions®), which have been reported to cause problems with
mapping and alignment in high-throughput sequencing data,
particularly epigenomic data. These processing issues are likely
further exacerbated in WGBS data, where the bisulfite treatment
results in lower complexity libraries depleted of cytosines, which
presumably relates to the influence of blacklist regions and ancestry
on DNAm levels. Cytosines in these black-listed regions were
therefore removed from reported site-specific analysis results.
Another increasingly common step in WGBS data processing
involves “smoothing” local CpG DNAm levels within each sample
to improve precision and borrow strength across nearby CpGs3l.
Smoothing reordered the top components of variation (Supple-
mentary Fig. S3), and resulted in the top component of variation
representing both batch and estimated neuronal fraction (both PC1
and PC2, explaining 13.9% and 10% of the variance, respectively).
Previous analyses of Illumina microarray-derived adult homogenate
DLPFC data suggested that estimated neuronal fraction was the
largest component of (CpG) DNAm level variation!®. Microarray
technology implicitly produces somewhat smooth DNAm levels for
a large fraction of probes that target multiple CpG sites. While the
effects of the brain region were further magnified with smoothing,
the effects of quantitative ancestry were dampened, and became
associated with PC4 (1% variance explained) rather than PC1 of
raw DNAm levels (6% explained variance; Fig. la-e).

We further complemented these global analyses using site-
specific variance components analysis, estimating the percentage
of smoothed DNAm level variance explained by technical and
biological components at each autosomal CpG, excluding the
blacklist (N = 26,416,185, using ANOVA, see “Methods” section,
Fig. 1f, see “Data availability” section). The factors that explained
the largest components of site-specific variation were technical
batch (median: 9.6% variance explained, interquartile range
3.4-19%), and related flow cell (7.9%, 6.3-9.6%) and instrument
(2.9%, 2.1-3.2%) variables, as well as the more biological brain
region (1.5%, 0.3-5.9%), estimated neuronal fraction (1%,
0.2-3.8%) variables. Traditionally considered confounders in
postmortem human brain studies—including tissue pH and
postmortem interval (PMI)—had very little influence on site-
specific DNAm levels using WGBS (in line with previous
microarray-based analyses!®). For example, pH and PMI
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Fig. 1 Variance in smoothed methylation data, post-QC. PCA was performed on all sites excluding the sex chromosomes and ENCODE's blacklist. a, b We
find that the top principal components of smoothed methylation data associate with both batch and neuronal composition. € We see that the third principal
component is associated with the brain region, and no longer associated with the batch. d In smoothed methylation data, ethnicity is reduced to the 4th
principal component. MDS: multidimensional scaling of genotype data. e Age associates with the fifth principal component. f Variance explained was

analyzed using ANOVA by each individual CpG site. We see that brain region and batch effects explain a large deal of variance, while biological factors

such as PMI and pH explain very little. n = 26,416,185 CpGs.

explained more than 1% of the variance across only approxi-
mately 5% of measured sites. Other technical variables hypothe-
sized to influence DNAm levels like the sequencing alignment
rates and bisulfite conversion rates (estimated with A spike-in
sequences, see “Methods” section) showed little influence in this
analysis. Overall, there was an extensive residual variation of
DNAm levels for the majority of sites beyond these technical and
biological variables.

Local genetic variation has strong effects on CpG DNA
methylation levels. We hypothesized that a large component of
this residual DNAm variation was likely captured by local genetic
sequence. We, therefore, performed genome-wide methylation
quantitative trait locus (meQTL) analyses (see “Methods” section)
on smoothed DNA methylation levels in each brain region
separately (across 29,401,795 CpG sites). In the DLPFC, we
computed meQTLs between each of these CpGs and the subset of
common SNPs within 20 kb upstream and downstream, which
identified 482,579,961 significant SNP-CpG pairs (at FDR < 0.01,
see “Data availability” section), representing 6,807,821 (86%) of
the tested SNPs and 14,551,080 (55%) of tested CpGs. Sensitivity
analyses using the more stringent Bonferroni cutoff (corre-
sponding to ~3 billion tests)—assuming both CpGs and SNPs are
independent (which is likely an overly-stringent assumption
given known spatial autocorrelation of CpGs and linkage dis-
equilibrium of SNPs)—identified 101,482,392 SNP-CpG pairs,

representing 15% of CpGs and 37% of tested SNPs. Given the
high genomic correlation among both CpGs and SNPs, we per-
formed the same analysis with a set of 535,859 LD-independent
SNPs (R?2<0.2) to reduce the potential effects of linkage dis-
equilibrium (LD) potentially inflating these statistics. This sen-
sitivity analysis found a substantial proportion of CpGs
(8,390,092, 29%) and SNPs (402,407, 75%) identified as meQTLs
at FDR < 0.01 with similar properties. Most SNPs associated with
methylation levels at many nearby CpG sites (mean = 57 CpGs,
median = 43 CpGs), and the methylation-associated SNPs had
varying genomic widths of effect in this local window ranging
from 1Dbp to the full 40 kb (mean = 14.5 kb, median = 12.7 kb).
Effect sizes were generally small, with a mean of 2.6% change in
methylation level per allele (IQR: 1.4-3.1%), but ranging up to
47%. Enforcing more stringent Bonferroni significance among
meQTLs resulted in higher effect sizes (mean = 4.5%), lower
widths of effect (mean = 7.5kb), and fewer—though still
numerous—CpGs associated with each SNP (mean = 34). In
both analyses we found that SNPs that disrupt a CpG dinucleo-
tide (i.e., a variant at the C or G, which would ablate the capacity
for methylation) have a slightly but significantly lower width of
effect and a slightly higher number of correlated CpGs, meaning
they have a higher effect density. This may be attributed to the
fact that CpGs tend to cluster in the genome. Additionally,
despite tested SNPs being LD-independent in the second analysis,
we find that half of CpGs associate with more than one SNP, with
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Fig. 2 Chromatin state of meQTLs and gDMRs. \We assessed the chromatin state of sites identified as meQTLs and gDMRs using data from various

tissues from the Roadmap Epigenomics Project. Data for brain tissues are highlighted in red. n =127 tissue types. Chromatin states are defined as follows.
1. Active TSS, 2: Flanking Active TSS, 3: Transcription at gene 5’ and 3/, 4: Strong transcription, 5: Weak transcription, 6: Genic enhancers, 7: Enhancers, 8:
ZNF genes & repeats, 9: Heterochromatin, 10: Bivalent/Poised TSS, 11: Flanking Bivalent TSS/Enhancer, 12: Bivalent Enhancer, 13: Repressed PolyComb, 14:
Weak Repressed PolyComb, 15: Quiescent/Low. a In genome-wide meQTLs, assessing a set of LD-independent SNPs, we see that the vast majority of
meQTL-CpGs are in quiescent chromatin regions. b We see that compared to genomic SNPs, CpGs associated with PGC schizophrenia risk SNPs are

enriched for regions of active transcription and depleted for regions of quiescent chromatin. € We see that CpH sites associated with PGC schizophrenia

risk SNPs are often in regions of active transcription.

a mean and median of 2, in line with previous observations in
gene expression data!832. Using information from the Roadmap
Epigenome33, most genetically-associated CpGs were in quiescent
genomic regions, and depleted for enhancer regions in the human
brain (Fig. 2a). The meQTLs from both brain regions are
searchable by SNPs or genomic regions of interest at: https://
eqtl.brainseq.org/WGBS_meQTL/.

Analogous results were observed in hippocampus samples,
yielding 505,142,175 significant pairs that represented 14,647,533
CpGs (55%) and 6,900,009 SNPs (87%, see “Data availability”
section). Analyses on LD-independent SNPs yielded a near-
similar proportion of SNPs (403,373 SNPs, 77%) implicating a
similar number of CpGs as seen in the DLPFC (8,566,898). Effect
sizes were similarly small, with a mean of 2.6% change in
methylation level per allele. Hippocampal meQTLs have similar
width of effect as those in DLPFC with a mean of 15,661 bp and
an average of 60 CpGs associated with a SNP. These analyses
suggested that the global properties of meQTLs were highly
similar across brain regions. Given the difficulty in identifying
suitable/comparable brain region-specific replication data sets, we
treated one region as the discovery data set and the other as
replication, and calculated m; statistics. By comparing our
findings between the two brain regions, we found very high
replicability, with hippocampal meQTLs showing a very high
sharing (m; = 0.978) with significant meQTLs identified in
DLPFC (using chrl, see “Methods” section).

We next performed a series of secondary analyses to better
characterize the determinants of such extensive genetic regulation
of DNA methylation. First, due to the mixed ethnicities of our
samples, and the potentially large differences in allele frequencies
between ancestry groups>4, we ran post-hoc meQTL analysis on a
subset of meQTLs identified in full genome analysis in the
DLPEC, separating samples into two groups by self-reported race.
African Americans (AAs) made up 67% of our total sample, and
thus were more likely to drive the results. Using significant
meQTLs on chromosome 1, analyses using only African
American samples (N = 112) showed that 99.91% of the meQTLs
were directionally consistent with the full analysis, with 92%
marginally significant (P <0.05) and 66% genome-wide signifi-
cant (FDR<0.01) in the smaller sample size and an overall

sharing of m = 0.995. In the European ancestry samples
(N =53), of the 90% of meQTLs that had polymorphic SNPs in
this group, 95% of meQTLs were directionally consistent, with
55% marginally significant and 16% genome-wide significant with
an overall sharing of 7; = 0.801. These decreased proportions
compared to AA-specific analyses at least partially related to the
smaller sample size and resulting in decreased statistical power
(Supplementary Fig. S4). We also found that in general,
differences in minor allele frequencies across ancestry groups
did not associate with differences in meQTL effect magnitude
(Supplementary Fig. S5), indicating that differences in ethnicity
composition of our samples were likely not driving our combined
ancestry analyses above. As an additional sensitivity analysis, we
performed meQTL analysis within each diagnostic group
separately to assess the extent to which schizophrenia diagnosis
influenced our findings. We found very high sharing (m; > 99%)
among significant meQTLs discovered in either diagnostic groups
(and assessed in the other/non-discovery group), supporting that
meQTL effects were globally similar between diagnostic groups.
We further explored the robustness of the selected meQTL
window size (20 kb) using heritability analysis (see “Methods”
section) on the methylome®® with different window sizes (20, 100,
500kb). DNA methylation levels were highly heritable using a
20kb window size, with 38% of tested CpG sites showing
significant heritability (FDR <0.01). These heritability results
were further consistent with the above meQTL analyses, with 99%
of significantly heritable CpGs being meQTLs (and conversely,
68% of meQTL-CpGs were heritable). Larger window sizes in
heritability analysis actually identified fewer CpGs with signifi-
cantly heritable methylation, implying that most genetic control
of methylation acts in cis and confirming that our meQTL
testing window was comprehensive. These WGBS data further
replicated meQTLs identified in Illumina 450k microarray data
(m; = 0.67)19, even though CpGs profiled on this microarray
platform were depleted for meQTLs (~30% of CpGs) compared
to WGBS (~55% of CpGs), in line with gene-biased designs of
Mumina microarrays. We, therefore, identified widespread
genetic control of CpG methylation levels. Understanding the
details of this landscape may help elucidate the functional
significance of SNPs highlighted by GWAS.
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Widespread meQTLs among schizophrenia risk variants. DNA
methylation previously has been shown to play a role in med-
iating genetic risk for neuropsychiatric (and other common)
disorders!1%-30-38, but all previous meQTL analyses have utilized
microarray, not sequencing-based, methylome data. We per-
formed extensive meQTL analyses on SNPs associated with
genetic risk for schizophrenia in these large WGBS data sets. We
specifically performed chromosome-scale meQTL analysis using
each of the “index” SNPs for loci associated with schizophrenia
from the most recent GWAS study of schizophrenia, ie.,
PGC2 + CLOZUK!. We assessed index SNPs with high-quality
genotype data in each region - 152 SNPs in DLPFC and 153 in the
hippocampus. Each SNP was tested against every CpG site in
the genome, considering a distance of <250 kb cis and everything
else trans. In DLPFC we found 25,382 significant (FDR <0.01,
Supplementary Dataset 2) SNP-CpG pairs, representing 147
SNPs and 25,303 CpGs, showing that most Psychiatric Genomics
Consortium (PGC) loci contain SNPs that associate with local
DNA methylation levels (as only 107 SNP-CpG pairs were in
trans). Schizophrenia risk-associated SNPs on average associated
with 172 CpGs (median = 104), and in this cis window had an
average genomic width of the effect of 177 kb (median = 147 kb).

We further performed functional validation of these associa-
tions using corresponding gene expression data. Using RNA-seq
data from the same regions and donors (see “Methods” section),
we assessed whether methylation at these CpGs correlated with
neighboring expression levels. Using previous eQTL analyses on
these same PGC loci!®3?, we assessed the mediation of expression
by mCpG (see “Methods” section). Eleven of 127 loci had a
correlation between gene expression and the methylation with
which they are associated. Importantly, 10 of these associated
with at least one CpG that mediated expression by at least 25%.
The same analyses on the exon and junction levels picked up
subtler effects, detecting 18 and 27 loci mediating expression
levels via methylation, respectively. We found that overall,
methylation mediation was most potent on the exon level
(median = 40%), then the junction level (median = 32%), and
least potent on the full gene level (median = 23%), in line with
the putative role of DNAm in promoting gene splicing#0.

The same meQTL analysis was performed in the hippocampus
WGBS data, revealing 48,023 significant SNP-CpG pairs
(Supplementary Dataset 3), representing 139/153 tested SNPs
(including 15,119 trans-meQTLs, 31.5%). Within the subset of
significant DLPFC meQTLs, hippocampal meQTLs had an
overall sharing of m; = 0.97, indicating that our findings are
very consistent between brain regions.

These results indicated that meQTL effects, at least in the
context of GWAS associations with schizophrenia, have much
broader effects than traditionally considered, and much wider
than the 20 kb window examined at the full genome level. In
order to see if schizophrenia-associated meQTLs are comparable
to non-disease-associated meQTLs, we took 5000 random SNPs
representing all levels of MAF and ran meQTL analysis with a
250 kb window. Again we found that the majority of SNPs (93%)
are meQTLs. We also find that neither MAF nor population-
MAF differences associate with any meQTL characteristics.
Interestingly, we found that these random meQTLs had
significantly lower width of effect than schizophrenia-associated
meQTLs in both regions (DLPFC P =8.9e—5, Hippocampus
P=1.le—11), and a significantly fewer number of affected CpGs
in the hippocampus (P=0.002). This combined with the
chromatin state enrichment analysis below may indicate that
these PGC-meQTLs are particularly functional, and potentially
involved in disease processes, as opposed to just being standardly
representative of the whole genome.

Risk-associated meQTL effects cluster in the genome. We then
proceeded to cluster our meQTL-CpGs into genetic differentially
methylated regions (gDMRs)—regions where methylation is dif-
ferential by additive genotype—for better functional character-
ization. Using a CpG-specific t-statistic cutoff of 5 (see “Methods”
section), these sites could be clustered into 1277 gDMRs (Fig. 3
and Supplementary Dataset 4). The majority of SCZD index SNPs
had such gDMRs, and most had more than one (mean = 9.5,
median = 6). The overall span of effect for each SNP was much
larger than the 20kb cis window we tested above for meQTL
analyses across the full genome, ranging up to 240 Mb on a single
chromosome, with a median of 95kb (mean = 17.5 Mb). Using
Roadmap Epigenome33 data, these SCZD risk-associated gDMRs
were enriched over the background of genome-wide LD-inde-
pendent meQTLs for transcriptional and weak transcriptional
chromatin signatures (Fig. 2b). They were also comparatively
depleted for weak repressive polycomb and quiescent chromatin
signatures. Overall, these gDMRs were in or near genes enriched
for GO terms related to synapse and membrane potential (Sup-
plementary Fig. S6). 20 gDMRs overlapped with psychENCODE
enhancers, and 142 overlapped with promoter regions. The genes
connected to these promoters were enriched for GO terms related
to acetylcholine, ion channels, and neurotransmitters.

Overall, the results of clustering meQTL-CpGs were quite
similar between regions. In the hippocampus, there were 1408
gDMRs (Supplementary Dataset 5), and more than half (853) of
gDMRs directly overlapped with a gDMR in the DLPFC.
Furthermore, 95.1% of DLPFC-identified gDMRs showed mar-
ginal P <0.05 significance among hippocampal meQTL effects
(based on the average P-value for each gDMR). In general, allelic
association with methylation in the hippocampus correlated with
the association in DLPFC gDMRs (r2=0.69, Supplementary
Fig. S7). A strong majority of gDMRs were located inside introns.
Again we found that most SNPs have multiple associated gDMRs
(mean = 10, median = 7) and have a high total genomic width
(mean = 15,447,206 bp, median = 122,887 bp). Only 16 of these
gDMRs contain the actual GWAS index SNP, suggesting that
these effects are more than just local consequences of genetic
variations. Overall, the genes represented by these gDMRs have
enrichment for GO terms related to synapses, membrane
potential, and inositol triphosphate (IP3), a second messenger
signaling molecule. In both regions, a handful of gDMRs had a
correlation to the expression of some gene (see “Methods”
section), and a few correlated to many genes, but most of these
gene-gDMR pairs were on different chromosomes, making results
difficult to interpret. Most pairs were negatively correlated
though, which fits with the traditional understanding of the
suppressive effect of methylation on gene expression*!:42.

These SCZD risk-associated gDMRs were further used as input
to partitioned LDSC analysis (see “Methods” section) to
illuminate their clinical relevance3. As a first pass, we ran
partitioned LDSC analysis on the LD blocks of the schizophrenia
GWAS loci used in meQTL analysis, which tested for enrichment
of top loci versus the rest of the genome, controlling for CNS-
relevant functional loci (see “Methods” section). These significant
GWAS loci LD blocks explained 15% of the additive genetic
heritability explained by SNPs (h%sxp), with a 10-fold enrichment
over the full genome (P =8e—16), in line with being the top-
ranked loci in the GWAS. We then considered two sets of gDMRs
defined by two different statistical thresholds: a more liberal ¢-
statistic > 3.5 cutoff (which corresponded roughly to controlling
an FDR <0.01 in cis meQTL analysis), termed DMRs35, and the
subset of entirely-contained gDMRs defined by #>5 (from
above), termed DMRs®. The DMRs>*> were generally larger and
more distant from each index SNP than the DMRs®, with the
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Fig. 3 Schizophrenia risk-associated gDMRs. Two examples of regions where methylation levels are associated with genotype at a schizophrenia risk

associated SNP.

majority of DMRs?? distal (in trans). We further divided these
gDMR sets into those cis (DMRs®,;; and DMRs3° ;) and trans
(DMRS?,,,,,; and DMRs3,,,,,,) relative to the PGC loci, i.e., those
that were within the GWAS LD blocks, and those outside these
blocks (Fig. 4). First, by comparing the heritability estimates from
cis versus trans gDMRs at both cutoffs (i.e., DMRs®, versus
DMRSs’,,,,;), we found that the majority of schizophrenia
heritability and enrichment was driven by cis regions. For
example, among the DMRs3, the subset that was cis (DMRs>? ;)
explained 12% of h2g\p, with a 156-fold enrichment over the
whole genome (P =1.3e—14), and were further highly enriched
compared to the background of the overall GWAS-significant LD
blocks. Approximately 80% of all cis h%syp of the GWAS-
significant loci (LD blocks) were captured by DMRs3~,;; (12%
versus 15%), even though they contained only 3% of loci sequence
(1.65Mb versus 56.5Mb). In contrast, DMRs>3, .. only
explained 1.7% of h2gyp, and were not significantly enriched for
schizophrenia risk ((P = 0.14); Fig. 4). Despite representing a very
small portion of the genome (658 kb), the more stringent cis
gDMRSs still explained 8.7% of h2gyp, with very strong enrichment

(243-fold, P = 1e—10). At only 48 kb, the stringent trans gDMRs
were not wide enough to effectively detect enrichment, and only
explained 0.5% of h%gyp. These results together suggest that the
majority of schizophrenia genetic risk in these genome-wide
significant loci specifically localizes among small subsets of
genomic regions associated with proximal/nearby DNAm levels.

Genetic regulation of CpH DNAm levels in homogenate brain
tissue. While non-CpG (CpH) DNA methylation predominantly
occurs in neuronal cells in the human brain?’, we could never-
theless observe detectable levels in homogenate/bulk tissue
(which contains 20-40% neuronal cells**). We analyzed
64,806,159 CpH sites in the DLPFC and 34,909,109 CpH sites in
the hippocampus, after filtering for only sites which had at least
moderate coverage and non-zero methylation levels across sam-
ples (see “Methods” section). These numbers of observable sites
in homogenate tissue from adult donors were much larger than in
prenatal donors, as CpH methylation occurs in post-mitotic
neurons®, and comparable to smaller studies of neuronal nuclei
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Category  SNPs (%) h?(%)  Enrichment P-value Width (bp) P-value
(fold) (Enrichment) (Coefficient)
SCZD Loci 1.491% 15.0% 10.1 8.01le-16 56462978 3.32e-18
DMR35 0.077% 12.1% 156.7 1.30e-14 1658085 4.19e-17
DMR35,,..  0.234% 1.7% 7.5 0.147 5427037 0.073142
DMR3 0.036% 8.7% 243.6 1.00e-10 657860 4.36e-12
DMRS,,,,  0.003%  0.5% 181.2 0.036 48414 0.017321
Index SNP 1 Index SNP 2
GWAS Locus 1 [N Locus 2 (I
cis trans
35 [ Il B Em T MO . | m
DNAmM
5 [] [ | | il = | [ | | (|

Fig. 4 LDSC results for schizophrenia heritability. (Top) LDSC analysis outputs for each category of gDMRs are explained here. Results showed that most
of the enrichment for schizophrenia heritability in our gDMR sites was in cis. (Bottom) Visual description of LDSC: we performed LDSC analysis on the
GWAS-identified loci as a background, and two sets of gDMRs, one with a cutoff of t > 3.5 and one with a more stringent cutoff of t > 5. We further divided
these gDMR sets into cis gDMRs—those within the GWAS loci—and trans gDMRs—those outside the GWAS loci. P-values presented here are not adjusted
for multiple testing, though multiple testing correction was used to determine significance in these analyses.

sorted with the NeuN antibody and subjected to WGBS#0. We
first performed full genome meQTL analysis on CpH sites, and
found a robust presence of CpH-meQTLs in the DLPFC, with
25,584,299 SNP-CpH pairs representing 5,805,754 SNPs, 468,914
of which were not significant meQTLs for CpG sites (see “Data
availability” section). These CpH-associated SNPs further had
CpG sites nearby, including in the testing window, suggesting
potentially independent or complementary effects of CpH and
CpG genetic associations. Unlike widespread CpG associations to
genotype, there were far fewer unique CpH sites associated with
genotype—only 976,094 CpHs associated with genotypes, corre-
sponding to just 1.5% of tested sites. Generally, genetic control on
CpH methylation appeared to have a narrower effect than on
CpG methylation, with each SNP associating with a mean of 4
CpH sites over a mean width of 12,570 bp. The effect sizes of
genotypes on methylation levels were much larger than they were
for CpGs, with a mean of 27% change in methylation level per
allele, and more than half (57%) of these CpH sites were inside
genes. The landscape of CpH-meQTLs in the hippocampus was
similar to DLPFC, identifying 25,043,471 SNP-CpH pairs,
representing 5,853,364 SNPs and 781,490 CpHs (see “Data
availability” section). A large majority (90%)—but not all—of
these SNPs and 63% of these CpH sites were also meQTLs in the
DLPFC. Similarly, CpH-meQTLs had much larger effect sizes
(mean = 29%) and most represented CpH sites (58%) were inside
genes. These effects in each brain region presumably represent
neuronal-specific genetic regulation of DNAm levels.

We also performed more focused CpH-meQTL analyses on the
PGC SNPs described above and found 1444 significant cis-meQTLs
and 48 trans-meQTLs in the DLPFC (Supplementary Dataset 6).
Again, a majority of PGC SNPs were represented (141/152). Some
of these CpH sites were near CpG-meQTLs, but many were not
(mean distance = 120 kb, median = 2798 bp), suggesting potential
independent effects of genotype on different sequence contexts of
DNAm. Like with CpGs associated with genotype, CpHs in PGC-
meQTLs were also enriched for transcriptional and weak
transcriptional chromatin states over full genome CpH-meQTLs,
and depleted for repressor polycomb and quiescent states

(Fig. 2c)33. Most CpHs were inside genes that were subsequently
enriched for neuronal GO terms related to neurons, synapses, and
channels, further validating the neuronal contribution of CpH
DNAm levels. We similarly observed much larger effect sizes of
risk alleles in CpHs compared to CpGs in line with genome-wide
analyses above, with a mean of 27% compared to 2%, respectively.
In the hippocampus, we found 1588 cis-CpH-meQTLs and 92
trans-CpH-meQTLs (Supplementary Dataset 7), representing 148/
153 tested SNPs. Similar to all previous analyses we see that these
sites are mostly inside genes and have much larger effect sizes than
CpGs. The genes represented by these CpHs are enriched for GO
terms related to neuronal anatomy, synapses, and IP3. Again,
distance to the nearest CpG-meQTL is highly variable, ranging
from 1 to 4,217,747 bp (mean = 24,374, median = 2,761). Results
were overall similar between both brain regions, and 1219 CpH-
meQTLs were in common between both regions, though again,
there were unique associations across regions. Overall, all PGC
index SNPs were meQTLs, with most associating with both CpG
and CpH sites, but a small percentage only associating with one
cytosine context.

Age associations to DNAm levels. While there was extensive
evidence of meQTLs in our WGBS data, there were a subset of
CpG sites that showed high percentages of variance explained by
age (Fig. 1f). We therefore more formally modeled methylation
over age in both brain regions, as DNA methylation has been
shown to globally accumulate with age?”48, We found an
extensive association with age; nearly 1 million CpGs
(DLPEC = 765,861, HIPPO = 972,047) associated with age at
FDR <0.01, and ~2 million CpG sites in each region (at FDR <
0.05, see “Data availability” section). The majority of these sites
were age-associated in both regions, with a sizable fraction of sites
showing some regional specificity (700,000 sites in the DLPFC
and 800,000 sites in the hippocampus). The majority (94%) of
sites increase in methylation with age, with half of the sites in
promoter regions, and a quarter in CpG islands or shores. Only
9% of genes represented by these differentially methylated
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promoters had a significant correlation to gene expression levels
in these samples, perhaps resulting from DNAm and RNA-seq
data being derived from different tissue dissections, and thus
having the different cellular composition (see “Methods” section).
In contrast, there was very little CpH association with age, with
only 5136 and 445 significant sites in hippocampus and DLPFC
respectively (at FDR <0.05). These results suggest that CpH
methylation may be more stable across adulthood and aging after
establishment in postnatal life.

Given the large extent of meQTL- and age-associated sites, we
asked whether any CpG sites showed dynamic meQTL effects
across the adult lifespan. Despite age being associated with
methylation at many sites throughout the genome, we found
there were practically no changes in meQTL effects across the
adult lifespan (ie., statistical interaction between age and
genotype), and, if anything, sites that were differentially
methylated by age were depleted (P<2.2e—16) for being
associated with local genetic variation (i.e., being meQTLs).

Minimal illness-state associated differential methylation levels.
We lastly modeled methylation differences between patients with
schizophrenia (nprprc = 70, nuppo =77) and neurotypical
controls (nprppc = 95, nuppo = 102). These associations are
typically more subtle—fewer sites with smaller effect sizes—than
age or genotype effects in microarray datal® and more likely to
represent cohort- or data set-specific findings*. In these WGBS
data, we found very few FDR-significant CpG sites—none in
DLPFC and 70 in the hippocampus. This is perhaps not sur-
prising based on previous studies and the high multiple testing
burden—almost two orders of magnitude more than microarray
platforms—and smaller sample sizes due to the expense and
computational intensity of WGBS. Re-analysis of our previous
DLPFC Illumina 450k microarray data limited to the 164 donors
with WGBS data identified an order of magnitude fewer sites than
in the full cohort (184 CpGs versus 2104 CpGs at the same
Bonferroni-corrected P < 0.05), and further, only 4 sites in this re-
analysis remained significant enforcing Bonferroni correction
using the number of WGBS-tested (rather than microarray-tes-
ted) sites, emphasizing the importance of both of these factors in
discovery. We found a similar lack of case—control signal at CpH
sites, with no significant hits in DLPFC and 1293 in hippo-
campus, with most (70%) of the hippocampal hits being in or
nearby genes. These results suggest that despite major environ-
mental associations of chronic schizophrenia, including smoking,
drug treatment, general health deprivations, and chronic psy-
chological stress, the effects observable on the methylome in bulk
tissue are remarkably subtle, particularly in the contexts of much
stronger genotype- and age-associated effects.

Discussion

Here we present the most comprehensive whole-genome bisulfite
sequencing (WGBS) study—particularly in the human brain—to
date, to better understand technical and biological factors that
contribute to genome-wide DNA methylation levels at both CpG
and CpH sites. We first demonstrated, at a single base-pair
resolution, that meQTLs are highly abundant throughout the
entire genome at a breadth and scope previously unseen. Not only
can common SNPs associate with CpG methylation, but they also
uniquely and independently associate with CpH methylation
levels in adult neurons. Furthermore, we demonstrated the clin-
ical relevance of these single base resolution meQTL maps to
identify the functional significance of loci identified by GWAS in
the human brain. Using schizophrenia as an example, we found
DNA methylation associations to nearly every genome-wide
significant variant that clustered into many local genetic

differentially methylated regions (gDMRs) that explained sig-
nificant proportions of disease heritability. We have further cre-
ated a user-friendly meQTL browser so that other researchers
may use this resource to better understand their own genomic
regions of interest.

Due to the expense and computational intensity, WGBS is
challenging for epigenomic studies. With our large-scale study,
we were able to identify the effects of technical and potential
biological variables on our data. This has been less well char-
acterized than microarray studies, and we found that batch and
ancestry cause much variance in the data, and their effects are
exacerbated and alleviated, respectively, by the smoothing pro-
cess. We also found that ENCODE blacklist regions are unreliable
in WGBS data, due to the increased difficulty of alignment30.
Overall, it is clear that genotype and age impact methylation at a
large number of CpG and CpH sites, contrasting with schizo-
phrenia disease state which associates very little with DNAm.
There were few SCZD-associated CpGs in the hippocampus and
none in DLPFC, potentially in contrast to previous work!0. We
note that our previous microarray study had a much larger
sample size (191 cases, 240 controls), and identified CpG probes
with very small differences in DNAm levels (<0.05), which were
likely smaller than the precision of WGBS with average post-QC
coverage of 22 reads (even by increasing precision through
smoothing).

Previous studies have identified a genomic presence of
meQTLs, but not at a single base-pair resolution. Our findings are
largely consistent with previous work, in that meQTLs are indeed
extensive throughout the genome, and that most of their reg-
ulation occurs locally. However, while earlier estimates reported
that 15% of CpGs were under genetic controlll, we greatly
increased this fraction to 55%. Like Smith et al.8, we showed that
overlap was generally high between the two brain regions we
surveyed, though there are differences as well. Studies have also
found that functional meQTLs are enriched for active chromatin
states!! and that meQTLs appear to impact alternative splicing!?,
further agreeing with our results and supporting the idea that
schizophrenia risk associated loci may represent functional
meQTLs. With our large sample and high genomic breadth, we
are able to expand on all of these earlier findings at an in-depth
genomic level.

These results further implicate DNAm as perhaps the most
proximal molecular correlate of DNA sequence variation. The
most comprehensive eQTL resource constructed in brain tissue,
using over 1400 individuals, identified that ~25% of common
genetic variants associated with nearby gene expression levels®”
and our meQTL maps here implicated three times as many SNPs
(76%) with a much smaller number of donors. Similarly, the
recent GTEx v8 eQTL efforts—performed across 838 donors and
17,382 RNA-seq samples across 49 tissues—implicated 43% of
tested SN'Vs with gene expression in at least one tissue.

These meQTLs further refined our understanding of the
functional significance of schizophrenia genetic risk loci. By
leveraging WGBS data combined with genotype data from the
same samples, we identified molecular phenotypes associated
with individual risk variants. This process could more generally
filter GWAS findings to regions of the genome that could impart
functional consequences of these risk variants. We found that
regions that are differentially methylated by risk-associated gen-
otypes explained most of the heritability imparted by the genome-
wide significant schizophrenia risk loci, despite spanning a much
smaller fraction of the genome (1.6 versus 56.5 Mb). We also
found that for some of these risk loci which have been previously
identified as eQTLs3°, DNA methylation mediates eQTL effects,
refining the potential mechanism by which genetic risk variants
may affect brain function. We note that the strongest mediation
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effects were seen among exons, indicating that differences in
methylation may be key to alternative splicing, as has been pre-
viously hypothesized>!. While our data do not show that DNAm
mediates expression for the majority of the meQTLs, this must be
viewed with some caution. Our brain samples represent a
moment in time in the lifespan of any given brain, and the data
are from bulk tissue. At different life stages, perhaps in specific
cell populations, mediation effects may be more prominent,
particularly in the developing brain?8. The interplay between
sequence variation, DNAm, and gene expression will likely be
refined across cell type-specific analyses from the same source
tissue.

WGBS also gives the unique ability to examine CpH methy-
lation, an often overlooked mark, particularly in the brain. We
found that DNAm levels at specific CpH sites were also associated
with genetic variation, which presumably reflected neuron-
specific genetic regulation of DNAm levels. It is interesting that
the genetic control of CpH methylation seems to have a much
larger effect size than that on CpGm, particularly given the fact
that the fraction of neurons in our homogenate tissue were
uniquely driving these associations. This mark is particularly
interesting to examine in relation to psychiatric disorders because
it is specific to neurons, so we can point to the cell type of interest
at these sites. Understanding which CpHs are under the control
of risk loci even further refines our understanding of the risk
loci’s functions because of this. It is also interesting that despite
CpHs being abundant throughout the genome, most meQTL-
CpHs are inside genes, possibly further pointing to functional
significance. Large-scale analyses in sorted neuronal cell popula-
tions can further refine these associations, particularly in different
subpopulations of neurons (i.e., inhibitory and excitatory)>2.

Overall, we have established a comprehensive landscape of
genetic control of genomic methylation in the human brain.
Based on previous findings that many meQTLs are stable across
tissue types, a large fraction of this meQTL map could apply to
other tissues and cell types. It is clear that genotype has a robust
role in determining local methylation levels, not only at CpG sites
but at CpH sites as well. These findings can further be applied to
understand the functional significance of genetic risk loci iden-
tified in GWAS.

Methods

Study samples. Postmortem brain specimens were donated through the Offices of
the Chief Medical Examiners of the District of Columbia and of the Common-
wealth of Virginia, Northern District to the NIMH Brain Tissue Collection at the
National Institutes of Health in Bethesda, MD, according to NIH Institutional
Review Board guidelines (Protocol #90-M-0142). Audiotaped informed consent
was obtained from legal next-of-kin on every case (as these donations occurred
after death, and thus the donors themselves could not consent). Details of the
donation process are described previously>3>4. All adult neurotypical controls were
free from psychiatric and/or neurologic diagnoses and substance abuse according
to DSM-IV, and had toxicology screening to exclude acute drug and alcohol
intoxication/use at the time of death®.

WGBS data generation. Genomic DNA was extracted from 100 mg of the pul-
verized dorsolateral prefrontal cortex (DLPFC, corresponding to BA46/9) or hip-
pocampus tissue (dissected as previously described®) with the phenol-chloroform
method. The hippocampus was dissected from the anterior tip posteriorly through
to the midbody of the hippocampus at the level of the lateral geniculate nucleus,
which included the hippocampus proper (i.e., Ammons Horn and CA1-3) plus the
subicular complex. The DLPFC was dissected in a plane perpendicular to the pial
surface in area 46 of the cortex to capture from the pial surface to the gray
matter-WM junction.

DNA was subjected to bisulfite conversion followed by sequencing library
preparation using the TruSeq DNA methylation kit from Illumina. Lambda DNA
was spiked prior to bisulfite conversion to assess its rate, and we used 20% PhiX to
better calibrate Illumina base calling on these lower complexity libraries. The
resulting libraries were pooled and sequenced on an Illumina HiSeq X Ten
sequencer with paired-end 150 bp reads (2x150bp), targeting 90 Gb per sample.
This corresponds to 30x coverage of the human genome as extra reads were
generated to account for the addition of PhiX.

Data processing. The raw WGBS data was processed using FastQC to control for
quality of reads, Trim Galore to trim reads and remove adapter content®®, Arioc for
alignment to the GRCh38.p12 genome (obtained from https://ftp.ncbi.nlm.nih.gov/
genomes/all/GCA/000/001/405/GCA_000001405.27_GRCh38.p12/
GCA_000001405.27_GRCh38.p12_assembly_structure/Primary_Assembly/
assembled_chromosomes/)%7, duplicate alignments were removed with
SAMBLASTER?, and filtered with samtools® (v1.9) to exclude all but primary
alignments with a MAPQ > 5. We used the Bismark methylation extractor to
extract methylation data from aligned, filtered reads®’. We then used the bsseq R/
Bioconductor package (v1.18) to process and combine the DNA methylation
proportions across the samples for all further manipulation and analysis3!. After
initial data metrics were calculated, the methylation data for each sample was
locally smoothed using BSmooth with default parameters for downstream analyses.
CpG results were filtered to those, not in blacklist regions (DLPFC N = 26,155,085,
Hippocampus N = 26,301,249), and those which had coverage > 3. CpHs were
filtered to sites that had >3 coverage and non-zero methylation in at least half the
samples. Due to an unidentifiable primary source of variance, 11 samples in the
DLPFC were dropped before analysis. We also extracted DNA sequence variants
from 740 common exonic/coding sites for comparisons to DNA genotyping data to
confirm sample identities, as implemented in our SPEAQeasy RNA-seq software®!.

DNA SNP genotyping. Genotype data on the 183 unique donors under study were
processed and imputed with additional donors across the full LIBD postmortem
genotype datal!8. Genetic imputation was performed on high-quality observed
genotypes (removing low quality and rare variants) using the prephasing/impu-
tation stepwise approach implemented in IMPUTE262 and Shape-IT®? imputation
reference set from the full 1000 Human Genomes Project Phase 3 dataset®* genome
build hgl9. Imputation was performed separately by the Illumina microarray
platform across the entire brain collection, and study-specific samples were
extracted from the imputed genotypes. This study contained three imputation
batches, corresponding to the Illumina h650 (N=43), 1 M Duo (N = 139), and
Omni5 (N =2) platforms. Imputed genotypes for the entire cohort were merged
across imputation runs/batches in the Oxford file format as dosages, then con-
verted to plink file format as “hard call” genotypes (treating variants with posterior
probabilities < 0.9 as missing). After filtering to just the donors in this study, we
retained common variants (MAF > 5%, relative to this sample) that were present in
the majority of samples (missingness < 10%) and that were in Hardy-Weinberg
equilibrium (at P> 1 x 1079) using the Plink tool kit version 1.90b3a%>. Multi-
dimensional scaling (MDS) was performed on autosomal LD-independent SNPs
(variation inflation factor = 1.25, corresponding to R? <0.2) to construct genomic
ancestry components on each sample, which can be interpreted as quantitative
levels of ethnicity—the first component separated the European and African
American samples, for inclusion as potential confounders in the differential
methylation analyses described below. We also extracted 740 observed and
imputed DNA-genotyped SNPs, and successfully confirmed sample identities
against these same variants extracted from the WGBS data.

Assessment of technical and biological variation. Principal component analyses
(PCA) were performed on the 1e6 most variable autosomal CpG sites using the
prcomp() function in R. We calculated the percentage of variance explained by
biological and technical variables using the anova() and Im() functions in R.

meQTL analysis. We used R package Matrix eQTLS (v2.3) in all meQTL analyses.
For full genome analysis, we set the maximum cis SNP to “gene” distance to 20 kb.
We approximated the P-value equivalent to FDR = 0.01 and used this as the P-
value cutoff. We used only SNPs which were common (with minor allele fre-
quencies, MAF > 5%) across the donors in each data set separately that were in
Hardy-Weinberg equilibrium (at P> le—6) with high non-missingness (>90%
present), leading to analysis of 7,897,043 SNPs in the DLPFC and 7,865,986 SNPs
in the hippocampus. The model adjusted for 28 covariates, which were the top 28
principal components of the methylation data. For PGC SNP analyses, we set the
cis distance to 250 kb, and considered everything else in trans. We set the P-value
cutoff to 1 so that we had statistics for every SNP-CpG pair in this analysis.
meQTL interaction with age, neuronal composition, and MDS1 was assessed using
the modelLINEAR_CROSS parameter. meQTLs were then organized into gDMRs
by using the bumphunter R/Bioconductor package (v1.30)%7 function regionFinder,
to create clusters of adjacent meQTLs which all had an association statistic of ¢ > 5.
These were filtered to gDMRs containing at least two adjacent CpGs. We used the
cleaningY() function from the jaffelab package®® version 0.99.20 to regress out
adjustment covariates to visualize the DNAm levels in subsequent plots. In order to
assess replicability and consistency between meQTL analyses and different sample
subgroups, we calculated 7; statistics, which estimates the fraction of alternative
hypotheses. To do this, we take all significant meQTLs from the main analysis, and
then calculate the statistics for these SNP-CpG pairs in the data set we wish to
compare. We then take all the P-values—regardless of their significance—from the
comparison group, and use R package g-value® (v2.20) to calculate 7, (which is
the proportion of true null hypotheses), which is then subtracted from 1 to cal-
culate 7;.
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Heritability analysis. We estimated the SNP-heritability of DNAm for each CpG
site using the GCTA software3>. We removed seven samples of DLPFC and eight
samples of HIPPO so that all pairs of retained samples (DLPFC 158, HIPPO 171)
had a genetic relatedness less than 0.025 and were included for heritability esti-
mation. The genetic relationship matrix (GRM) was calculated using SNPs around
each CpG site at three different window sizes (40 kb, 200kb, and 1 Mb). We
included the same set of covariates as we used in meQTL analysis in heritability
estimation.

Functional significance analysis. We annotated our data to nearby genes relative
to Gencode v. 29 on hg38. We performed Gene Ontology and gene set enrichment
using clusterProfiler (v3.12)70 with a P-value cutoff of 0.01 and g-value cutoff

of 0.05.

Stratified linkage disequilibrium score regression. We performed stratified LD-
score regression (LDSC) as described by Finucane et al*3, as implemented by
Rizzardi, Hickey et al.”! for defined DMRs using summary statistics from recent
GWAS72. More detailed methods are provided in Price, Collado-Torres, et al.%6,
including code: https://github.com/LieberInstitute/brain-epigenomics/tree/master/
LDSC/code. Briefly, we used LDSC (LD SCore) v1.0.0 to estimate the proportion of
heritability captured in sets of gDMRs for each GWAS phenotype, as well as central
nervous system annotations included in the LDSC package (referred to as CNS
(LDSC)), and regions annotated as putatively regulatory in the human brain using
chromHMM (i.e., the union of regions annotated as “Bivalent Enhancer,” “Biva-
lent/Poised TSS,” “Genic enhancers,” “Flanking Active TSS,” “Active TSS,” “Strong
transcription,” and “Enhancers”). After converting the GWAS summary statistics
into the .sumstats format using munge_sumstats.py, we filtered to only HapMap 3
SNPs (downloaded from https://data.broadinstitute.org/alkesgroup/LDSCORE/
w_hm3.snplist.bz2) as described in the Partitioned Heritability LDSC tutorial. The
partitioned heritability for each gDMR-GWAS combination by adding each feature
individually to the “baseline model” including 53 baseline annotations described in
Finucane et al.43.

DNA methylation mediation of expression. To assess mediation of gene
expression, we identified SNPs which were both eQTLs>® and meQTLs, and which
had some correlation (cor > 0.3) between gene expression and methylation levels.
For every CpG-gene pair generated by this, we modeled the effect of additive
genotype on expression (Expression ~ SNP), then added in the effect of methy-
lation (Expression ~ SNP + DNAm), and examined the difference in the effect size/
coefficient for genotype between the two models. To determine the extent of
mediation, we calculated the ratio of SNP coefficient in the second model to the
SNP coefficient in the first. When the proportion was <75% (>25% reduction), we
considered this evidence of mediation. The same analysis was done for exon and
junction expression data and their significant eQTLs.

Age and diagnosis differential methylation modeling. Differential methylation
analyses for both diagnosis and age were performed using linear regression
modeling, accounting for sex, estimated neuronal fraction, batch, and the top three
MDS components from genotype data. The regression analyses above were formed
using limma (v3.30)7374 which employed empirical Bayes and returned moderated
T-statistics, which were used to calculate P-values and estimate the false discovery
rate (FDR, via Benjamini-Hochberg approach’?).

General statistical reporting. Sample sizes were 165 samples in DLPFC analysis,
179 samples in hippocampus analysis, and 344 samples in combined analyses (161
DLPFC and hippocampus matched pairs from the same donors). All box plots
shown in the main and supplementary figures display the median as the center,
IQR (25th-75th percentile) as the box range, and 1.5 times the IQR as the whiskers.
All reported P-values are two-sided, and multiple testing correction method is
noted in the text. Distributions of the residuals of our many linear models were
assumed to be normally distributed across all sites and models, but this was not
formally tested. All points were used in all analyses: for example, outliers were not
removed.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

We have created a user-friendly and fast meQTL browser that allows searching by SNPs or
cytosines by genomic regions (chr.start-end) at https://eqtl.brainseq.org/WGBS_meQTL/.
Raw and processed nucleic acid sequencing data generated to support the findings of this
study are available via the PsychENCODE Knowledge Portal (https://
psychencode.synapse.org/). The PsychENCODE Knowledge Portal is a platform for
accessing data, analyses, and tools generated through grants funded by the National
Institute of Mental Health (NIMH) PsychENCODE program. Data is available for general
research use according to the following requirements for data access and data attribution:
(https://psychencode.synapse.org/DataAccess). For access to content described in this

manuscript see: https://doi.org/10.7303/syn25992404. Full results data sets can be found in
the same repository or in the Supplement’s “Description of Additional Supplementary
Files”. Due to containing identifiable information, genotype data are available through
controlled access via the corresponding authors following successful access to dbGaP data
set phs000979.

Code availability

Analysis code that accompanies this paper is provided on GitHub (https://github.com/
LieberInstitute/wgbs_meqtl_analysis) and available at Zenodo (https://doi.org/10.5281/
zenodo.5113698)7°,

Received: 24 March 2021; Accepted: 12 August 2021;
Published online: 02 September 2021

References

1. Heijmans, B. T. et al. Persistent epigenetic differences associated with prenatal
exposure to famine in humans. Proc. Natl Acad. Sci. USA 105, 17046-17049
(2008).

2. Breitling, L. P, Yang, R., Korn, B., Burwinkel, B. & Brenner, H. Tobacco-
smoking-related differential DNA methylation: 27K discovery and replication.
Am. J. Hum. Genet. 88, 450-457 (2011).

3. Davies, M. N. et al. Functional annotation of the human brain methylome
identifies tissue-specific epigenetic variation across brain and blood. Genome
Biol. 13, R43 (2012).

4. Kaminsky, Z. A. et al. DNA methylation profiles in monozygotic and dizygotic
twins. Nat. Genet. 41, 240-245 (2009).

5. Bell, J. T. & Spector, T. D. DNA methylation studies using twins: what are they
telling us? Genome Biol. 13, 172 (2012).

6. Meaburn, E. L., Schalkwyk, L. C. & Mill, J. Allele-specific methylation in the
human genome: implications for genetic studies of complex disease.
Epigenetics 5, 578-582 (2010).

7. Sved, J. & Bird, A. The expected equilibrium of the CpG dinucleotide in
vertebrate genomes under a mutation model. Proc. Natl Acad. Sci. USA 87,
4692-4696 (1990).

8. Smith, A. K. et al. Methylation quantitative trait loci (meQTLs) are
consistently detected across ancestry, developmental stage, and tissue type.
BMC Genomics 15, 145 (2014).

9. Schulz, H. et al. Genome-wide mapping of genetic determinants influencing
DNA methylation and gene expression in human hippocampus. Nat.
Commun. 8, 1511 (2017).

10. Jaffe, A. E. et al. Mapping DNA methylation across development, genotype
and schizophrenia in the human frontal cortex. Nat. Neurosci. 19, 40-47
(2016).

11. McClay, J. L. et al. High density methylation QTL analysis in human blood via
next-generation sequencing of the methylated genomic DNA fraction.
Genome Biol. 16, 291 (2015).

12. Gutierrez-Arcelus, M. et al. Tissue-specific effects of genetic and
epigenetic variation on gene regulation and splicing. PLoS Genet. 11,
€1004958 (2015).

13. Hoffmann, A, Ziller, M. & Spengler, D. The future is the past: methylation
qtls in schizophrenia. Genes 7, 104 (2016).

14. Gejman, P. V., Sanders, A. R. & Duan, J. The role of genetics in the etiology of
schizophrenia. Psychiatr. Clin. North Am. 33, 35-66 (2010).

15. Pardifas, A. F. et al. Common schizophrenia alleles are enriched in mutation-
intolerant genes and in regions under strong background selection. Nat.
Genet. 50, 381-389 (2018).

16. Schizophrenia Working Group of the Psychiatric Genomics Consortium,
Ripke, S., Walters, J. T. & O’Donovan, M. C. Mapping genomic loci prioritises
genes and implicates synaptic biology in schizophrenia. Preprint at medRxiv
https://doi.org/10.1101/2020.09.12.20192922 (2020).

17. Schrode, N. et al. Synergistic effects of common schizophrenia risk variants.
Nat. Genet. 51, 1475-1485 (2019).

18. Jaffe, A. E. et al. Developmental and genetic regulation of the human cortex
transcriptome illuminate schizophrenia pathogenesis. Nat. Neurosci. 21,
1117-1125 (2018).

19. Fromer, M. et al. Gene expression elucidates functional impact of polygenic
risk for schizophrenia. Nat. Neurosci. 19, 1442-1453 (2016).

20. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies
predicts complex trait gene targets. Nat. Genet. 48, 481-487 (2016).

21. Gusev, A. et al. Transcriptome-wide association study of schizophrenia and
chromatin activity yields mechanistic disease insights. Nat. Genet. 50, 538-548
(2018).

22. Gamazon, E. R. et al. A gene-based association method for mapping traits
using reference transcriptome data. Nat. Genet. 47, 1091-1098 (2015).

10 | (2021)12:5251 | https://doi.org/10.1038/s41467-021-25517-3 | www.nature.com/naturecommunications


https://github.com/LieberInstitute/brain-epigenomics/tree/master/LDSC/code
https://github.com/LieberInstitute/brain-epigenomics/tree/master/LDSC/code
https://data.broadinstitute.org/alkesgroup/LDSCORE/w_hm3.snplist.bz2
https://data.broadinstitute.org/alkesgroup/LDSCORE/w_hm3.snplist.bz2
https://eqtl.brainseq.org/WGBS_meQTL/
https://psychencode.synapse.org/
https://psychencode.synapse.org/
https://psychencode.synapse.org/DataAccess
https://doi.org/10.7303/syn25992404
https://github.com/LieberInstitute/wgbs_meqtl_analysis
https://github.com/LieberInstitute/wgbs_meqtl_analysis
https://doi.org/10.5281/zenodo.5113698
https://doi.org/10.5281/zenodo.5113698
https://doi.org/10.1101/2020.09.12.20192922
www.nature.com/naturecommunications

ARTICLE

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Huan, T. et al. Genome-wide identification of DNA methylation QTLs in
whole blood highlights pathways for cardiovascular disease. Nat. Commun.
10, 4267 (2019).

Gamazon, E. R. et al. Enrichment of cis-regulatory gene expression SNPs and
methylation quantitative trait loci among bipolar disorder susceptibility
variants. Mol. Psychiatry 18, 340-346 (2013).

Baccarelli, A. & Bollati, V. Epigenetics and environmental chemicals. Curr.
Opin. Pediatr. 21, 243-251 (2009).

Dempfle, A. et al. Gene-environment interactions for complex traits:
definitions, methodological requirements and challenges. Eur. J. Hum. Genet.
16, 1164-1172 (2008).

Guo, J. U. et al. Distribution, recognition and regulation of non-CpG
methylation in the adult mammalian brain. Nat. Neurosci. 17, 215-222 (2014).
Birnbaum, R. & Weinberger, D. R. Genetic insights into the
neurodevelopmental origins of schizophrenia. Nat. Rev. Neurosci. 18, 727-740
(2017).

Fortin, J.-P., Triche, T. J. & Hansen, K. D. Preprocessing, normalization and
integration of the Illumina HumanMethylationEPIC array with minfi.
Bioinformatics 33, 558-560 (2017).

Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist:
identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).
Hansen, K. D., Langmead, B. & Irizarry, R. A. BSmooth: from whole genome
bisulfite sequencing reads to differentially methylated regions. Genome Biol.
13, R83 (2012).

GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects
across human tissues. Science 369, 1318-1330 (2020).

Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference
human epigenomes. Nature 518, 317-330 (2015).

Kosoy, R. et al. Ancestry informative marker sets for determining continental
origin and admixture proportions in common populations in America. Hum.
Mutat. 30, 69-78 (2009).

Yang, J., Lee, S. H.,, Goddard, M. E. & Visscher, P. M. GCTA: a tool for
genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76-82 (2011).
Liu, Y. et al. Epigenome-wide association data implicate DNA methylation as
an intermediary of genetic risk in rheumatoid arthritis. Nat. Biotechnol. 31,
142-147 (2013).

Feinberg, A. P. The key role of epigenetics in human disease prevention and
mitigation. N. Engl. J. Med. 378, 1323-1334 (2018).

Ventham, N. T. et al. Integrative epigenome-wide analysis demonstrates that
DNA methylation may mediate genetic risk in inflammatory bowel disease.
Nat. Commun. 7, 13507 (2016).

Collado-Torres, L. et al. Regional heterogeneity in gene expression, regulation,
and coherence in the frontal cortex and hippocampus across development and
schizophrenia. Neuron 103, 203-216.e8 (2019).

Shukla, S. et al. CTCF-promoted RNA polymerase II pausing links DNA
methylation to splicing. Nature 479, 74-79 (2011).

Bird, A. Perceptions of epigenetics. Nature 447, 396-398 (2007).

Jones, P. A. & Taylor, S. M. Cellular differentiation, cytidine analogs and DNA
methylation. Cell 20, 85-93 (1980).

Finucane, H. K. et al. Partitioning heritability by functional annotation using
genome-wide association summary statistics. Nat. Genet. 47, 1228-1235
(2015).

Guintivano, J., Aryee, M. J. & Kaminsky, Z. A. A cell epigenotype specific
model for the correction of brain cellular heterogeneity bias and its application
to age, brain region and major depression. Epigenetics 8, 290-302 (2013).
Perzel Mandell, K. A. et al. Characterizing the dynamic and functional DNA
methylation landscape in the developing human cortex. Epigenetics 1-13,
https://doi.org/10.1080/15592294.2020.1786304 (2020).

Price, A. J. et al. Divergent neuronal DNA methylation patterns across human
cortical development reveal critical periods and a unique role of CpH
methylation. Genome Biol. 20, 196 (2019).

Issa, J.-P. Age-related epigenetic changes and the immune system. Clin.
Immunol. 109, 103-108 (2003).

Fraga, M. F.,, Agrelo, R. & Esteller, M. Cross-talk between aging and cancer:
the epigenetic language. Ann. N. Y. Acad. Sci. 1100, 60-74 (2007).

Jaffe, A. E. & Kleinman, J. E. Genetic and epigenetic analysis of schizophrenia
in blood-a no-brainer? Genome Med. 8, 96 (2016).

Wang, D. et al. Comprehensive functional genomic resource and integrative
model for the human brain. Science 362, eaat8464 (2018).

Lev Maor, G., Yearim, A. & Ast, G. The alternative role of DNA methylation
in splicing regulation. Trends Genet. 31, 274-280 (2015).

Kozlenkov, A. et al. A unique role for DNA (hydroxy)methylation in
epigenetic regulation of human inhibitory neurons. Sci. Adv. 4, eaau6190
(2018).

Lipska, B. K. et al. Critical factors in gene expression in postmortem human
brain: Focus on studies in schizophrenia. Biol. Psychiatry 60, 650-658 (2006).
Deep-Soboslay, A. et al. Reliability of psychiatric diagnosis in postmortem
research. Biol. Psychiatry 57, 96-101 (2005).

55. BrainSeq Consortium. Brainseq: neurogenomics to drive novel target
discovery for neuropsychiatric disorders. Neuron 88, 1078-1083 (2015).

56. Krueger, F. TrimGalore: a wrapper around Cutadapt and FastQC to consistently
apply adapter and quality trimming to FastQ files, with extra functionality for
RRBS data. https://github.com/FelixKrueger/TrimGalore (2020).

57. Wilton, R, Li, X,, Feinberg, A. P. & Szalay, A. S. Arioc: GPU-accelerated
alignment of short bisulfite-treated reads. Bioinformatics 34, 2673-2675
(2018).

58. Faust, G. G. & Hall, I. M. SAMBLASTER: fast duplicate marking and
structural variant read extraction. Bioinformatics 30, 2503-2505 (2014).

59. Li, H. et al. The sequence Alignment/Map format and SAMtools.
Bioinformatics 25, 2078-2079 (2009).

60. Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller
for Bisulfite-Seq applications. Bioinformatics 27, 1571-1572 (2011).

61. Eagles, N. J. et al. SPEAQeasy: a scalable pipeline for expression analysis and
quantification for R/bioconductor-powered RNA-seq analyses. BMC
Bioinformatics 22, 224 (2021).

62. Howie, B. N, Donnelly, P. & Marchini, J. A flexible and accurate genotype
imputation method for the next generation of genome-wide association
studies. PLoS Genet. 5, €1000529 (2009).

63. Delaneau, O., Coulonges, C. & Zagury, J.-F. Shape-IT: new rapid and accurate
algorithm for haplotype inference. BMC Bioinformatics 9, 540 (2008).

64. 1000 Genomes Project Consortium et al. A global reference for human genetic
variation. Nature 526, 68-74 (2015).

65. Purcell, S. et al. PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575 (2007).

66. Shabalin, A. A. Matrix eQTL: ultra fast eQTL analysis via large matrix
operations. Bioinformatics 28, 1353-1358 (2012).

67. Jaffe, A. E. et al. Bump hunting to identify differentially methylated regions in
epigenetic epidemiology studies. Int. J. Epidemiol. 41, 200-209 (2012).

68. Collado-Torres, L. & Jaffe, A. E. jaffelab: Commonly Used Functions by the
Jaffe Lab (GitHub, 2018).

69. Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies.
Proc. Natl Acad. Sci. USA 100, 9440-9445 (2003).

70. Yu, G, Wang, L.-G,, Han, Y. & He, Q.-Y. clusterProfiler: an R package for
comparing biological themes among gene clusters. OMICS 16, 284-287
(2012).

71. Rizzardi, L. F. et al. Neuronal brain-region-specific DNA methylation and
chromatin accessibility are associated with neuropsychiatric trait heritability.
Nat. Neurosci. 22, 307-316 (2019).

72. Brainstorm Consortium et al. Analysis of shared heritability in common
disorders of the brain. Science 360, eaap8757 (2018).

73. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-
sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

74. Phipson, B., Lee, S., Majewski, L. J., Alexander, W. S. & Smyth, G. K. Robust
hyperparameter estimation protects against hypervariable genes and improves
power to detect differential expression. Ann. Appl. Stat. 10, 946-963 (2016).

75. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical
and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289-300 (1995).

76. Kperzel. LieberInstitute/wgbs_meqtl_analysis: publication version. Zenodo
https://doi.org/10.5281/zenodo.5113698 (2021).

Acknowledgements

We would like to express their gratitude to our colleagues whose tireless efforts have led
to the donation of postmortem tissue to advance these studies: the Office of the Chief
Medical Examiner of the District of Columbia; the Office of the Chief Medical Examiner
for Northern Virginia, Fairfax Virginia; and the Office of the Chief Medical Examiner of
the State of Maryland, Baltimore, Maryland. We would also like to acknowledge Lle-
wellyn B. Bigelow, MD, for his diagnostic expertise. This project was supported by The
Lieber Institute for Brain Development and by NIH grants ROIMH112751 and
T32GM781437. Finally, we are indebted to the generosity of the families of the decedents,
who donated the brain tissue used in these studies.

Author contributions

K.AP.M. and A.E]J. conceptualized the project and methodology, investigated and
analyzed the data, and wrote the paper. S.H. aided in analysis. W.S.U,, L.C.-T., A.S.S,,
R.W. and N.J.E. provided software support. W.S.U. created the online meQTL browser.
N.J.E, AJ.P, RT, TM.H. and RW. curated data. ] E.K., RT. and T.M.H. provided
resources. S.H., AJ.P,, L.C.-T., S.AS., AEJ. and D.RW. reviewed and edited the paper.
D.RW. provided supervision, and A.E.J. was the principal investigator and oversaw
experimental design and analysis. All authors read and approved the final manuscript.

Competing interests

Andrew E. Jaffe is now employed by a for-profit biotechnology start-up company (with
company name pending), which is unrelated to the contents of this manuscript. The
remaining authors declare no competing interests.

| (2021)12:5251] https://doi.org/10.1038/541467-021-25517-3 | www.nature.com/naturecommunications 1


https://doi.org/10.1080/15592294.2020.1786304
https://github.com/FelixKrueger/TrimGalore
https://doi.org/10.5281/zenodo.5113698
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-25517-3.

Correspondence and requests for materials should be addressed to D.R-W. or A.EJ.

Peer review information Nature Communications thanks Irina Voineagu and the other
anonymous reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
BY

Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

12 | (2021)12:5251 | https://doi.org/10.1038/s41467-021-25517-3 | www.nature.com/naturecommunications


https://doi.org/10.1038/s41467-021-25517-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Genome-wide sequencing-based identification of methylation quantitative trait loci and their role in schizophrenia risk
	Results
	Components of global variation in large-scale WGBS data sets
	Local genetic variation has strong effects on CpG DNA methylation levels
	Widespread meQTLs among schizophrenia risk variants
	Risk-associated meQTL effects cluster in the genome
	Genetic regulation of CpH DNAm levels in homogenate brain tissue
	Age associations to DNAm levels
	Minimal illness-state associated differential methylation levels

	Discussion
	Methods
	Study samples
	WGBS data generation
	Data processing
	DNA SNP genotyping
	Assessment of technical and biological variation
	meQTL analysis
	Heritability analysis
	Functional significance analysis
	Stratified linkage disequilibrium score regression
	DNA methylation mediation of expression
	Age and diagnosis differential methylation modeling
	General statistical reporting

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




