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Abstract 2 

Tubo-ovarian high-grade serous carcinoma (HGSC) is the most lethal gynecological 3 

malignancy and frequently responds to platinum-based chemotherapy because of 4 

common genetic and somatic impairment of DNA damage repair (DDR) pathways. The 5 

mechanisms of clinical platinum resistance are diverse and poorly molecularly defined. 6 

Consequently, there are no biomarkers or medicines that improve patient outcomes.  7 

Herein we use single cell mass cytometry (CyTOF) to systematically evaluate the 8 

phosphorylation and abundance of proteins known to participate in the DNA damage 9 

response (DDR). Single cell analyses of highly characterized HGSC cell lines that 10 

phenocopy human patients show that cells with comparable levels of intranuclear 11 

platinum, a proxy for carboplatin uptake, undergo different cell fates. Unsupervised 12 

analyses revealed a continuum of DDR responses. Decompositional methods were used 13 

to identify eight distinct protein modules of carboplatin resistance and sensitivity at single 14 

cell resolution. CyTOF profiling of primary and secondary platinum-resistance patient 15 

models shows that a complex DDR sensitivity module is strongly associated with 16 

response, suggesting it as a potential tool to clinically characterize complex drug 17 

resistance phenotypes.  18 
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Introduction  19 

Cytotoxic chemotherapy remains a critically important treatment for cancer patients 20 

worldwide and is effective against rapidly dividing tumor cells in which the DNA damage 21 

response (DDR) is deregulated from cell cycle control 1-3. However, durable patient 22 

outcomes are rare, even in individuals with enhanced innate sensitivity. This is due to 23 

acquisition and selection of complex cellular traits that result in therapeutic resistance 4,5. 24 

The standard of care for women with tubo-ovarian high grade serous carcinoma (HGSC) 25 

remains carboplatin-based chemotherapy either following surgery or in a neoadjuvant 26 

setting 6-11. Most patients (~ 60%) initially respond because of frequent impairment of 27 

DDR pathways but almost all will develop fatal platinum-resistant recurrent disease 12,13. 28 

The exact mechanisms behind clinical platinum resistance are not well understood and 29 

consequently, there are no effective medicines specifically designed to target carboplatin 30 

resistance.  31 

Although multiple potential resistance mechanisms have been described, including 32 

genomic alterations, enhanced DNA repair capabilities and increased drug transporter 33 

activity, they have shown limited clinical impact 9,14-16. However, the importance of genetic 34 

reversion as a mechanism of resistance is strongly supported from clinical studies in 35 

patients with BRCA1 and BRCA2 mutations. These studies have demonstrated that 36 

tumors can acquire secondary somatic mutations that restore the function of homologous 37 

recombination (HR) proteins, thereby contributing to resistance both to carboplatin and 38 

poly (ADP-ribose) polymerase inhibitors (PARPi) 17-21. Although HGSC tumors are 39 

primarily driven by DNA structural variants, especially copy number alterations (CNA) 22 40 

there is little evidence for new selection of commonly occurring oncogenic CNAs 23. 41 
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Additionally, methylation, gene expression integrated with other omics data reported by 42 

the Ovarian Cancer Genome Atlas (TCG) has highlighted the complexity of resistance 43 

without identifying any specific therapeutic targets 24. Single cell RNA expression studies 44 

show progressive stepwise adaptation toward resistance in response to PARPi treatment 45 

in ovarian cancer models. These trajectories are potentiated by epithelial to mesenchymal 46 

transition states and maintained by diverse reprogramming of metabolic and stress 47 

phenotypes 25. Together these studies suggest that HGSC tumors are susceptible to a 48 

broad evolutionary space to escape carboplatin and PARPi therapy.  49 

Although the potential upstream genetic, epigenetic and transcriptomic effects are 50 

highly diverse, they necessarily must converge on protein function within the DDR 51 

network. Critically, the DDR is regulated by protein expression levels and phosphorylation 52 

states 26-30. Based on the reported heterogeneity of resistance phenotypes and possible 53 

DDR responses, we hypothesized that: i) single cell proteomic analysis is required to 54 

identify diverse DDR protein networks indicative of sensitivity or resistance to carboplatin 55 

and ii) comparable levels of carboplatin uptake by individual cells will result in different 56 

DDRs. To address our hypotheses we applied mass cytometry, known as 57 

CyTOF/Cytometry by Time-Of-Flight to measure the DDR in HGSC tumor cells. CyTOF 58 

is a single cell proteomic technology that can measure up to 60 parameters per cell using 59 

a panel of antibodies tagged with heavy metal-chelating polymers 31-33. We assembled a 60 

CyTOF antibody panel to simultaneously measure the DDR, cell cycle phase and 61 

intracellular signaling with measurements of intracellular platinum in response to 62 

carboplatin alone or in combination with a PARPi. The atomic mass of platinum falls within 63 

the measurable mass range of CyTOF. Critically, our study used HGSC model systems 64 
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that more closely represent primary tumors than previous models. Unsupervised analysis 65 

of millions of single cells discovered DDR protein modules recruited by cells in specific 66 

states after treatment.  67 

 68 

Results  69 

Validating a CyTOF antibody panel to measure the DDR and cell cycle  70 

We designed a CyTOF antibody panel to measure the DNA damage response in 71 

individual cells throughout all cell cycle phases (Fig. 1B, Supp. Table S1). Thirty five 72 

antibodies were validated for: DNA damage detection, non-homologous end joining 73 

(NHEJ) and homologous recombination (HR) repair processes, cell cycle phases, cell 74 

cycle checkpoint activation, cell cycle arrest and phosphorylated (activated) intracellular 75 

signaling pathways 34 (Methods). Measurements also included a live-dead cell 76 

discriminator (either cisplatin or rhodium-103 [103Rh]) and a marker for apoptosis (cleaved 77 

(c)PARP) 35,36. All cell cycle phases were identified by gating with pRb(S807/811), IdU 78 

(demarcates cells in S-phase), cyclin E, cyclin B1, and pHH3(S28) 37 (Supp. Fig. 1). In a 79 

pilot study of HeLa cells treated with a variety of genotoxic agents overall, we observed 80 

expected DDRs that validated our panel. However, visualization of the single cell data 81 

with UMAPs revealed a previously unrecognized level of DDR complexity. Some DDRs 82 

were specific to cells within a particular cell cycle phase. In other cases, cells in the same 83 

cell cycle phase showed varying responses to the different agents used but also to a 84 

given specific agent (Supp. Text and Supp. Figs. 2 and 3).  85 

  86 
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Modelling carboplatin resistance in clinically relevant HGSC cell lines  87 

In a previous CyTOF study we characterized HGSC tumor cell suspensions 88 

disaggregated from freshly resected advanced-stage tumors, along with 13 molecularly 89 

characterized HGSC cell lines 38-40. Our data revealed that the HGSC cell lines reflected 90 

specific tumor cell phenotypes identified from the primary HGSC tumors. Notably, the 91 

TYK-nu cell line phenocopied poor-prognosis vimentin-expressing cells comprised of 92 

both carboplatin-resistant and responsive subpopulations 38,39. We therefore selected the 93 

TYK-nu cell line as well as the UWB.289-BRCA1-null cell line derived from a highly 94 

chemo-resistant HGSC tumor and its BRCA1-expressing counterpart to study the DDR 95 

response to carboplatin over time. We validated our results in three spontaneously 96 

immortalized HGSC cell lines (Cambridge Institute Ovarian (CIOV)1, CIOV2 and CIOV3) 97 

that retained the key characteristics of their original tumors and represented distinct states 98 

of platinum resistance 41 (Fig. 1A).  99 

 The TYK-nu cell line was generated from a xenograft of a primary patient derived 100 

ovarian tumor and closely phenocopies the poor prognosis HGSC cell populations 101 

identified in newly diagnosed primary tumors 39, 42 (Supp. Table 2). Both clinical and 102 

preclinical studies showed that combining PARP inhibitors with carboplatin-based 103 

chemotherapy significantly improved progression-free survival and efficacy 43-45. 104 

Specifically, preclinical studies demonstrated that carboplatin's effectiveness was 105 

increased by inhibiting PARP’s enzyme activity and enhancing its DNA-trapping ability 106 

44,45. We therefore designed CyTOF experiments to analyze DDRs in TYK-nu cells treated 107 

with carboplatin alone or in combination with PARPi over time. Since the DDR may be 108 

strongly altered by PARP DNA trapping activity, we chose to use talazoparib, as one of 109 
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the most potent PARP trapping agents 46-48. Cells were exposed to either carboplatin 110 

alone (8µM), carboplatin (8µM) plus talazoparib (100nM), or talazoparib alone (100nM) 111 

for 24, 48, 72, and 96h 9,11. Optimal drug concentrations were selected from dose 112 

response curves (Supp. Fig. 4 and Methods). At each timepoint cells were incubated 113 

with 103Rh (a live-dead marker), barcoded, combined, stained with the antibody panel and 114 

processed for CyTOF (Methods) 34. Gating for live cells (negative for 103Rh), generated 115 

a CyTOF dataset of 721,579 cells for downstream analysis (Supp. Table 3).  116 

 117 

Cell cycle responses to carboplatin induce S-phase  118 

Each cell cycle phase was manually gated from the viable (103Rh- c-PARP-) TYK-119 

nu cell population (Fig. 2A and Methods). Under all conditions, the proportion of cells in 120 

G1 was < 1%, due to the abrogated G1 checkpoint caused by TP53 mutation 49. All three 121 

treatments promoted a dramatic and maximal increase in the proportion of cells that 122 

arrested in S-phase, ~80% at 24 and 48hr, consistent with a major DDR (Supp. Table 3). 123 

At 72hr and 96hr, a proportion of cells had transitioned into G2, but a significant proportion 124 

remained in S-phase, which was most marked after carboplatin mono-treatment. Cells 125 

spent minimal time in M-phase. Although we could not determine whether cells in G0 had 126 

undergone therapy-induced senescence or quiescence, both states have been 127 

associated with drug resistant phenotypes 50.  128 

 129 

Quantifying non-apoptotic and apoptotic cell populations in response to 130 

carboplatin 131 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 26, 2024. ; https://doi.org/10.1101/2024.11.21.624591doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.21.624591
http://creativecommons.org/licenses/by-nd/4.0/


8 
 

CyTOF provides a unique opportunity to quantitatively measure intracellular levels 132 

of platinum (195Pt) 51,52. 195Pt measurements can be used as a surrogate for intracellular 133 

carboplatin levels (Methods). 103Rh- cells were manually gated with c-PARP to enumerate 134 

apoptotic and non-apoptotic cell populations after carboplatin (C) and carboplatin + 135 

talazoparib (C + T) treatments. Biaxial plots revealed that while the frequency of apoptotic 136 

cells increased over exposure time (18% for carboplatin alone, 39% for carboplatin plus 137 

talazoparib at 96h), a large population of cells remained non-apoptotic (Fig. 2B). These 138 

data are consistent with previous studies showing that TYK-nu cells are comprised of cell 139 

populations with differing carboplatin sensitivities. They also show that talazoparib 140 

potentiates carboplatin activity by accumulating DNA damage through the inhibition of 141 

PARP-mediated DNA repair 53-55.  142 

 143 

Quantifying nuclear uptake of carboplatin  144 

 The 2D biaxial plots indicated that a proportion of apoptotic and non-apoptotic 145 

populations had comparable levels of carboplatin (Fig. 2B). Box and whisker of individual 146 

cell concentrations for 195Pt confirmed increased carboplatin uptake over time but also 147 

revealed a previously unrecognized variability in intracellular 195Pt levels (Fig. 2C). 148 

Although median uptake levels were greater for apoptotic cells, a large proportion of non-149 

apoptotic cells within the interquartile range had the same level of carboplatin (69–89%) 150 

at each time point (Fig. 2C). Additionally, some cells survived despite having extremely 151 

high levels of 195Pt uptake. 152 

Measurements of cellular carboplatin include adduct formation between proteins 153 

and DNA 56. However, the carboplatin-mediated DDR necessarily depends on nuclear 154 
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uptake and the formation of stable DNA adducts. We therefore developed a new CyTOF 155 

protocol to measure carboplatin levels in individual intact nuclei isolated from TYK-nu 156 

cells (Supp. Fig. 5 and Methods). Nuclear uptake of carboplatin increased over time but 157 

at lower levels compared with cellular uptake (Fig. 2C). The fold change of carboplatin 158 

uptake between cells and nuclei was equivalent for apoptotic and non-apoptotic cells at 159 

each time point, showing that alterations in nuclear import/export of carboplatin were not 160 

the main determinants of apoptotic cell fate (Fig. 2D). As seen for total cellular uptake, 161 

the median carboplatin uptake was greater in the nuclei of apoptotic versus non-apoptotic 162 

cells. However, we also noted that significant numbers of nuclei from apoptotic and non-163 

apoptotic cells had the same level of 195Pt (65–100%) at each timepoint. The data 164 

demonstrate that drug influx and efflux pumps play only a partial role in resistance. 165 

 166 

Mapping the DDR trajectory in single cells  167 

These pharmacodynamic and pharmacokinetic data led us to hypothesize that cell 168 

populations with similar carboplatin levels, but different fates must have distinct DDRs. 169 

We therefore generated a pipeline to analyze DDR dynamics temporally and in an 170 

unbiased manner independent of treatment, cell cycle and cell fate (Fig.3). We first 171 

computed a UMAP embedding of the TYK-nu single cell data from all timepoints and 172 

treatments using 29 DDR, cell cycle checkpoint and intracellular signaling proteins (Fig. 173 

4A, Supp. Fig. 6). The UMAP embedding revealed a predominant continuum of cells with 174 

only three discernible cell populations. In contrast to UMAPs generated with phenotypic 175 

markers where discrete cell populations are easily visualized (e., g T cells, B cells), this 176 

UMAP was generated exclusively with intracellular functional markers (phospho-states, 177 
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protein levels) revealing a continuum of many subtle and different DDR functional states. 178 

To identify cell subpopulations within the UMAP, we applied Leiden clustering to group 179 

cells into small neighborhoods based on their DDRs (Fig. 4A). These clusters were 180 

visualized with different colors and each cluster’s centroid was labelled on the UMAP 57. 181 

Next, we used partition-based graph abstraction (PAGA) to map the relationships 182 

between these Leiden clusters. In the PAGA plot, each node represents a Leiden cluster, 183 

and the edges between nodes indicate the degree of connectivity between clusters. 58. 184 

To align the PAGA graphs with the UMAP, the PAGA nodes were positioned at the cluster 185 

centroids (Fig. 4A-E). Each cluster in the PAGA graph was depicted by a pie chart 186 

showing the proportions of cells from different conditions.  187 

PAGA revealed that the mass of cells in the upper left of the UMAP were apoptotic 188 

with a DDR signature that was distinct from non-apoptotic cells (Fig. 4A). Most untreated 189 

cells were in the lower right of the UMAP (Fig. 4C). Upon treatment, as the effect of the 190 

agents increased, cells had a trajectory toward the apoptotic cell state. For example, 191 

when compared to cells treated with T alone, cells treated with C + T located further away 192 

from the untreated DDR and closer to the apoptotic state (Fig. 4C). Mapping the PAGA 193 

graphs over time revealed a rough temporal progression. However, timepoints were not 194 

discrete. For example, some cells that had been treated with C + T for 96hr had a 195 

comparable DDR with untreated or treated cells at early time points. By contrast, some 196 

cells treated for 24hr mapped closely to cells treated for 96hr and in proximity to apoptotic 197 

cells (Fig. 4D). These results demonstrated that cells are progressing and responding to 198 

treatment at different rates. Cell cycle analysis showed that most cells were in G0 or S-199 
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phase. Nevertheless, there was a clear signature of cells in M-phase on the lower 200 

righthand corner of the PAGA graph (Fig. 4E). 201 

  202 

Non-negative matrix factorization (NMF) to discover modules of co-occurring DDR 203 

proteins  204 

The UMAP/PAGA analysis revealed clusters of cells with different DDRs. To 205 

determine if specific protein modules influenced the positioning of cells along the PAGA 206 

trajectories, we applied non-negative matrix factorization (NMF) (Fig. 4F). This algorithm 207 

simultaneously learns a set of co-occurring proteins within DDR modules and then 208 

computes the activity of each module in each cell 59. NMF computed eight DDR modules 209 

and the contribution of each protein to each module was then visualized with a heatmap 210 

(Fig. 4F). Several proteins occupied more than one module; for example, PARP1 was 211 

part of Modules 2 and 8, and PCNA was part of Modules 2 and 4 (Fig. 4F). To determine 212 

whether cells recruit different modules over time, these modules were overlaid on the 213 

PAGA graphs (Fig. 4G). Rather than being uniformly distributed throughout the PAGA 214 

graphs, the overlays showed that most modules were confined to discrete populations of 215 

cells over the time-course. Four modules with high activity mapped mostly to localized 216 

regions of the PAGA graphs: apoptotic cells to Module 1, UT cells (endogenous DDR) to 217 

Module 4 to, cells treated for longer times to Module 6 to late timepoints and mitotic cells 218 

to Module 7.  219 

 220 

  221 
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Quantifying DDR usage over time in single cells  222 

To further characterize module usage shown in the overlays we generated box 223 

and whisker plots (Fig. 4H). The plots showed that module activity changed over time at 224 

different rates. Modules 2 and 8 were active in both endogenous and exogenous DDRs 225 

at early timepoints and Module 4 was most active in untreated cells. Module 3 peaked 226 

early after treatment with MRE11 and NBS1 consistent with their role as early sensors of 227 

DNA damage. In contrast, Module 6 demonstrated the greatest change over time, 228 

bridging pre-apoptotic and apoptotic cells (Fig. 4G, H). Furthermore, Module 6 usage was 229 

largely driven by carboplatin and not by talazoparib in this study. Module 6 was comprised 230 

of pH2AX, pATM, pCHK1, pp53 and pRPA, all proteins playing critical roles in HR DNA 231 

double strand repair 60. The recruitment of Module 6 at later timepoints suggested it could 232 

be a pharmacodynamic marker of responsiveness to carboplatin-induced damage. The 233 

key finding from the UMAP/PAGA/NMF analysis was that while most non-apoptotic cells 234 

mapped together densely on the UMAP, functionally they could be distinguished by eight 235 

distinct DDR protein modules.  236 

 237 

Responses of UWB1.289 BRCA1- and BRCA1+ cell lines to carboplatin  238 

To determine whether the carboplatin-mediated DDR modules identified in the 239 

TYK-nu cell line are conserved in other HGSC cells, we performed a carboplatin treatment 240 

time course and DDR-CyTOF analysis on the UWB1.289 BRCA1-/BRCA+ isogenic cell 241 

line pair (Supp. Table 1) 61. The UWB1.289 BRCA1- cell line was derived from an HGSC 242 

tumor that recurred after primary debulking surgery and treatment with 243 

carboplatin/paclitaxel, paclitaxel, topotecan, and gemcitabine with doxorubicin. It harbors 244 
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a clinically deleterious allele of BRCA1 and a second loss of heterozygosity event 245 

rendering it functionally null for BRCA1 protein function. The UWB1.289 BRCA1+ cell line 246 

has partial restoration of BRCA1 function from stable expression of a BRCA1 cDNA 247 

construct61. We refer to each cell line as BRCA1- and BRCA1+ and together as UWB. 248 

IC50 values of carboplatin were 36.7µM and 43µM at 72h for the BRCA1- and BRCA1+ 249 

cell lines respectively, confirming a previous report (Supp. Fig. 7 and Methods) 62. Pilot 250 

experiments with low (54 µM) and high (180µM) doses of carboplatin showed greater 251 

functional responses at the higher dose (Supp. Fig. 8). We focused on the latter dose 252 

and analyzed 521369 single cells. 253 

 254 

Cell cycle, cell fate and carboplatin uptake responses  255 

In the absence of carboplatin, UWB cells were primarily in G0 and S-phase, with 256 

less than 6% in G1 due to TP53 mutations abrogating the G1 checkpoint (Supp. Fig. 9A, 257 

Supp. Table 4) 49. In response to carboplatin, the population of cells in S-phase 258 

increased, with BRCA1- cells moving through S-phase more quickly than BRCA1+ cells. 259 

By 48hr, 61% of BRCA- cells were in S-phase compared to 88% of BRCA1+ cells. By 72 260 

hr, 42% of BRCA1- cells were still in S-phase, compared to 66% of BRCA1+ cells. This 261 

reflects loss of the intra-S-phase checkpoint arrest in BRCA1- cells 63. By 72h, 50% 262 

BRCA1- cells had entered G0 compared to only 24% of BRCA1+ cells. The number of 263 

apoptotic cells increased over time reaching 16% for BRCA+ cells and 15% for BRCA1- 264 

cells at 72hr, (Supp. Fig. 9B). Comparable intracellular levels of 195Pt were detected 265 

between genotypes and different fates (Supp. Fig. 9B-C).  266 

 267 
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Mapping the DDR in single BRCA1- and BRCA1+ cells 268 

Following a similar approach to our single-cell analysis of TYK-nu cells, we 269 

clustered the UWB CyTOF data and generated PAGA graphs. In these graphs, clusters 270 

of UWB cells with similar DDR profiles formed nodes, and connectivity between these 271 

nodes was represented by edges (Fig. 3, Methods, Fig. 4A–G and Supp. Fig. 9D and 272 

E). UMAP embedding showed a continuum of cells, but with arrangements that were 273 

more complex than those observed in TYK-nu cells (Supp. Fig. 9D, Fig. 4A–E). To 274 

understand the connectivity of subpopulations, we visualized the PAGA graph in a force-275 

directed layout after an additional Leiden clustering on the PAGA graph (Fig. 5A).  276 

The PAGA graph for UWB cells revealed a clear separation between both 277 

untreated (UT) and cells treated for 6hr compared with their states at 24, 48 after 72hr of 278 

treatment (Fig. 5A–C, Supp. Fig. 9D). The overlaps between cells at different timepoints 279 

observed for TYK-nu cells were mostly absent in the UWB cells. UWB cells treated with 280 

carboplatin for 6hrs had a slight shift in their DDR from untreated cells but by 24hr, they 281 

had switched to a distinct DDR profile. At 48 and 72hr post treatment, cells followed one 282 

of two trajectories with different DDRS but both culminating in apoptosis (Fig. 5B–D). 283 

Diffusion pseudo-time (DPT) computed on the PAGA graph confirmed these trajectories 284 

(Fig. 5E) 64. When colored by BRCA1 status, the PAGA graph revealed only minimal 285 

separation of cells in late treatment response populations (Fig. 5F). When colored by cell 286 

cycle phase, G0 and S-phase cells trended toward different regions of the PAGA graph 287 

with M-phase cells separated from the main PAGA graph (Fig. 5G and I). The differences 288 

in the timing of DDR responses between TYK-nu and UWB cell lines highlight the need 289 

to measure cell states at various stages of treatment. 290 
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Time evolution of DDR in UWB cells revealed by NMF 291 

To determine changes in the DDR of UWB cells over time of carboplatin exposure, 292 

we discovered eight DDR modules using NMF. The relative contribution of each protein 293 

within a module was depicted with a heatmap (Fig. 5H). Certain proteins that co-occurred 294 

in TYK-nu DDR modules also did so in UWB modules, e.g., pH2AX, pATM, and pRPA 295 

(Module 8), Myc, RAD51, PCNA, PARP1 (Module 6), Ki67, pChk2, pAurora (Module 7) 296 

(Fig. 5H). However, other modules differed between TYK-nu and UWB cells. For 297 

example, Module 5, comprised of 13 DDR proteins was not found in TYK-nu cells. 298 

Median-module activity in each Leiden cluster was then visualized on the PAGA graph 299 

using colored pie charts (Fig. 5I). Both TYK-nu and UWB cells that were in mitosis 300 

recruited one module. However, unlike TYK-nu cells, most UWB cells exhibited 301 

simultaneous usage of multiple modules. This was especially noticeable in untreated 302 

cells, cells 6 and 24hr post carboplatin and cells in G0. All these cells recruited three to 303 

five modules but by 48 and 72hr, with a few exceptions, module usage was reduced to 304 

one or two.  305 

The temporality of median module usage for individual cells was visualized on box 306 

and whisker plots (Fig. 5J). In untreated cells, Modules 2, 4 and 6 were the most active. 307 

In response to carboplatin, Module 8, which includes pH2AX, pATM, and pRPA (found in 308 

Module 6 in TYK-nu cells) had the greatest activity at 48 hr before decreasing at 72 hours. 309 

In contrast, Module 5, the most complex module containing 16 proteins, had significantly 310 

greater usage at 24, 48 and 72 hr. This suggests that while Module 8 may be necessary, 311 

it may not be sufficient for responsiveness to carboplatin. The complexity of Module 5 312 
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suggests that a broader DDR protein network might be needed to promote apoptosis in 313 

these highly chemotherapy-resistant cell lines.  314 

 315 

Further characterization of the HGSC DDR landscape in patient-derived cell lines  316 

 To ascertain the generalizability of DDR modules, we performed an independent 317 

experiment, characterizing the carboplatin-mediated DDR in our recently established 318 

CIOV1, CIOV2, CIOV3 cell lines and TYK-nu cells as a control 41. These cell lines were 319 

spontaneously immortalized continuous lines derived directly from patient tumors. All 320 

three cell lines harbored TP53 mutations and showed varying responses to carboplatin 321 

mimicking those in their parent tumors (Fig. 7A). CIOV1 with a non-BRCA1/2 homologous 322 

recombination defective (HRD) phenotype was sensitive to carboplatin. CIOV2 harbored 323 

K-RAS and MECOM amplifications classifying it as innate resistant while CIOV3 harbored 324 

a BRCA1 reversion mutation and was classified as acquired resistant (Supp. Table 2). 325 

Based on their protein expression levels, the cell lines represented a wide range of HGSC 326 

phenotypes reflecting the heterogeneity of primary tumors (Fig. 6A) 38,39. Specifically, E-327 

cadherin and vimentin delineated cells that were epithelial, mesenchymal, or epithelial- 328 

mesenchymal transitioning (EMT) (Fig. 6A) 39. CIOV1 cells were classified as epithelial 329 

because they predominantly expression of E-cadherin. CIOV2 cells displayed a mix of 330 

epithelial and EMT phenotypes, with some cells expressing E-cadherin alone whereas 331 

others co-expressed E-cadherin and vimentin. In contrast, CIOV3 cells were primarily 332 

mesenchymal, with a small subset showing characteristics of EMT.  333 

Cell lines were treated with carboplatin (8 µM), carboplatin (8 µM) + paclitaxel (5 334 

nM), carboplatin (8 µM) + rucaparib (1.2 µM), rucaparib (1.2 µM), or DMSO (control) for 335 
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48hr. To mimic a clinical setting the CIOV cell lines all received the same drug doses. At 336 

48 hr cells were harvested, bar-coded, combined, stained with the antibody panel and 337 

processed for CyTOF producing a dataset of 7,206,826 cells for downstream analysis 338 

(Fig. 1B, Supp. Table 1 and Methods).  339 

 340 

Cell cycle phase, cell fate, and carboplatin uptake in CIOV cell lines 341 

The cell lines showed different cell cycle phase distributions at baseline and in 342 

response to treatments (Fig. 6B). Carboplatin alone led to varying levels of cells in S-343 

phase. Adding paclitaxel or rucaparib to carboplatin produced varying effects on other 344 

cell cycle phases. Paclitaxel increased cells in G0 for CIOV1, but in G0 and G2 for CIOV2 345 

and TYK-nu. Rucaparib combined with carboplatin induced minimal effects in all cell lines. 346 

With its innate resistant phenotype, CIOV2 was least affected by all treatments. Under 347 

the drug treatment conditions studied, most cells survived with minimal apoptosis (Fig. 348 

6C).  349 

There was considerable variability in carboplatin uptake among individual cells 350 

which was not affected by adding paclitaxel or rucaparib. While the interquartile ranges 351 

(IQRs) showed significant overlap between apoptotic and non-apoptotic cells in CIOV1 352 

and CIOV3, there was much less overlap in CIOV2. This suggests that drug efflux 353 

potentially through upregulated transporters may have a greater role in the innate 354 

resistant CIOV2 cell line (Fig. 6D).  355 

  356 
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Relationship between epithelial mesenchymal phenotypes with cell cycle phase 357 

Given the emergence of drug resistance in epithelial/mesenchymal transitioning 358 

cells, the relationships between epithelial/mesenchymal states, cell cycle and treatments 359 

across the CIOV cell lines were determined 65. As a proxy for epithelial/mesenchymal 360 

phenotype, we computed an EMT score using levels of E-cadherin and vimentin in single 361 

cells. An EMT score of 1 implies an epithelial phenotype while a score of 0 implies a 362 

mesenchymal phenotype (Fig. 6E and Methods). CIOV1 cells were the most epithelial 363 

in all cell cycle phases, while CIOV2 cells were comprised of a mix of phenotypes. CIOV3 364 

cells more closely mirrored TYK-nu cells which were previously shown to be 365 

mesenchymal 39 66. EMT scores changed marginally in response to treatments but 366 

significantly within a cell cycle phase. The cell lines trended toward an epithelial 367 

phenotype in G1, and toward a mesenchymal phenotype in the other cell cycle phases, 368 

a result, to the best of our knowledge, not reported previously. The drug resistance in 369 

CIOV2 (innate) and CIOV3 (acquired) is consistent with the presence of cells with EMT 370 

and mesenchymal phenotypes 67.  371 

 372 

NMF module activity associated with clinical response  373 

Given that the CIOV cell lines closely resembled their parent tumors in genetic, 374 

molecular, and chemotherapy responses, we investigated if any NMF modules tracked 375 

with in vivo and in vitro chemotherapy responses (Fig. 7). We analyzed the CIOV1-3 376 

CyTOF datasets using NMF Module 6, which had the highest activity in TYK-nu cells at 377 

late exposure times to carboplatin (Fig. 4H). Compared to vehicle-treated cells, Module 378 

6 was most active in CIOV1 cells, minimally active in CIOV2, consistent with its innate 379 
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resistance, while there was intermediate activity in CIOV3. Module 6 usage was greater 380 

for the combination of carboplatin with rucaparib compared with standard-of-care 381 

paclitaxel for all three CIOV cell lines. By contrast, Module 5, discovered in UWB cells, 382 

had minimal usage in all CIOV cell lines. These findings support the use of Module 6 383 

recruitment as a potential indicator of response to chemotherapy.  384 

 385 

Discussion  386 

Our study of carboplatin resistance in human ovarian cancer was predicated on 387 

the hypothesis that in response to carboplatin tumor cells selectively activate specific 388 

DDR protein sub-networks or modules through changes in phosphorylation and 389 

abundance. Activating the entire DDR network would be metabolically inefficient. To 390 

understand the functional consequences of genetic, transcriptomic and epigenetic 391 

changes which result in sensitivity or resistance to carboplatin, we capitalized on the 392 

single cell attributes of CyTOF. to measure the carboplatin-mediated DDR. To understand 393 

the different fates of cells with comparable levels of intranuclear carboplatin, we analyzed 394 

the CyTOF datasets with UMAP embedding, PAGA and NMF (Fig. 3). UMAPs generated 395 

from intracellular DDR, cell cycle and signaling proteins revealed a continuum of cells 396 

exhibiting a range from subtle to large differences in their DDR profiles (Fig. 4). These 397 

observations align with a recent study showing that ovarian tumor cells transition through 398 

a series of transcriptomic states as they progress toward resistance to a PARPi 25.  399 

Applying NMF we showed that DDR(s) in individual cells can be characterized by 400 

distinct protein modules. TYK-nu cells tended to use one DDR protein module at a time, 401 

regardless of conditions, such as cell cycle phase or duration of treatment. By contrast, 402 
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highly resistant UWB cell populations used multiple modules simultaneously. This was 403 

most evident for cells that were untreated or exposed to carboplatin for 6 or 24 hr (Fig. 404 

5). It could be that after the patient received multiple rounds of chemotherapy, the cells 405 

had reached a state of full resistance potentially maintained by recruitment of multiple 406 

DDR protein modules. Nevertheless, in M-phase, both TYK-nu and UWB cells recruited 407 

one unique module that contained Ki67 and pAurora, two proteins with established roles 408 

in M-phase 68,69. Stable reintroduction of BRCA1 into UWB-BRCA1-null cells made little 409 

difference to their overall module usage or resistance to carboplatin. While reversion 410 

mutants of BRCA1 and BRCA2 confer resistance by restoring HR, in this case 411 

introduction of BRCA1 had minimal effect on a tumor cell that was likely maximally 412 

resistant 17,20. 413 

For TYK-nu and UWB cells, modules containing the transcription factors pNFKb, 414 

pMyc and β-catenin (Module 3 in TYK-nu and Module 2 in UWB) were active at early 415 

times. These transcription factors have established roles in promoting chemoresistance, 416 

stemness and survival 70-72. Modules containing pRPA, pATM, pH2AX and pCHK1 or 417 

pCHK2 (Module 6 in TYK-nu and Module 8 in UWB) indicate active DNA repair and cell 418 

cycle arrest 73. In TYK-nu cells, Module 6 usage occurred at late times when cells were 419 

in pre- and early apoptotic states suggesting that DNA repair efforts had failed (Fig. 4G, 420 

H). In UWB cells, recruitment of Module 8 was replaced by increased reliance at later 421 

time points (24, 48 and 72 hours) on the more complex Module 5 (Fig. 5I, J). This 422 

suggested that a larger DDR protein module was necessary to maintain therapeutic 423 

resistance consistent with the transcriptomic complexity as described 24,25.  424 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 26, 2024. ; https://doi.org/10.1101/2024.11.21.624591doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.21.624591
http://creativecommons.org/licenses/by-nd/4.0/


21 
 

To validate our findings, we interrogated our recently generated CIOV cell lines for 425 

their usage of Module 6 discovered in the pre-apoptotic TYK-nu cells. The presence of 426 

EMT and mesenchymal cell phenotypes in CIOV2 and CIOV3 is consistent with their 427 

resistant characteristics 65. Unexpectedly, we observed cell cycle -dependent changes in 428 

the EMT score with more epithelial phenotypes for cells in G1. This suggests a 429 

mechanism whereby E-cadherin, through its cell adhesive function with β-catenin may 430 

regulate levels of transcriptionally active β-catenin and consequently downstream target 431 

genes associated with proliferation such as MYC and CYCLIN D1 74. In contrast, the shift 432 

toward a more mesenchymal phenotype during S-phase and G2 may enable cells to over-433 

ride cell cycle checkpoint arrest and adapt to carboplatin-mediated DNA damage 65. 434 

Module 6 usage was linked to clinical responsiveness to carboplatin across the three 435 

CIOV cell lines. It was highest in carboplatin-sensitive tumor cells (CIOV1), lowest in 436 

those with innate resistance (CIOV2) and intermediate in cells with acquired resistance 437 

(CIOV3). Cells treated with carboplatin plus rucaparib showed the highest usage of 438 

Module 6, while carboplatin plus paclitaxel showed the lowest. This was most marked for 439 

CIOV1 perhaps because this patient had not received rucaparib during their treatment. 440 

The minimal usage of the complex UWB Module 5 (Fig. 5H) across the CIOV cell lines 441 

(data not shown) suggests recruitment of alternate protein modules. This may reflect both 442 

greater complexity and plasticity required to maintain carboplatin resistance 75.  443 

This study is limited by the inherent complexity of the DDR. Our CyTOF panel did 444 

not provide full coverage of the DDR, thus potentially missing additional DDR modules. 445 

Nevertheless, it successfully measured 36 phosphorylation states and protein levels with 446 

established roles in the DDR, cell cycle and signaling 73,76,77. While interactions with 447 
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immune cells and stroma within the tumor microenvironment were not explored, focusing 448 

on tumor cell autonomous mechanisms is a critical first step in unravelling DDR 449 

complexity linked to carboplatin resistance.  450 

Many of a tumor’s adaptive responses to therapy are targetable 29. However, 451 

differences in innate sensitivity to carboplatin between individuals and acquired 452 

resistance make it difficult to determine which adaptive pathway(s) to target and the 453 

optimal timing during a patient’s treatment journey. We propose that monitoring Module 454 

6 usage as a readout in drug screens of carboplatin combined with other medicines in 455 

CIOVs could identify more beneficial therapeutic combinations for patients. The different 456 

resistance states of CIOVs make them a valuable resource toward this endeavor.  457 

Furthermore, our cell suspension CyTOF assays can be readily adapted for spatial 458 

analyses allowing for broader characterization of resistance modules particularly in in vitro 459 

model systems. This will refine the selection of antibody panels reading out both DDR 460 

and immune responses in clinical trial samples. Our approach is generalizable to study 461 

drug resistance in other types of cancer. 462 

 463 

Methods 464 

Cell lines 465 

HeLa and OVCA3 (American Type Culture Collection (ATCC)) and TYK-nu (National 466 

Institute of Biomedical Innovation, Japanese Collection of Research Bioresources Cell 467 

Bank (JCRB)) cell lines were cultured in Dulbecco’s Modified Eagle Medium (DMEM) 468 

(Gibco), McCoy’s 5A modified medium (Gibco) and Eagle’s minimal essential medium 469 

(EMEM) (ATCC) respectively supplemented with 10% heat-inactivated fetal bovine serum 470 
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(FBS) (Hyclone), 1% Penicillin-Streptomycin (Gibco) and 2 mM L-glutamine (Gibco). 471 

UWB1.289 -/-BRCA1 and +BRCA1 cell lines (ATCC) (referred to in the main manuscript 472 

a BRCA1- and BRCA1+) were cultured in 50% RPMI-1640 (Gibco) supplemented with 473 

2mM L-glutamine, 25 mM sodium bicarbonate and 50% mammary epithelial growth 474 

medium (MEGM) (Lonza) supplemented with 3% heat-inactivated fetal bovine serum 475 

(FBS). G-418 (200 mg/mL Geneticin from Gibco) was added to the media for the 476 

UWB1.289 BRCA+ cell line. JHOS2 (RIKEN BRC Cell Bank) cell line was cultured in 477 

Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F-12 (Ham), Gibco) 478 

supplemented with 10% FBS, 0.1 mM MEM non-essential amino acids (NEAA, Gibco) 479 

and 1% penicillin/streptomycin. CIOV1, 2, 3 cell lines (Brenton Lab, University of 480 

Cambridge, UK) were cultured in DMEM/F-12 medium (Gibco) with 10% FBS and 1% 481 

penicillin/streptomycin. Cells were split every 2–3 days and kept in a humidified cell 482 

culture incubator at 37°C with an atmosphere of 95% air and 5% CO2.  483 

Dose response curves for carboplatin, talazoparib, rucaparib and paclitaxel  484 

Carboplatin (Sigma Aldrich) was dissolved in water (13.5 mM stock solution) and 485 

talazoparib (MedChem Express) was dissolved in DMSO (10 mM stock solution). Cells 486 

were seeded in 96-well flat-bottomed plates (5000 TYK-nu cells per well for carboplatin 487 

treatment, 2000 TYK-nu cells per well for talazoparib treatment, 2000 TYK-nu cells per 488 

well for carboplatin plus talazoparib and 2000 BRCA1- and BRCA1+ cells per well for 489 

carboplatin treatment). For measuring the IC50 values for each drug alone, serial dilutions 490 

were performed. Starting concentrations were 1.6 mM for carboplatin and 10µM for 491 

talazoparib. TYK-nu cells were exposed continuously to each drug in a two- or three-fold 492 

serial dilution (9 or 11 points) for 24, 48, 72h or 96 h in triplicate and cell growth inhibitory 493 
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effects were determined using the Vybrant® MTT Cell Proliferation Assay (ThermoFisher 494 

Scientific) (Supp. Fig. 3A, B). We subsequently transitioned to the RealTime-Glo™ MT 495 

Cell Viability Assay (Promega) which has the convenience of monitoring cell viability 496 

continuously using the same sample well generating more information about drug action 497 

with respect to time and dose dependence. We used this assay, according to the 498 

manufacturer’s recommendations, to determine the IC50 concentrations for carboplatin 499 

and talazoparib for cells treated with the combination. Cells were exposed to three-fold 500 

fixed ratio serial dilutions of a starting mixture of carboplatin (16µM) and talazoparib (3 501 

µM). Luminescence was measured every 24 h until 72 h (Supp. Fig. 3C and 3D). We 502 

tried several pilot experiments holding the concentration of each drug constant and 503 

varying the other (data not shown). However, the conditions chosen, 8µM carboplatin and 504 

100nM for talazoparib were optimal for keeping enough cells viable for CyTOF assays 505 

particularly at the later timepoints. Lower drug concentrations had only subtle effects on 506 

cell cycle/DDR measurements for the times chosen. The RealTime-Glo™ MT Cell 507 

Viability Assay was also used to determine carboplatin IC50 values for BRCA1- and 508 

BRCA1+ cells (Supp. Fig. 7). The IC50 values at 72 h were used to guide the carboplatin 509 

concentrations chosen for experiments, 54 and 189µM.  510 

Cell line treatments 511 

HeLa cells were cultured in 10cm dishes to a confluency of ~80%. They were exposed to 512 

the following DNA damaging agents: 5Gy ionizing radiation (IR) using a Cesium 137 513 

irradiator, followed by a 30 min rest, 100 J/m2 ultraviolet C (UVC) followed by a 90min 514 

rest, 10µM etoposide (Sigma Aldrich) with 0.02% DMSO control for 24h or 316.7µM 515 
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carboplatin for 24 or 48h with H2O as control. Cells were also treated with 100ng/mL 516 

nocodazole (Sigma Aldrich), a microtubule inhibitor for 18h with 0.01% DMSO control.  517 

TYK-nu cells were treated with 8µM carboplatin or 8M carboplatin plus 100nM 518 

talazoparib for 24, 48, 72 and 96h, with H2O as control harvested at 96 h.  519 

UWB.289 BRCA1- and BRCA1+ isogenic cell lines were treated with 54µM or 180µM 520 

carboplatin for 6, 24, 48 and 72h with H2O as a control for 72 hr. CIOV1, CIOV2, CIOV3, 521 

and TYK-nu cells were treated with 8µM carboplatin, 8µM carboplatin + 5nM paclitaxel 522 

(Sigma-Aldrich, dissolved in DMSO), 8µM carboplatin + 1.2µM rucaparib (Selleckchem, 523 

dissolved in DMSO), or 1.2µM rucaparib for 48h with 0.012% DMSO control for each cell 524 

lines. Treatment conditions for cell line experiment were performed in triplicate. Each time 525 

after treatment, cells were incubated with 10mM iododeoxyuridine (IdU) (Sigma Aldrich) 526 

and viability dyes. For HeLa cells treated with all agents, aside from carboplatin, cells 527 

were treated with 25mM cisplatin (Sigma Aldrich) for 1 min as previously described 34. 528 

For experiments with carboplatin, cells were treated with 1mM Cell-ID™ Intercalator-529 

103Rh (Standard BioTools) for 15 min as previously described 34. Cells were 530 

subsequently harvested, fixed with 1.6% paraformaldehyde, washed twice with CSM, 531 

flash-frozen, and stored at - 80°C 34,39. 532 

Isolation of nuclei 533 

Untreated and carboplatin-treated 4–5 x 106 TYK-nu cells were harvested at different 534 

timepoints (24, 48, 72, and 96 h). Half the cell aliquot was processed as described above. 535 

The other half of the aliquot was processed for isolating nuclei. TYK-nu cells, cell pellets 536 

were resuspended in 300 µL of cold lysis buffer (Tris-HCl pH 7.4 (10 mM), NaCl (10 mM), 537 
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MgCl2 (3 mM) and Igepal CA-630 (0.025% in PBS, Millipore Sigma) and incubated on ice 538 

for 10 min (time optimized from 10X Genomics protocol). The reaction was quenched with 539 

1.2 mL of cold cell staining media (CSM) and suspensions of nuclei were washed twice 540 

with CSM (500 x g, 10 min, 4°C). Nuclei were fixed in 1 mL 1.6% PFA in PBS for 10 min 541 

at room temperature, washed twice with CSM, resuspended in CSM (~150-200 µL), snap 542 

frozen in dry ice, and stored at 80°C.  543 

Confirming purity of isolated nuclei 544 

The purity of the nuclei was evaluated using an anti-histone H3 antibody (D1H2 (Standard 545 

BioTools)) by CyTOF and then gating for non-apoptotic and apoptotic cells using a c-546 

PARP antibody (Supp. Fig. 4A). Additionally, purity of the nuclei was determined by 547 

comparing their scatter properties with those of whole cells (Supp. Fig. 4B) using an 548 

LSR2 flow cytometer. Further confirmation of purity was confirmed by microscopy with 549 

DAPI (blue) and vimentin-Ax647 (D21H3 (CST)) using a Keyence BZ-X800 microscope 550 

(Supp. Fig. 4C).  551 

Antibodies for CyTOF  552 

Antibodies were all conjugated in-house (Supp. Table 1). In brief, antibodies in carrier-553 

free PBS were conjugated to metal-chelated polymers (MaxPAR antibody conjugation kit, 554 

Standard BioTools) according to the manufacturer’s protocol. Bismuth-chelated polymer 555 

labeling was performed with an in house- protocol 78. Metal-labeled antibodies were 556 

diluted to 0.2–0.4 mg/mL in antibody stabilization solution (CANDOR Biosciences) and 557 

stored at 4°C. Each antibody was titrated using positive and negative controls as 558 

described (Supp. Table 1). Antibody concentrations chosen were based on optimal 559 

signal-to-noise ratio.  560 
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Sample processing and antibody staining for CyTOF  561 

Frozen, fixed single-cell suspensions of cell lines were thawed at room temperature. For 562 

each sample, 1 x 106 cells were aliquoted into cluster tubes in 96 well plates and 563 

subjected to pre-permeabilization palladium barcoding 79,80. After barcoding, cells were 564 

pooled, washed, and incubated for 5 min at room temperature with FcX block (Biolegend,) 565 

to block non-specific antibody binding. Cells were then incubated with the CyTOF 566 

antibody panel, washed, and incubated with the 191/193Ir-intercalator at 4°C overnight. 567 

Cells were resuspended in a solution of normalization beads washed and resuspended 568 

before introduction into the CyTOF2 39.  569 

Sample processing and antibody staining of isolated nuclei 570 

Fixed frozen TYK-nu nuclei were thawed at room temperature. Samples were transferred 571 

into cluster tubes containing 1 mL of cold CSM and washed (600 x g, 10 min, 4 °C). 572 

Samples were permeabilized in 1 mL 100% ice-cold methanol for 20 min at 4 °C, washed 573 

twice with cold CSM and stained with antibodies against vimentin (D21H3 (CST)) and 574 

intra-nuclear markers (Histone H3, c-PARP (F21-852 (BD)) for 1 h at room temperature 575 

on a shaker. Samples were washed twice with cold CSM and incubated in 1 mL 191/193Ir 576 

DNA intercalator solution (0.1 µM) in 1.6% PFA (PBS) overnight at 4 °C. TYK-nu nuclei 577 

suspensions were washed once with CSM and twice with CyTOF water, prior being 578 

resuspended in a solution of normalization beads and introduced into the CyTOF2. 579 

Platinum was read out on the 195 channel, as it represents the most abundant stable 580 

platinum isotope.  581 

  582 
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Processing frozen nuclei for microscopy 583 

Fixed frozen TYK-nu nuclei were thawed at room temperature, transferred to FACS tubes 584 

containing 1 mL of cold CSM and washed (500 x g, 10 min, 4 °C). Samples were 585 

permeabilized in 100% ice-cold methanol (1 mL) for 20 min at 4 °C, washed twice with 586 

cold CSM and stained with vimentin-A647antibody (5 µL in 100 µL of reaction) for 30 min 587 

on ice. After addition of 2 mL CSM, samples were washed twice with CSM followed by 588 

staining with DAPI (1 µg/ mL in CSM, 500 µL) for 10 min at room temperature. After two 589 

washes with CSM, nuclei were resuspended in 100 µL of CSM. 10 µL of nuclei in 590 

suspension were transferred onto a microscope slide, a coverslip was placed on top 591 

samples were imaged using the Keyence microscope BZ-X800.  592 

 593 

Data analysis tools and illustration design software 594 

All data, statistical analysis, and figures were conducted with Adobe Illustrator, Microsoft 595 

Excel, Microsoft PowerPoint, R 4.1.2, Python 3.7, MATLAB 2019, and GraphPad Prism 596 

8. CyTOF datasets were evaluated with software available from Cytobank and 597 

CellEngine. The study schematic and signaling map (Fig. 1) were created with 598 

BioRender.com. Biaxial plots (Fig. 2B) were generated in CellEngine 599 

(https://cellengine.com). Dose response curves and IC-50 values in Supp. Fig. 3C, 600 

Supp., Fig 4, and Supp. Fig. 7 were generated using GraphPad Prism 8. Supplementary 601 

Figure 4A, 4B, and 5A were generated with Microsoft PowerPoint. Multiplexed Louvain 602 

community detection in Fig 4C was performed using a modified script in MATLAB 2019 603 

http://netwiki.amath.unc.edu/GenLouvain, https://github.com/GenLouvain/GenLouvain 604 

(2011-2019). and a custom pre-processing script written in R. All other analyses and 605 
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figures were generated using custom R and Python scripts written in-house that are 606 

publicly available. Specific package requirements for scripts are included in code. 607 

Analyses in CellEngine and Cytobank were performed at cellengine.com and 608 

cytobank.org, respectively. Analyses in Python and MATLAB were performed on a 609 

custom-built server running Windows 10 with 256 GB RAM. All other analyses were 610 

performed on a MacBook Pro with 64 GB RAM.  611 

Initial assessment of data quality and cell fate identification 612 

CyTOF FCS files were normalized and debarcoded using algorithms reported previously 613 

80,81 with access at the two links https://github.com/ParkerICI/premessa  614 

https://github.com/nolanlab/bead-normalization/wiki/Normalizing-FCS-Files 615 

Tailored manual gating was performed in the Cytobank or CellEngine software. Singlets 616 

were gated based on 191Ir/193Ir DNA content and event length to exclude debris and 617 

doublets. Following singlets gating, cells were gated using viability dye (103Rh or cisplatin) 618 

into dye positive and dye negative populations. Dye negative populations were further 619 

gated based on levels of c-PARP into non-apoptotic/viable (c-PARP-) and apoptotic (c-620 

PARP+). Cisplatin was used as a viability dye in HeLa cells 35. For experiments with 621 

carboplatin treatments, 103Rh was used as an alternate viability dye. 622 

Measurements of cell cycle 623 

Cell cycle distribution was measured by applying the manual gating strategy 624 

described previously 37. Viability dye negative cells were used to analyze the cell cycle 625 

for each condition. Gating strategy is summarized in Supp. Fig. 1. To delineate cell cycle 626 

phases, we first utilized IdU to identify cells in S phase, and an antibody against cyclin B1 627 

to demarcate the rest of the cells in G0/G1 and G2/M phases. Antibodies against pRb 628 
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(S807/811) and cyclin E were applied to separate G0 and G1 phases. G2 and M phases 629 

of the cell cycle were distinguished by gating with antibody against pHH3 (S28).  630 

Cell Line DDR Mutation Profiles 631 

GO analysis was performed using AmiGO2 searching Genes and Gene Products with 632 

keyword DNA+Damage+Response. From organism drop down Homo sapiens was 633 

selected and from Type column protein was selected. Results were downloaded as 634 

txt file on April 28, 2022. Results from depmap were downloaded by searching for cell 635 

lines from Cell Line Selector. Mutations were downloaded. Then script in R was used 636 

to match genes identified with GO analysis to mutated genes in cell lines and results 637 

were saved in Supp. Table 2. 638 

 639 

Computational analysis 640 

Cell cycle phase pie charts 641 

Cell cycle phase pie charts were computed as the proportion of non-apoptotic cells in 642 

each cell cycle phase and generated in ggplot2.  643 

Protein expression violin plots 644 

Violin plots were generated in ggplot2 using live cells (Cisplatin-negative for HeLa cells 645 

in Figure 2 and Rh-103 negative for all other single cell data) 646 

Platinum uptake box and whisker plots 647 

Notched box and whisker plots were generated in ggplot2. The notches extend 1.58 * IQR 648 

/ sqrt(n) which gives a roughly 95% confidence interval for comparing medians [REF 649 

McGill et al. (1978)]. Data were log10 normalized prior to visualization.  650 

Fold change nuclei isolation 651 
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Median platinum levels were extracted for both non-apoptotic and apoptotic cells and 652 

nuclei. The ratio of median nuclear to cellular platinum levels for both apoptotic and non-653 

apoptotic cells was used to construct the bar chart. 654 

LDA 655 

Linear discriminant analysis (LDA) was computed using the MASS package in R. A 656 

training set and test set with balanced classes were generated from viable HeLa single 657 

cell data. For each treatment (class), 7000 cells were randomly sampled then randomly 658 

partitioned into 6300 cells for the training set and 700 cells for the test set. This resulted 659 

in a training set of 31500 cells and a test set of 3500 cells. Linear discriminant functions 660 

(LDFs) were fit using the MASS::lda function on the single cell DDR protein expression 661 

levels for cells in the training set. Markers for cell cycle phase, apoptosis, and viability 662 

were excluded. To test the quality of fit, four LDFs were used to predict treatment from 663 

DDR protein levels on the test set and classification results were reported in confusion 664 

matrix. The macro-F1 score was used as a summary statistic for the performance of the 665 

final fit LDFs. The macro-F1 score is defined as the average F1 score over all treatments 666 

and is summarized in the following equation: 667 

macro-F1  =
1
𝑛𝑛
�

TPi

TPi  +  12 (FPi  +  FNi)

n

i=1

 668 

where the value in the sum is the F1 score for treatment i and TPi, FPi, and FNi denote 669 

the number of true positives, false positives, and false negatives for group i, respectively. 670 

The waterfall plot displaying the loadings of LDF1 was generated using ggplot2 in R.  671 

Single cell data visualization 672 
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Single cell data were visualized using the scanpy package in Python 82. To denoise the 673 

data, cells with total expression (sum over all marker expression levels) higher than the 674 

99.5% quantile were excluded. For normalization, we apply the approach to the standard 675 

normalization pipeline in Monocle3 (https://cole-trapnell-lab.github.io/monocle3). After 676 

normalization, principal component analysis (PCA) was applied to reduce the data 677 

dimensionality. Based on a waterfall plot of % variance explained vs. principal component 678 

(PC), the top 10 PCs with highest % variance explained were selected. Next, a nearest 679 

neighbor graph was constructed on the single cell data, with k = 30 nearest neighbors. 680 

Uniform Manifold Approximation and Projection (UMAP) was applied to this data with 681 

default parameters and the results were visualized using ggplot2. This procedure was 682 

performed separately for HeLa cells (Supp. Fig. 2D, E, Supp. Fig 3D-G), TYK-nu cells 683 

(Fig. 4A), and UWB cells (Supp. Fig. 9D). 684 

Clustering, PAGA, and DPT 685 

Single cell data were clustered with the Leiden algorithm in scanpy 57. The Leiden 686 

algorithm was selected since it has been shown to identify connected communities more 687 

accurately than Louvain. The role of clustering in this study is not to identify distinct cell 688 

phenotypes but to define similar (often overlapping) groups of cells whose characteristics 689 

(such as cell cycle phase, treatment, and cell fate) can be analyzed in the context of the 690 

larger dataset. In this respect, the goal was to generate a sufficient number of clusters to 691 

cover the manifold while keeping the number low enough to enable reasonable 692 

visualization and downstream analyses. Clustering was performed separately for the 693 

TYK-nu and UWB time course experiments. For both datasets, pre-processed as 694 

described in the previous section, a nearest neighbor with k = 30 nearest neighbors was 695 
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constructed, and Leiden clustering with resolution = 5.0 was run. Results were visualized 696 

in ggplot2. After clustering, PAGA was used to compute the connectivity between the 697 

identified clusters with default parameters 58. Edges with PAGA weights less than 0.1 698 

were excluded. PAGA graphs were visualized in the R igraph package. Diffusion 699 

pseudotime (DPT) (Fig. 5E) was computed with default parameters using the scanpy 700 

package.  701 

NMF 702 

NMF was computed using the consensus NMF approach with the scikit-learn package in 703 

Python 59. To denoise the data, cells with total expression (sum over all marker expression 704 

levels) higher than the 99.5% quantile were excluded. Data were then row normalized 705 

and scaled to unit variance. Consensus NMF modules were then computed by computing 706 

100 sets of modules using the NMF function in scikit-learn, with max_iter = 3000. K was 707 

set to 30 for KNN-deviation and only modules that fall within a distance threshold of 0.1 708 

were kept. Resulting modules were visualized using the gplots package in R and 709 

ComplexHeatmap (Figs 4F and 5H). For cell line specific NMF, eight modules were 710 

computed using the above approach for each cell line separately. Box and whisker plots 711 

showing module activity over time were generated in ggplot2.  712 

 713 

Resource availability  714 

Lead contact  715 

Further information and requests for resources and reagents should be directed to and 716 

will be fulfilled by the lead contact, Wendy J. Fantl (wjfantl@stanford.edu) 717 
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Materials availability  718 

This study did not generate new unique reagents.  719 

 720 

Data and code availability  721 

All data reported in this paper will be shared by the lead contact upon request.  722 

 723 

Acknowledgements  724 

This work was supported by funding from the BRCA Foundation and the V Foundation 725 

for Cancer Research; a gift from the Gray Foundation, Department of Defense 726 

(W81XWH-12-1-0591), NCI (1R01CA234553, R21CA231280), the 2019 Cancer 727 

Innovation Award, the 2021 Cancer Innovation award both supported by the Stanford 728 

Cancer Institute, an NCI-designated Comprehensive Cancer Center, the Department of 729 

Urology, Stanford University; NHLBI (P01HL10879709); NIAID (U19AI057229); and a 730 

PICI Bedside to Bench grant. A.D.-G. thanks the Fundacion Alfonso Martin Escudero and 731 

Ovarian Cancer Research Alliance for Mentored Investigator Award (MIG-2023-2-1015) 732 

for his postdoctoral fellowships.  733 

We wish to thank Dr Zach Bjornson for his design of new software in CellEngine to enable 734 

part of our data analysis. We wish to thank Dr. Keith Shults and others for critical reading 735 

of the manuscript and Professor Garry Nolan for the use of the CyTOF2 mass cytometer. 736 

 737 

Author contributions  738 

Conceptualization, W.J.F; J.D.B, J.S.S Methodology, V.D.G, Y.W-H, M.V, A.D.G, 739 

Validation, J.S.B, I-G.F, Investigation, V.D.G, Y.W-H, A.D.G, Resources, V.D.G, Y.W-H, 740 

M.V, A.D.G; Formal analysis, J.S.B, Z.R, A.M, A.L Data curation, J.S.B, Writing – Original 741 

Draft, J.S.B; W.J.F Writing – Review & Editing, W.J.F, J.D.B, A.A, J.S.B I-G.F 742 

Visualization, J.S.B, I-G.F, A.D.G, W.J.F, Funding Acquisition, W.J.F, A.A, J.D.B 743 

Resources, M.E.V and C.K.B.; Supervision, W.J.F, J.D.B, A.A., Project administration, 744 

W.J.F.  745 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 26, 2024. ; https://doi.org/10.1101/2024.11.21.624591doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.21.624591
http://creativecommons.org/licenses/by-nd/4.0/


35 
 

Declaration of interests 746 

A.A. is a co-founder of Tango Therapeutics, Azkarra Therapeutics, Ovibio Corporation 747 

and Kytarro, a member of the board of Cytomx and Cambridge Science Corporation, a 748 

member of the scientific advisory board of Genentech, GLAdiator, Circle, Bluestar, Earli, 749 

Ambagon, Phoenix Molecular Designs and Trial Library, a consultant for SPARC, 750 

ProLynx, and GSK, receives grant or research support from SPARC and AstraZeneca, 751 

and holds patents on the use of PARP inhibitors held jointly with AstraZeneca from which 752 

he has benefited financially (and may do so in the future). J.D.B is a cofounder and 753 

shareholder of Tailor, has had consulting and advisory roles in Astra Zeneca and Clovis 754 

Oncology and has received honoraria from GSK and Astra Zeneca. W.J.F is currently 755 

employed by Novartis and holds stock. W.J.F is an unpaid independent board member 756 

for SurgeCare. She received an honorarium from GSK in 2022. All remaining authors 757 

have no conflicts of interest to declare.  758 

 759 

Figure captions 760 

Fig. 1: Characterization of the DNA damage response by CyTOF.  761 

A. Schema of experimental approach. Foundational experiments were performed using 762 

TYK-nu and UWB1.289 HGSC cell lines. Validation was performed using three 763 

spontaneously immortalized continuous HGSOC cell lines named CIOV1, CIOV2, and 764 

CIOV3. B. Pathway map showing CyTOF antibody panel designed to measure proteins 765 

participating in the carboplatin DNA damage response. Proteins marked in grey were not 766 

measured because no suitable antibodies were available. “β-catenin” is non-phospho-β-767 

catenin (Supp. Table 1 shows positive and negative controls for antibody validation).  768 

  769 
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Fig. 2. Characterization of responses to carboplatin in the TYK-nu cell line.  770 

TYK-nu cells were treated with carboplatin, talazoparib, or both drugs and processed for 771 

CyTOF analysis at the indicated times. A. Pie charts depict cell frequency distributions 772 

across cell cycle phases. B. Biaxial plots displaying 195Pt levels, which indicate 773 

carboplatin uptake, plotted against c-PARP levels to differentiate apoptotic from non-774 

apoptotic cells to treatments over time. C. Box and whisker plot showing platinum uptake 775 

in single intact cells and single isolated nuclei over time. CyTOF enabled characterization 776 

of apoptotic populations at early times of drug treatments when cell frequencies were low 777 

(~200 to 1000 cells). Boxes are colored by cell fate (apoptotic or non-apoptotic) and 778 

compartment (whole cell (yellow) or nucleus (blue)). Notches are calculated to give a 95% 779 

confidence interval comparing median values for 195Pt uptake. D. Fold change in median 780 

platinum levels comparing whole cells to nuclei for each timepoint and population.  781 

 782 

Fig. 3 Schema depicting unsupervised data analysis approach.  783 

 784 

Fig. 4. Identification of DDR protein modules in TYK-nu cells.  785 

A. UMAP embedding generated with 29 DDR proteins, of single cell data from all 786 

timepoints for 721,579 TYK-nu cells. Leiden cell clusters are overlaid on the UMAP and 787 

colored. B–E. Partition-based graph abstraction plots show connectivity between Leiden 788 

clusters. Plots are colored for cell fate, treatment, time, and cell cycle. Clusters are colored 789 

with a pie-chart showing proportion of cells with different DDR features. F and G. DDR 790 

protein modules discovered by non-negative matrix factorization (NMF). The matrix of 791 

expression levels for 29 DDR proteins in 721,579 cells was decomposed into two 792 
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matrices. One discovered the most frequenctly co-occurring proteins in eight (number 793 

user selected) DDR modules. The contribution of each protein within a specific module is 794 

given by its z-score and this matrix is depicted on a hierarchically clustered heatmap. The 795 

second matrix describes the activity of each module in an individual cell and is overlaid 796 

on the UMAP. H. Box and whisker plots depict the activity of each module activity over 797 

time.  798 

 799 

Fig. 5. Identification of DDR modules in UWB cells  800 

A. PAGA plot of Leiden clusters for UWB cells shows connectivity of clusters in high 801 

dimensional space. Cluster nodes are colored based on an additional round of Leiden 802 

clustering to identify highly interconnected clusters. B–G. PAGA plots colored for time, 803 

treatment, cell fate, cell cycle phase, BRCA1-/BRCA1+ and pseudo time. H. DDR 804 

modules identified by NMF as described in caption 5F. The contribution of each protein 805 

within a module is given by its Z-score depicted on a hierarchically clustered heatmap. I. 806 

Module activity is depicted by the PAGA plot. Each Leiden cluster is colored with a pie-807 

chart to show the proportion of cells that recruit a specific module. Modules with less than 808 

10% median activity in a cluster were excluded. J. Box and whisker plots depict the 809 

activity of each module over time.  810 

 811 

Fig. 6. Characteristion of patient-derived CIOV1–3 cell lines. 812 

A. Violin plots depicting expression of epithelial, mesenchymal, stem cell, and HGSC 813 

proteins. Key colored for cell line. B. Cell cycle distributions vary across cell lines in 814 

response to treatments. C. Pie charts showing minimal apoptosis under the conditions 815 
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chosen. D. Box and whisker plots depicting  195-Pt uptake. Box colors correspond to cell 816 

lines as in  in Fig. 6A. Left to right within each cell line are treatment with carboplatin, 817 

carboplatin + paclitaxel, and carbplatin +rucaparib. E. Violin plots depicting changes in 818 

epithelial and mesenchymal states within each cell cycle phase in response to  treatment. 819 

EMT scores range from 0 to 1 with score of 1 indicating a purely epithelial phenotype and 820 

a score of 0 indicating a purely mesenchymal phenotype and defined by levels of E-821 

cadherin and Vimentin.  822 

 823 

Fig. 7. Validation of TYK-nu NMF Module 6 in CIOV cell lines.  824 

In an independent experiment , CIOV1, 2 and 3 cell lines were treated with a carboplatin-825 

based regiment for 48 hr, and processed for CyTOF with the same DDR antibody panel. 826 

A. Treatment journey showing patients whose tumors were responsive or resistant to 827 

chemotherapy. Time for tumor acquisition is shown when samples were placed into 2D 828 

cell culture to derive CIOVs 1, 2 and 3. B. Hierarchically clustered heatmap depicting 829 

TYK-nu NMF Module usage. The values in the heatmap are pecentage increase in 830 

module activity relative to DMSO control in CIOV cell lines under conditions shown.  831 

 832 
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