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Simulating multiple faceted variability in single cell
RNA sequencing
Xiuwei Zhang 1,2,4, Chenling Xu 1,4 & Nir Yosef 1,2,3

The abundance of new computational methods for processing and interpreting tran-

scriptomes at a single cell level raises the need for in silico platforms for evaluation and

validation. Here, we present SymSim, a simulator that explicitly models the processes that

give rise to data observed in single cell RNA-Seq experiments. The components of the

SymSim pipeline pertain to the three primary sources of variation in single cell RNA-Seq data:

noise intrinsic to the process of transcription, extrinsic variation indicative of different cell

states (both discrete and continuous), and technical variation due to low sensitivity and

measurement noise and bias. We demonstrate how SymSim can be used for benchmarking

methods for clustering, differential expression and trajectory inference, and for examining the

effects of various parameters on their performance. We also show how SymSim can be used

to evaluate the number of cells required to detect a rare population under various scenarios.
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The advent of single cell RNA sequencing has led to a surge
of computational and statistical methods for a range of
analysis tasks. Some of the methods or the tasks that they

perform have originated from bulk sequencing analysis, while
others address opportunities (e.g., identification of new cell
states1,2) or technical limitations (e.g., limited sensitivity3,4) that
are idiosyncratic to single cell genomics5,6. While these compu-
tational methods are often based on reasonable assumptions it is
difficult to compare them to each other and assess their perfor-
mance without gold standards. One approach to address this is
through simulations7–12.

Existing simulation strategies (summarized by Zappia et al.13)
rely primarily on fitting distributional models to observed data
and then drawing from these distributions. While the resulting
models provide a good fit to observed data, their parameters are
often abstract and do not directly correspond to the actual pro-
cesses that gave rise to the observations. This leaves an important
unaddressed problem in designing and using a simulator: the
need to modulate and then study the effects of specific aspects of
the underlying physical processes, such as the efficiency of mRNA
capture, the extent of amplification bias (e.g., by changing the
number of PCR cycles, or by using unique molecular identifiers
[UMI]), and the extent of transcriptional bursting. To address
this, we present SymSim (Synthetic model of multiple variability
factors for Simulation), a software for simulation of single cell
RNA-Seq data. SymSim explicitly models three of the main
sources of variation that govern single cell expression patterns2:
allele intrinsic variation, extrinsic variation, and technical factors
(Fig. 1 and Supplementary Fig. 1). SymSim provides the users
with knobs to control various parameters at these three levels.
First, we generate true numbers of molecules using a kinetic
model, which allows us to adjust allele intrinsic variation and the
extent of burst effect; second, we provide an intuitive interface to
simulate a subpopulation structure, either discrete or along a

continuum, through specification of cluster-trees, which define a
low-dimensional manifold from which the transcriptional kinet-
ics is determined for every gene and every cell; third, we simulate
the main stages of the library preparation process and let users
control the amount of variation stemming from these steps, such
as capture efficiency, amplification bias, varying sequencing
depth, and batch effect. Importantly, through this modeling
scheme, SymSim recapitulates properties of the data (e.g., high
abundance of zeros or increased noise in non-UMI protocols)
without the need to explicitly force them as factors in a dis-
tributional model.

We demonstrate the utility of SymSim in two types of appli-
cations. In the first example, we use it to evaluate the performance
of algorithms. We focus on the tasks of clustering, differential
expression and trajectory inference, and test a number of meth-
ods under different simulation settings of biological separability
and technical noise. In the second example, we use SymSim for
the purpose of experimental design, focusing on the question of
how many cells should one sequence to identify a certain
subpopulation.

Results
Allele intrinsic variation. The first knob for controlling the
simulation allows us to adjust the extent to which the infrequency
of bursts of transcription adds variability to an otherwise
homogenous population of cells. We use the widely accepted two-
state kinetic model, in which the promoter switches between an
on and an off states with certain probabilities14,15. We use the
notation kon to represent the rate at which a gene becomes active,
koff the rate of the gene becoming inactive, s the transcription rate,
and d the mRNA degradation rate. For simplicity, and following
previous work, we fix d to constant value of 114,16 and consider
the other three parameters relative to d. Since RNA sequencing
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Fig. 1 Overview of SymSim. The true transcript counts, which are the number of molecules for each transcript in each cell at the time of analysis, are
generated through the classical promoter kinetic model with parameters: promoter on rate (kon), off rate (koff) and RNA synthesis rate (s). The values of the
kinetic parameters are determined by the product of gene-specific coefficients (termed gene effects) and cell-specific coefficients. The latter set of
coefficients is termed extrinsic variability factors (EVF), and it is indicative of the cell state. The expected value of each EVF is determined in accordance to
the position of the cell in a user-defined tree structure. The tree dictates the structure of the resulting cell–cell similarity map (which can be either discrete
or continuous) since the distance between any two cells in the tree is proportional to the expected distance between their EVF values. For homogenous
populations (represented by a single location in the tree), the EVFs are drawn iid from a distribution whose mean is the expected EVF value and variance is
provided by the user. From the true transcript counts we explicitly simulate the key experimental steps of library preparation and sequencing, and obtain
observed counts, which are read counts for full-length mRNA sequencing protocols, and UMI counts, otherwise
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provides a single snapshot of the transcriptional process, we
resort to assuming that the cells are at a steady state, and thus that
the resulting single-cell measurements are drawn from the sta-
tionary distribution of the two-state kinetic model. Since d is
fixed, we are able to express the stationary distribution for each
gene analytically using a Beta-Poisson mixture17 (Methods).

The values of the kinetic parameters (kon, koff, and s) for each
gene in each cell are first calculated using a product of cell-
specific and gene-specific factors, then adjusted by the parameter
distributions estimated from experimental data (Fig. 2a, Meth-
ods). Specifically, each cell is assigned with three low-dimensional
vectors (in this section, we used dimension 10; different values
can be set by the user), one for each kinetic parameter. Similarly,
each gene is associated with three low-dimensional vectors of the
same dimension, which we term gene effect vectors. The value of
each parameter is determined by the dot product of the two
respective vectors (Fig. 2a).

The coordinates of a cell’s vectors represent factors of cell to
cell variability that are extrinsic to the noise generated
intrinsically by the process of transcription (which we model
by drawing from the stationary distribution above). These
values, which we term extrinsic variability factors (EVF)
represent a low dimension manifold on which the cells lie and
can be interpreted as concentrations of key proteins, morpho-
logical properties, microenvironment and more. When simulat-
ing a homogeneous population, the EVFs of the cells are drawn
from a normal distribution with a fixed mean of 1 and a
standard deviation σ. σ is the within-population variability
parameter and can be set by the user (for the results in this
section σ is set to 0.5).

The coordinates of the gene effect vectors can be interpreted as
the dependence of its kinetics on the levels of EVFs. For instance,
a positive value means that higher concentration of the
corresponding EVF can give rise to a higher on rate of a certain
promoter (if the EVF and gene effect vectors are both for
parameter kon). The gene effect values are first drawn indepen-
dently from a standard normal distribution. We then replace each
gene effect with a value of zero with probability η, thus ensuring
that every gene is only affected by a small subset of EVFs. The
sparseness parameter η can be set by the user; in this paper we set
it to a fixed value of 0.7.

To map the values of kinetic parameters calculated as dot
product of the EVF and gene effect vectors into realistic ranges,
we first estimate the distribution of kinetic parameters of genes
from real data by fitting a Beta-Poisson model (Methods). To gain
a robust estimation of the distribution of kinetic parameters to be
used by SymSim, we performed the estimation multiple times
with (1) different subpopulations of a dataset; (2) different
imputation methods (scVI4 and MAGIC18) to reduce technical
variation in real data. Then we obtain aggregated distributions
from the results of all the settings we considered (Fig. 2b,
Methods, sources of real data described in Data Availability).
Notably, the goal of performing kinetic parameters estimation
from real data is mainly to identify the range of plausible
parameter values to scale the dot products. The ranges in the
distributions we obtain (Fig. 2b) are in line with observations
from other experiments19–27 (Supplementary Note 1, Supple-
mentary Table 1). SymSim then applies a quantile approach to
map the simulated parameter values resulting from the dot
products into the aggregated distributions (Fig. 2a, Methods).

Finally, we account for the possibility of outlier genes with
unusually high-expression level, commonly observed in real data.
These outlier genes are hard to model with distributional
methods, and require additional parametrization13. This
phenomena is more pronounced in datasets from certain
protocols (for example, 10x Chromium28) than others (for

example, Smart-seq229), possibly due to selection bias which
can be exacerbated by low capture rate. In SymSim, we model the
high-expression outlier genes by designating a small subset of
genes (whose proportion is determined by the parameter
prop_hge) as constitutively transcribed, and adjusting their
transcription rate s by a factor determined by the parameter
mean_hge (>1; Methods).

An intriguing question in the analysis of single cell RNA-seq
data is the extent to which the conclusion drawn from the data
(e.g., stratification into subpopulations) may be confounded by
transcriptional bursting and transcriptional noise. SymSim
provides a way to explore this. We first note that modality15,17

and extent of the intrinsic noise15 in the expression of a gene in a
homogenous population of cells (i.e., cells with similar EVFs) can
vary for the different ranges of kon, koff, and s. Specifically, one
can distinguish the following three types of gene-expression
distributions by the number of inflection points in the smoothed
density function: unimodal with highest frequency at 0 (no
inflection point), unimodal with highest frequency at non-zero
value (one inflection point), and bimodal (two inflection points).
Figure 2c shows the number of inflection points for different
configurations of kon and koff with given s= 10. This gives a clear
correspondence between kinetic parameter configurations and
types of gene-expression distributions. For example, when s is
relatively large, we obtain bimodal distributions when kon and koff
are smaller than 1.

These results thus guide us in tuning kinetic parameters to
obtain desired gene-expression distributions to simulate. Speci-
fically, we focus on adjustment of the bimodality of the
distribution, which can lead to large, yet transient fluctuations
in mRNA concentration at the same cell over time, thus
potentially misleading methods for cell state annotation and
differential expression. To increase the overall extent of
bimodality in the data, we divide (decrease) all kon and koff
values by 10bimod (Fig. 2c, yellow arrow). The parameter bimod
can take value from 0 to 1. This way, other properties such as
burst frequency (kon/(kon+ koff)) and synthesis rate (s) remain the
same. In Fig. 2d we show the effect of varying the bimod
parameter on gene-expression distribution in a simulated
homogenous population. Expectedly, as bimod increases, so does
the number of bimodal genes, as well as the average Fano factor
(Supplementary Fig. 2a).

Extrinsic variation via extrinsic variability factors. While the
first knob focuses on variation within a homogeneous set of cells,
the second knob allows the user to simulate multiple, different
cell states. This added complexity is achieved by setting different
EVF values for different cells, in a way that allows users to control
cellular heterogeneity and generate discrete subpopulations or
continuous trajectories. To this end, SymSim represents the
desired structure of cell states using a tree (which can be specified
by the user), where every subpopulation (in the discrete mode) or
every cell (in the continuous mode) is assigned with a position
along the tree. Different positions in the tree correspond to dif-
ferent expected EVF values, and the expected absolute difference
between the value of an EVF of any two cells is linearly pro-
portional to the square root of their distance in the tree (Sup-
plementary Notes 2 and 7).

When SymSim is applied in a discrete mode, the cells are
sampled from the leaves of the tree. The set of cells that are
assigned to the same leaf in the tree form a subpopulation, and
their EVF values are drawn from the same distribution. As above,
we draw these EVF from a normal distribution, where the mean is
determined by the position in the tree and the standard deviation
is defined by the parameter σ. When SymSim is applied in a
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Fig. 2 Intrinsic variation. a A diagram of how gene and cell-specific kinetic parameters are simulated from cell-specific EVF and gene-specific gene effect
vectors, and how the kinetic parameters are used in a model of transcription. Each cell has a separate EVF vector for Kon, Koff, and S. Each parameter is
generated through two steps: first, for each gene in each cell, we take the dot product of the corresponding EVF and gene effect vectors. Second, the dot
product values are mapped to distributions of parameters estimated from experimental data. The matched parameters are used to generate true transcript
counts (see Methods). b The distributions of kon, koff, and s that are used in SymSim for simulations. These distributions are aggregated from inferred
results of three subpopulations of the UMI cortex dataset (oligodendrocytes, pyramidal CA1 and pyramidal S1) after imputation by scVI and MAGIC.
c A heatmap showing the effect of parameter kon and koff on the number of modes in transcript counts. The value of s is fixed to 10 in this plot. The red area
with low kon and koff have one zero mode and one non-zero mode. The gray area with low kon and high koff has only one zero mode, and the blue area with
high kon and low koff have one non-zero mode. The yellow arrow shows how the parameter bimod can modify the amount of bimodality in the transcript
count distribution. d Histogram heatmaps of transcript count distribution of the true simulated counts with varying values of bimod, showing that increasing
bimod increases the zero-components of transcript counts and the number of bimodal genes. In these heatmaps, each row corresponds to a gene, each
column corresponds to a level of expression, and the color intensity is proportional to the number of cells that express the respective gene at the respective
expression level. Data used to plot b–d can be found in Source Data
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continuous mode, the cells are positioned along the edges of the
tree with a small step size (which is determined by branch lengths
and number of cells; Methods). The EVF values are then drawn
from a normal distribution where the mean is determined by the
position in the tree, and the standard deviation is defined by σ
(Fig. 3a).

To facilitate the correspondence between EVF values and
distances in the tree we use a Brownian motion procedure as
described in ref. 30 (Methods; Fig. 3a). Specifically, for each EVF
we set the mean value at the root of the tree to a fixed number
(default set root node to 1) and then perform Brownian motion
along the branch. Fig. 3a illustrates this process using populations
2 and 3 in the tree as an example. Notably, in the continuous
mode, this formulation can give rise to a rich set of patterns of
changes in gene expression from root (progenitor cells) to leaves
(target cells), including the commonly observed impulse
profile31,32 (Supplementary Fig. 3c–d). As an alternative, we also
implemented a mode for simulating continuous data by which
gene expression from root to leaves is determined explicitly by an
impulse function. This might be preferable if the user would like
to generate smoother changes in gene expression, or specific
temporal patterns. In the following analyses we use the Brownian
motion model.

Notably, SymSim only generates a subset of EVFs from the
tree, while the remaining ones are drawn from the same
distribution for all subpopulations (Fig. 3a). The tree-sampled
subset, which we term Diff-EVFs (Differential EVFs) represents

the conditions or factors which are different between subpopula-
tions, and they usually account for a small proportion of all the
EVFs. The number of Diff-EVFs can be set by the user. The
results in this section were produced with 60 EVFs, 20% of them
are Diff-EVFs.

With this formulation, users can control the extent of between-
population variation by setting the branch lengths of the input
tree, and combine it with a desired level of within-population
variation by setting the parameter σ. Notably, both σ and the
square root of branch lengths in the tree are in units of EVF
values. It is therefore the case that for any two positions in the
tree, the ratio of square root tree distance to σ determines the
separability between the respective distributions of the values
assigned to any given Diff-EVF (Supplementary Note 2). As
illustration, Fig. 3 depicts the tSNE plots of cells from the same
input tree with different σ in either a discrete (Fig. 3b) or
continuous (Fig. 3c) mode. Notably, both panels show that the
tSNE plots reflect the structure of the input tree well.

Technical variation. The third knob of SymSim allows users to
control technical variation, which accounts for a large part of the
variation observed in scRNA-seq datasets33–35. The technical
confounders reflect noise, reduced sensitivity and bias that are
introduced during sample processing steps such as mRNA cap-
ture, reverse transcription, PCR amplification, RNA fragmenta-
tion, and sequencing. In order to introduce realistic technical
variation into our model, we explicitly simulate the major steps in
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the experimental procedures. We implemented two library pre-
paration protocols: (1) full-length mRNAs profiling without the
use of UMIs (e.g., with a standard SmartSeq229); and (2) profiling
only the end of the mRNA molecule with addition of UMIs (e.g.,
10x Chromium28). The former protocol is usually applied for a
small number of cells and with a large number of reads per cell,
providing full information on transcript structure36. The latter is
normally applied for many cells with shallower sequencing, and it
is affected less by amplification and gene length biases33.

The workflow of these steps is shown in Fig. 4a (Methods).
Starting from the simulated true mRNA content of a given cell
(namely, number of transcripts per gene, sampled from the
stationary distribution of the promoter kinetic model), the first
step is mRNA capture, where every molecule is retained with
probability α̂. The value of the capture efficiency α̂ associated with
each cell is drawn from a normal distribution with a mean α and
standard deviation β, which can be set by the user. The second
step is amplification, where in every cycle SymSim selects each
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Fig. 4 Technical variation. a A diagram showing the workflow of adding technical variation to true simulated counts. Each gray or orange square represents
a molecule of the same transcript in one cell. We implement the following steps: mRNA capturing, pre-amplification (PCR or linear amplification of the
cDNAs), fragmentation, amplification after fragmentation, sequencing, and calculation of UMI counts or read counts. Details of these steps can be found in
Methods. b Gene length bias in both simulated and experimental data for the non-UMI protocol. Error bars represent the ranges of (mean-SD, mean+ SD),
where SD means standard deviation. c Scatter plots comparing true counts and observed counts obtained through: (1) non-UMI, good parameters (α= 0.2,
MaxAmpBias= 0.1, Depth= 1e6) for high quality data; (2) UMI, good parameters (α= 0.2, MaxAmpBias= 0.1, Depth= 5e5) for high quality data; (3) non-
UMI, bad parameters (α= 0.05, MaxAmpBias= 0.2, Depth= 1e6) for low quality data; (4) UMI, bad parameters (α= 0.04, MaxAmpBias= 0.2, Depth=
5e5) for low quality data. d 2D transcript counts histogram heatmap of UMI and non-UMI simulated true counts and simulated observed counts, generated
with parameters which best match the input experimental counts, and histogram heatmaps of the respective experimental counts (non-UMI Th17, UMI
cortex and UMI 10x t4k datasets). e Q–Q plots comparing the mean, percent non-zero and standard deviation in experimental counts and SymSim
simulated observed counts respectively for the non-UMI, UMI cortex and UMI 10x t4k datasets. A good match is indicated by most of the dots falling close
to the red line. Data used to plot b–e can be found in Source Data
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available molecule with a certain probability and duplicates it.
The expected amplification efficiency and the number of PCR
cycles can be set by the user. As an optional step, SymSim
provides the option of linear amplification (e.g., as in CEL-Seq37).
We do not apply this option in this manuscript. In the third step
each amplified molecule is broken down into fragments, in
preparation for further amplification, size selection, and sequen-
cing (Methods).

The number of reads per cell (namely, the number of
sequenced fragments) is drawn from a normal distribution whose
mean is determined by the parameter Depth, which, along with
the respective standard deviation (Depth_sd) can be provided by
the user. To derive the final observed expression values we do not
account for sequencing errors, and assume that every sequenced
fragment is assigned to the correct gene it originates from. For the
non-UMI option, we define the raw measurement of expression
as the number of reads per gene. If UMIs are used, SymSim
counts every original mRNA molecule only once by collapsing all
reads that originated from the same molecule. Notably, for certain
depth values, the resulting distribution of number of reads per
UMI is similar to the one observed in a dataset of murine cortex
cells38 (Supplementary Fig. 4a, Supplementary Fig. 1G of the cited
paper).

It has been previously shown that estimation of gene-
expression levels from full-length mRNA sequencing protocols
has amplification biases related to sequence-specific properties
like gene length and GC-content33,39, whereas the use of UMIs
can correct these biases39,40. In particular, we have observed a
negative correlation between gene length and length-normalized
gene-expression in our reference non-UMI dataset (murine Th17
cells from Gaublomme et al.41; Fig. 4b), and the same trend is
reported by Phipson et al.39. To account for that, we parametrize
the efficiency of the PCR amplification step using a linear model
that represents gene length bias (Methods). As a result, our
simulated data with a non-UMI protocol show a similar
dependence of gene-expression on gene length as in experimental
data (Fig. 4b, real data is from ref. 41). In cases where UMIs are
used, gene length effects are also modeled during amplification,
but these effects are mitigated since each molecule is counted at
most once. We therefore do not observe gene length bias in the
UMI-based simulated data, similarly to the experimental data
(Supplementary Fig. 4b, real data is from ref. 38). Finally, we
model batch effects with multiplicative factors that are gene- and
batch-specific. In Supplementary Fig. 4c, we show the same
population of cells are separated by batches. To simplify the
discussion at the remainder of this paper, we assume that the data
come from a single batch.

In Fig. 4c, we show the comparison between the simulated true
mRNA content of one cell and the simulated observed counts
obtained with or without UMI. We consider two scenarios: the
first scenario represents a study with a low technical confounding
and the second one represents a highly confounded dataset.
Parameters which differ between these “good” and “bad” cases in
this example include capture efficiency (α), extent of amplifica-
tion bias (MaxAmpBias), and sequencing depth (Depth). Using
“bad” technical parameters introduce more noise to true counts,
and compared to the non-UMI simulation the UMIs reduce
technical noise. The histograms of true counts and four versions
of simulated counts are shown in Supplementary Fig. 4d. Using
quantile-quantile plots (Q–Q plots; Supplementary Fig. 4e)
further demonstrates that UMIs help in maintaining a better
representation of the true counts in the observed data.

The total computation time to simulate a dataset consists of
time to generate true counts and time to generate observed counts
from true counts. We show the runtime and memory usage for
different parameter configurations in Methods.

Fitting parameters to real data. For a given real dataset, SymSim
can produce observed (read or UMI) counts that have similar
statistical properties to the real data (Fig. 4d–e), by searching in a
database of simulations obtained from a range of parameter
configurations (Methods). This procedure focuses on within-
population variability (similarly to Splatter13) and sets the values
of ten parameters from both the first and third knobs (Methods).
We test this function with the non-UMI Th17 dataset41 (using all
cells), the UMI cortex dataset38 (using a subpopulation of 948
CA1 pyramidal neuron cells) and two UMI datasets from 10x
Genomics, denoted by “UMI 10x t4k” and “UMI 10x pbmc8k”
(details and sources of experimental data are described in Data
Availability). See Supplementary Note 4 and Supplementary
Tables 2–5 for the values of the fitted parameters.

Side by side inspection of the histograms of true mRNA levels
(simulated) and observed counts (simulated and experimental),
indicates that SymSim can transform the simulated ground truth
(Fig. 4d, left) into simulated observations (Fig. 4d, middle) that
match the real observed data for both UMI and non-UMI
protocols (Fig. 4d, right). For a more quantitative analysis, we
generated Q–Q plots of the distributions of mean (after adding
one to all values), percent non-zero and standard deviation (SD)
of genes between simulated and experimental data (Fig. 4e,
Supplementary Fig. 5b for the UMI 10x pbmc8k dataset).
Notably, we observe a certain level of inaccuracy in matching
the SD at the lower ends for the non-UMI data, which can be due
to lowly expressed genes. Indeed, when we exclude lowly
expressed genes from the real data, the matching of SD improve
substantially (Q–Q plots shown in Supplementary Fig. 5a).
Furthermore, we conducted a similar analysis by training
Splatter13 and powSimR12 with the same experimental datasets
as input, and found that SymSim matches this data significantly
better (Supplementary Fig. 5c). Q–Q plots of the distributions of
coefficient of variation (CV) and mean (without adding one) of
genes between experimental data and data simulated, respectively,
by SymSim, Splatter and powSimR also show that SymSim
provides an overall better fit than the other two simulators
(Supplementary Fig. 5d–e). We also performed additional
comparisons of the simulators with other measurements,
described in Supplementary Note 5 and shown in Supplementary
Figs. 6a–b and 7a–c.

Comparing computational methods for single cell RNA-seq
data. SymSim can be used to benchmark methods for single cell
RNA-Seq data analysis as it provides both observed counts and a
reference ground truth. In the following sections we demonstrate
the utility of SymSim as tool for benchmarking methods for
clustering, differential expression, and trajectory inference in a
sample consisting of multiple subpopulations, using the structure
depicted in Fig. 3a. The design of SymSim allows us to evaluate
the effect of various biological and technical confounders on the
accuracy of downstream analysis. Here, we investigate the effect
of total number of cells (N), within population variability (σ),
mRNA capture rate (α), and sequencing depth (Depth). We also
test the effect of the proportion of cells associated with the
smallest subpopulation of cells (Prop), using population 2 in the
tree as our designated rare subpopulation.

Using SymSim to evaluate clustering methods. We begin by
inspecting the impact of each parameter on the performance of
clustering methods. To this end, we simulated observed counts
using the UMI option, and traversed a grid of values for the five
parameters with 18 simulation runs per configuration. The values
of the remaining parameters are largely determined according to
the cortex dataset38 and specified in Supplementary Table 6. We
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tested three clustering methods: k-means based on Euclidean
distance of the first 10 principle components, k-means based on
Euclidean distance in a nonlinear latent space learned by scVI4

and SIMLR42. In all cases we set the expected number of clusters
to the ground truth value (k= 5). The accuracy of the methods is
evaluated using the adjusted Rand index (ARI; higher values
indicate better performance). To inspect the effects of the various
parameters on clustering performance, we performed multiple
linear regression between the parameters and the ARI. The
regression coefficients are shown in Fig. 5a. Overall, σ appears to
be the most dominant factor, and the proportion of the rare
population (Prop) is clearly positively associated with better
performance. Among the technical parameters, while α plays a
role on the performance especially for the rare population, the
impact of Depth is minor.

We then focus on varying the dominant factors (except N,
which we discuss in the next section), namely, the within-
population variation parameter σ and mRNA capture efficiency α,
for the benchmarking analysis henceforth. In particular, the range

of values for σ is set such that we cover various data
characteristics, from well separated populations, to almost
entirely mixed ones (Supplementary Table 6). We compare the
performance of four clustering strategies: SIMLR42, dimension-
ality reduction with scVI4 followed by k-means, and dimension-
ality reduction with PCA followed by Louvain clustering43

(implemented in Seurat44) or k-means. We observe better
accuracy as the quality of the data increases or the within-
population variation decreases (Fig. 5b–c). Interestingly, compar-
ing σ= 0.6, σ= 0.8, and σ= 1, we can tell that when σ is high
enough to make the clustering challenging, further increasing σ
does not yield obvious changes (Fig. 5b). We observe a similar
trend of saturation, inspecting increasing levels of capture
efficiency (α), especially with scVI. Comparing the methods to
each other, we see that scVI/k-means has the highest ARI in most
cases; when the rare population accounts for 5% of all cells, Seurat
is the second best and PCA/k-means and SIMLR are comparable;
when the rare population accounts for 10% of all cells, SIMLR
performs slightly worse than Seurat and PCA/k-means.
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Using SymSim to evaluate differential expression methods. Our
mechanism for simulating multiple populations automatically
generates differentially expressed (DE) genes between popula-
tions (in the discrete setting; Fig. 3b) or along pseudotime (in
the continuous setting; Fig. 3c). In the following, we use SymSim
to benchmark methods for detecting DE genes, focusing on the
discrete setting. We use two criteria to define the ground truth
set of DE genes. The first criterion is that the number of Diff-
EVFs that are associated with a non-zero gene effect value
(which we denote as nDiff-EVFgene; Fig. 6a) should be larger
than zero. This criterion is motivated by our model of tran-
scription regulation: the kinetic parameters of a gene are affected
by extrinsic factors, and changes to extrinsic factors might

therefore lead to changes in the number of transcripts. Indeed,
when we compare the true simulated gene expression values
between subpopulations (i.e., before introducing technical con-
founders), we get a uniform (random) distribution of p-values
for genes with no Diff-EVFs, and an increasing skew as nDiff-
EVFgene increases (Fig. 6b, using Wilcoxon test); Supplemen-
tary Fig. 9a shows that the log fold change of gene-expression
between subpopulations increases with nDiff-EVFgene. An
additional constraint for a gene being differentially expressed is
that it must have a sufficiently large fold change in their
simulated true simulated expression levels (threshold of absolute
log2 fold change ranges from 0.6 to 1, details in Figure legends;
Methods).
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An important distinguishing feature of SymSim is that it
provides an intuitive way for generating case studies for DE
analysis that consist of multiple subpopulations with a predefined
structure of similarity. To illustrate this, consider populations 1, 2,
and 4 (Fig. 6c), which form a hierarchy (2 and 4 are closer to each
other and similarly distant from 1). This user-defined structure is
reflected in the sizes of the sets of DE genes, obtained,
respectively, from populations 1 vs 2 (1229 genes), 1 vs 4 (1412
genes), and 2 vs 4 (815 genes). Consistent with the hierarchy, the
first two gene sets are overlapping and larger than the third one.

As an example for a benchmark study, we used four methods
to detect DE genes: edgeR45, DESeq246, Wilcoxon rank-sum test,
and t-test on observed counts generated by various parameter
settings (Methods, Supplementary Table 7). We tested the effect
of the total number of cells (N) and mRNA capture rate (α) with
10 simulation runs per parameter configuration. We use two
accuracy measures: (a) AUROC (area under receiver operating
characteristic curve), obtained by treating the p-values output
from each method as a predictor (Fig. 6d, Methods); (b) negative
of Spearman correlation between the p-values of each detection
method and the log fold difference of the true expression levels
(Fig. 6e, Methods).

From Fig. 6d–e, one can observe that when the numbers of
cells are small (30 in each population), edgeR has the best
performance while the other three methods are comparable to
each other. When the numbers of cells of both populations
increase to 300, the two naive methods Wilcoxon test and t-test
improve in their relative performance, compared to edgeR and
DESeq2. The case where the numbers of cells are 30 and 300
appears to have performance between those of the 30 vs 30 case
and the 300 vs 300 case. When increasing capture efficiency, all
methods gain performance except for the case of AUROC with
300 cells. In that case, the drop in AUROC for some methods is
caused by inflation in p-values as α increases, which results in
lower specificity (Supplementary Fig. 9b). Notably, we noticed
that the adjusted p-values from DESeq2 can have many missing
entries (NAs), especially when α is low (and thus counts are low),
and therefore we used its unadjusted p-values in Fig. 6d–e.
However, this assignment of NAs in practice filters out genes,
which do not pass a certain threshold of absolute magnitude
(explained in DESeq2 vignette47). To make use of this filtering,
we conducted an additional analysis where we used the adjusted
p-values for DESeq2 and compare it to all other methods using
only the non-filtered (non NA) genes (Supplementary Fig. 9c). As
expected, the performance of all methods (and specifically
DESeq2) improves when considering only this set of genes, and
converges to high values already at lower capture efficiency rates.

To summarize, we find that edgeR has the best overall
performance, with the t-test rank second followed by Wilcoxon
test. This ranking is consistent with results from a recent paper
which evaluated 36 methods for DE analysis with single cell
RNA-Seq data48.

We also investigate the effects of bimodality (controlled by
parameter bimod) on the performance of clustering and
differential expression algorithms. This analysis is presented in
Supplementary Note 6 and Supplementary Figs. 8a–b and 10a–d.

Using SymSim to evaluate trajectory inference methods. The
ability of SymSim to generate a continuum of cell states makes it a
convenient choice to benchmark trajectory inference methods.
We compare three methods including Monocle49,50, Slingshot51,
and a minimum spanning tree (MST) algorithm implemented in
the package dynverse52 (Methods). We generate datasets with
different values of σ and α with the input tree shown in Fig. 3a.
For each parameter configuration, we repeat the simulation 10

times. To evaluate the trajectory inference methods, we use two
measures: (1) Spearman correlation between true cell order and
inferred cell order. We consider cells on each lineage (a path from
root to a leaf) separately and take the average of correlation on all
five lineages. (2) k-nearest neighbor purity (knn purity) of cells,
that is, for each cell, we calculate the Jaccard Index between its
k-nearest neighbors in the true trajectory and that in the inferred
trajectory. Results are shown in Fig. 7. In these plots, k is set to
100. In Fig. 7a, we vary σ and fix α as 0.1. Both the correlation and
knn purity decrease when σ increases. In Fig. 7b, we vary α and fix
σ as 0.6. All methods show an overall increasing trend along with
α with both measures. Consistent with a recent benchmark
study52, we observe that overall Slingshot clearly outperforms the
other two methods.

Experimental design. Deciding how many cells to sequence is a
decision many researchers face when designing an experiment,
and the optimal number of cells to sequence highly depends on
the nature of the biological system under investigation and the
respective technical hurdles. A previous approach to this pro-
blem53 assumes that the goal of the experiment is to identify
subpopulations of cells and provides a theoretical lower bound for
the problem. This bound considers the aspect of counting cells
(namely, sequencing enough representative cells from each sub-
population), but it does not account for the identifiability of each
subpopulation, which may be hampered by both technical and
biological factors as well as the performance of clustering
algorithms.

In the following we demonstrate how SymSim can be used to
shed more light on this important problem. Importantly, in its
current form SymSim does not use real data to model between-
population variability. We therefore interpret the results in a
relative manner—how do different variability factors shift the
required number of cells, compared to each other and to the
theoretical lower bound. Our example focuses on a case of one
rare subset, represented by cells from population 2 (using the
same tree in Fig. 6c; note that one can easily generalize this
procedure to multiple rare subpopulations). We simulate
observed counts with numbers of cells (N) ranging from 600 to
7000. These simulations were based on the parameters fit to the
cortex dataset38 with varying levels of σ and α (250 simulations
per parameter configuration).

We applied the same four clustering methods as described in
the previous section (k-means with scVI or PCA, Louvain
clustering with PCA (Seurat) and SIMLR). We say that a given
algorithm was successful in detecting the rare population if at
least 50 cells from this set are assigned to the same cluster, and
form at least 70% of the cells in that cluster. We use these labels to
compute an empirical success probability P for each algorithm
and each parameter configuration. Out of the 250 simulations for
each parameter configuration, we randomly sample 100 rando-
mizations 20 times, and for each 100 randomizations we can
calculate a value of P. We then plot the mean and standard
deviation as error bars of the 20 values of P for each N under each
configuration (Fig. 8a–d, Supplementary Fig. 11). To get an upper
bound on performance that better reflects the data (rather than
the choice of algorithm), we take the best P out of all algorithms,
and apply cubic spline smoothing (gray curves, Fig. 8a–d). In
each plot we also include the theoretical limit which only requires
the presence of at least 50 cells from the rare subpopulation
(Methods). The theoretical curve (which is independent of all
parameters except N) reaches almost 1 at N= 1400. Conversely,
the empirical curves vary dramatically, based on parameter
values. For an easy case of low within-population variability (σ=
0.4) and high capture efficiency (α= 0.1) the empirical upper
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bound curve is close to the theoretical one (Fig. 8a). This curve
decreases when increasing the effect of either nuisance factor
(Fig. 8b–c). The reduction is substantially more dramatic for most
of the methods when both nuisance factors increase, while Seurat
remains robust to this change, potentially due to that the graph-
based clustering method is advantageous in reducing false
positives for the rare population compared to k-means (Fig. 8d).

To understand the implications on the number of cells
required in a given setting, we calculated how many cells are
required, in each configuration, to achieve a success rate of
respectively 0.6, 0.7, 0.8, and 0.9 (Fig. 8e). As expected, the
resulting numbers can be much higher than the theoretical lower
bound. For example, to achieve a success rate of 0.9, when the
within-population variability increases (σ= 0.7), we need at least
3838 cells (corresponding to α= 0.01), while with the theoretical
curve, we need only less than 1200 cells. In general, the number of
cells needed increase when the desired success rate and σ increase.
Very low capture efficiency (α= 0.001, α= 0.005) tend to require
high number of cells. Considering only the binomial sampling of
cells may therefore underestimate the number of cells needed for
a realistic scenario, and considerations of biological and technical
variations with simulators like SymSim is merited.

Discussion
SymSim has the following features, which are advantageous over
existing simulators: (i) We simulate true transcript counts from a
kinetic model that can be interpreted in terms of transcript
synthesis rate, promoter activation, and deactivation. (ii) When
generating multiple discrete or continuous populations, instead of
generating biological differences through directly altering the true
transcript count distribution, we set Diff-EVFs, which can be
interpreted as biological conditions that cause the differences

between subpopulations of cells. This is a more natural and
realistic way to simulate biological transcriptional differences. (iii)
The EVF formulation provides an intuitive way to specify and
simulate complex structures of cell–cell similarity, without the
need for manual specifications of the numbers of DE genes13. (iv)
When generating observed counts, we simulate key steps in real
experimental protocols, which automatically gives us dropout
events, length bias, and distribution of library sizes. We also
provide choices to use UMI-based protocols or non-UMI full-
length mRNA protocols, as the properties of data output from
these two categories can be very different.

The main input parameters to SymSim, mostly the parameters
in the third knob, are self-explanatory with their own technical
meanings, which users can adjust to match an experimental
dataset of interest. SymSim allows users to simulate datasets with
desired properties or matched with experimental data. While the
procedure of parameter fitting was developed in order to generate
simulated datasets with similar properties, it may also provide
additional insight, as the parameters are biologically or techni-
cally interpretable. For instance, comparing the parameters fit to
the the UMI and non-UMI datasets in this study we note that the
capture efficiency inferred to the latter is much higher (Supple-
mentary Tables 2–5). The modular nature of SymSim provides
possibilities to generalize its application. For example, the gen-
eration of true counts with EVFs and transcription kinetics can be
replaced by learning a generative model from real data, with
methods such as scVI4. This type of extension will facilitate
simulation of between-subpopulation diversity that better mimics
experimental observations, albeit at the cost of using parameters
that are less interpretable biologically. Another extended appli-
cation of interest is to use different tree structures for different
Diff-EVFs when generating multiple populations of cells, such
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that every tree represents a different aspect of variability between
cells. For instance, using this approach, one tree can represent a
differentiation process and the other can represent variability due
to the physical location of the cell.

As the number and extent of biological applications of single
cell genomics continues to grow, so does the extent of analytical
questions one can tackle, which go beyond standard bulk era
analysis steps (e.g., trajectory analysis, mRNA velocity54, and
more). The need for robust analytical methods therefore increa-
ses, and so does the means for proper evaluation of these
methods. SymSim provides a starting point to address this chal-
lenge of flexible and feature-rich simulation for method evalua-
tion, as it aims to directly mimic the key mechanistic properties of
single cell RNA sequencing.

Methods
Simulating gene expression with the kinetic model. As shown in Fig. 2a, the
kinetic model of gene expression considers that a gene can be either on or off and
the probabilities to transit between the two states are kon and koff. When the gene is
on it is transcribed with transcription rate s. The transcripts degrade with rate d.
For a given gene, based on these parameters one can simulate the number of its
transcript molecules over time. The theoretical probability distribution can be
calculated via the Master Equation15,17, which is the steady state solution for the
kinetic model. Alternatively, the kinetic model can be represented by a Beta-
Poisson model17, which we use in our implementation to sample expression values
for a gene.

Calculating parameters for the kinetic model in SymSim. For a gene in a cell,
the parameters for the kinetic model kon, koff, and s are calculated from the cell-
specific EVF vectors of this cell and the gene effect vectors of the gene (Fig. 2a). To
allow independent control of the three parameters, we use one EVF vector and one
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gene effect vector for each parameter. Take kon as an example: denoting the EVF
vector as ðekon1 ; ekon2 ; ¼ ; ekonp Þ; and the gene effect vector for kon as

ðgkon1 ; gkon2 ; ¼ ; gkonp Þ; the cell-gene specific value for kon is the dot product of these
two vectors. We then map these kon values to the distribution of kon estimated from
experimental data, to obtain the matched parameters. We do so by sorting the kon
values (from dot products) for all genes in all cells, sampling the same number of
values from the experimental kon distribution (the number of values would be m*n,
where m is the number of genes and n is the number of cells), and updating the kon
values to the ones sampled from the experimental distribution with the same rank.
The values of koff and s are calculated in the same way.

Finally, to better model the high-expression outlier genes which usually account
for a very small proportion of all genes, we introduce two parameters (prop_hge
and mean_hge) to SymSim for these outlier genes. First, we use parameter prop_hge
to represent the proportion of these genes. For randomly selected genes according
to this proportion, we consider that they are always on and their gene-expression
levels are sampled from a Poisson distribution with parameter s (the transcription
rate). To reflect their high gene-expression level, we increase their transcription
rate s calculated from EVFs and gene effects with an inflation factor. The inflation
factor for each gene is the exponential (base 2) of (mean_hge-1+ rank/n), where
rank is the rank of mean s of a gene among all outlier genes (smaller s corresponds
to smaller rank values), n is the total number of outlier genes and mean_hge
specifies the extent of inflation to original s. The values of prop_hge and mean_hge
can be fitted from real data.

Estimating kinetic parameters from real data. We estimated kinetic parameters
from experimental data using an MCMC approach. For each gene, its expression X
depends on p, the proportion of time it is on, and the mRNA synthesis rate s. The
parameter p itself is a random variable determined by the kinetic parameters kon
and koff. We model p as a Beta distributed variable with shape parameters kon and
koff. We model X as a Poisson-distributed variable with parameter p*s. The dis-
tribution of X is then identical to the distribution calculated using the Master
Equation17. The downsampling effect is modeled as a Binomial sampling with X
being the number of trials, and f being the probability that a transcript is sampled
for sequencing.

We fit this model to the experimental data using the Gibbs sampler
implemented in RJAGS. The number of iterations is set to 2000. At every iteration,
we sample each parameter from its marginal posterior conditional on the value of
all other parameters. To meet the assumption that all cells share the same kinetic
parameters we divide cells by clustering that is performed in the original study and
fit the model to counts in a single cluster of cells at a time. We use imputed read
counts, rather than the raw read counts. We use scVI4 and MAGIC18 for the
imputation. We use multiple starting points to diagnose convergence. For each cell
cluster and each imputation method, we fit the model independently three times.
We observe that different runs from the same data have very similar distributions
(Supplementary Fig. 2c, UMI cortex data, subpopulation pyramidal CA1, imputed
with scVI). We also investigate the autocorrelation and plotted the typical lag vs
correlation plots for these chains (Supplementary Fig. 2d). The correlation drops as
the lag increases, which is a sign of sufficient mixing of samples. We then merge all
the acceptable chains to obtain the distributions for the combination of cluster and
imputation method. Finally, results from all combinations are merged to obtain the
final distribution of kinetic parameters (Fig. 2b).

As our reference, we used a UMI-based dataset of 3005 cortex cells by Zeisel
et al.38 and a non-UMI-based dataset of 130 IL17-expressing T helper cells (Th17)
by Gaublomme et al.41 (See Data Availability for further details on the
experimental data). To mitigate the effects of low sensitivity, the UMI-based data
were imputed using scVI4 and MAGIC18, and the non-UMI data were imputed
using MAGIC18 (as scVI is only applicable to large datasets). To reduce the effects
of extrinsic variation, we performed the parameter estimation separately in each of
the three largest clusters in the cortex dataset (each cluster is assumed to represent
a relatively homogenous subpopulation), and on the entire T cell data (a single
condition, which did not contain obvious clusters) and obtained similar
distribution ranges (Supplementary Fig. 2b).

We then perform simulations to test how well this procedure of kinetic
parameter estimation reconstructs the true parameters. We simulate observed UMI
counts for five discrete populations whose relationships are defined by the tree in
Fig. 3a, with the complete workflow of SymSim. Then we perform imputation on
the observed UMI counts with both scVI and MAGIC. We then apply the kinetic
parameter estimation procedure described above on each subpopulation imputed
by each imputation method separately. Finally we aggregate the parameters
estimated from all populations and both imputation methods, and gain the
distributions estimated from imputed counts. We also apply the kinetic parameter
estimation procedure on the true counts which are available (Supplementary
Fig. 3b).

Simulation of discrete and continuous populations. The structure of populations
can be represented by a tree and the user can input the tree in Newick format in a
text file. The differences between populations are realized through Diff-EVFs,
which usually account for a small proportion of all EVFs. There are two different
modes of simulation the Diff-EVFs, Continuous and Discrete. Both modes can be

modeled by Brownian motion along the tree from root to leaves, where one starts
with a given value at the root (default is 1), and at each time point t, yðtÞ is
calculated as yðtÞ ¼ yðt � 1Þ þ Nð0;ΔtÞ, where NðÞ represents a Gaussian func-
tion, and Δt is the step size. The values at internal nodes of the tree are shared by all
branches connecting this node. In the continuous mode, the step size between two
consecutive cells on a given branch is obtained by randomly sampling nb positions
on a branch b of length lb . In the discrete mode, the step size is the corresponding
branch length and the number steps is the depth of the tips. For a given tip and a
given EVF, the value we sample at the tip is used as the mean of a Gaussian
distribution to sample the values for that EVF for all cells in that population with
standard deviation σ (Fig. 3a).

For the continuous mode we also provide an alternative option to the Brownian
motion model: using impulse functions for modeling the path-specific variation.
When impulse function is used, for cells sampled from branches that are not on the
root-tip path for the specific EVF, they are sampled from a univariate normal with
mean equal to the EVF value at their most recent common ancestor with the
varying path, and standard deviation σ.

Simulating technical steps from mRNA capturing to sequencing. We simulate
two categories of library preparation protocols, one does not use UMIs (unique
molecular identifiers)28 and sequences full-length mRNAs (using procedures in
Smart-seq229 as template), and the other uses UMIs and sequences only the 3′ end
of the mRNA (using the Chromium chemistry by 10x Genomics as template). In
the pre-amplification step, we provide option of using linear amplification to
mimic the CEL-seq protocol. As shown in Fig. 4a, we take one transcript with 16
molecules as an example. To implement the UMIs, each original molecule has a
variable to its count at each step. The technical steps include the following:

(1) Capturing step: molecules are captured from the cell with probability α.
(2) Pre-amplification step: if using non-CEL-Seq protocols, this step involves N

rounds of PCR amplifications. We introduce sequence-specific biases during
amplification, which includes transcript length bias and other bias assigned
randomly. Parameter lenslope can be used to control the amount of length bias, and
MaxAmpBias is used to tune the total amount of amplification bias. If using CEL-
Seq protocol this step is the in vitro transcription (IVT) linear amplification.

(3) Fragmentation step: the mRNAs are chopped into fragments for sequencing.
If sequencing full-length mRNA, all fragments with acceptable length are kept for
sequencing. If sequencing only the 3′ end for UMI protocols, only fragments on the
3′ end are kept for sequencing. The lengths of the simulated transcripts are
obtained from the human reference genome, and the fragmentation is calibrated so
that the average fragment length is 400 bp, which is typical for RNA sequencing
(Supplementary Note 3). For each transcript length, we calculate a distribution of
number of fragments given expected fragment length, and use this distribution to
generate the number of fragments during our simulation of the fragmentation step.
The distributions are different for non-UMI and UMI protocols; the details of
calculating the distributions are in Supplementary Note 3. Resulting fragments that
are within an acceptable size range (100–1000 bp) are then carried on to the
next step.

(4) Amplification step: fragments go through another k rounds of PCR
amplifications for all protocols, including CEL-Seq and non-CEL-Seq protocols.

(5) Sequencing step: amplified fragments from the previous step are randomly
selected according to a given value of sequencing depth, which is the total number
of reads (fragments) to sequence.

(6) After the sequencing step (assuming all reads are correctly sequenced and
mapped to their original gene), we can get the UMI counts for UMI protocols and
read counts for non-UMI protocols.

Note that for simplicity, this pipeline omits several steps, including reverse
transcription, and library cleaning up.

The runtime to simulate a dataset is dominated by the simulation of these
technical steps. The total time cost varies with mRNA capture efficiency and
protocol. With one CPU core of an Intel(R) Xeon(R) CPU E5–2690 v4 @ 2.60 GHz,
the runtime and memory consumed to simulate a dataset with 500 cells and 10000
genes for different parameters are shown in Table 1.

Simulation of amplification biases. During PCR amplification of the full-length
cDNAs, the PCR amplification rate (namely, probability to be amplified) can vary
for different transcripts. As a result, some transcripts are over- and some are under-
amplified. This causes the unwanted amplification bias. To simulate this, for each
gene, its PCR amplification rate is set to a sum of a basal amplification rate (the

Table 1 Runtime and memory usage of SymSim

Capture
efficiency

Protocol Sequencing depth Runtime (min) Memory

0.05 UMI 100,000 9.5 1.8 G
0.2 UMI 100,000 32.8 2.3 G
0.05 nonUMI 100,000 8.6 1.8 G
0.2 nonUMI 100,000 16.5 1.7 G
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input parameter rate_2PCR, which equals to the average amplification rate across
all genes) plus a bias term B. The bias term B ranges from -MaxAmpBias to
MaxAmpBias, where MaxAmpBias is a user-specified parameter to represent the
total amount of amplification bias in our system.

B is composed of two categories of biases: biases related to transcript length
(referred to as gene length bias, denoted by Blength) and biases caused by other
factors (denoted by Brand). We use a linear function to model the gene length bias:
we first bin all gene lengths into nbins bins, and get the average length in each bin:
L ¼ ðlbinð1Þ; lbinð2Þ; :::; lbinðnbinsÞÞ. The length bias term associated with a gene in bin i
is set to: Blength ið Þ ¼ lenslope ´median Lð Þ � lenslope ´ LðiÞ.

The parameter lenslope controls the extent of gene length bias. To ensure that
Blengthdoes not exceed MaxAmpBias, the parameter lenslope should be smaller
than 2 ´MaxAmpBias=ðnbins� 1Þ. We then set the second term Brand to a
random value in the residual range ½�MaxRandBias;MaxRandBias�, where
MaxRandBias ¼ MaxAmpBias�maxðBlengthÞ. Namely, Brand ¼ Nð0;MaxRandBiasÞ,
where NðÞ is a Gaussian.

Therefore, for a given gene with length l, its PCR amplification rate is:

rate 2PCR þ BlengthðbinðlÞÞ þ Brand ð1Þ

This rate is used in all rounds of PCRs in the pre-amplification step. The biases
then get amplified as more PCR cycles are performed, where transcripts with
higher amplification rate will likely get more molecules. Assigning a UMI to each
molecule before amplification allows us to collapse all molecules with the same
UMI after amplification, so different amplification rates will not affect the final
molecule counts. For Fig. 4b, lenslope is set to 0.023, MaxAmpBias is set to 0.3,
nbins is set to 20, and rate 2PCR is set to 0.7.

Fitting simulation parameters to real data. To find the best matching parameters
to a real dataset, we simulate a database of datasets with a grid of parameters over a
wide range. For each simulated dataset, we calculate the following statistics: mean,
percent non-zero, standard deviation of genes over all cells. Then given a real
dataset, we find the simulated dataset, which have the most similar distributions of
the statistics to the real data, and return the corresponding parameter configura-
tions. The parameters and their ranges for simulating the two databases are in
Table 2.

Applying dimensionality reduction and clustering methods. We apply three
different dimensionality reduction methods to cluster cells simulated from multiple
discrete populations: PCA, scVI, and SIMLR. PCA is the naive baseline method
that is also the most commonly seen in single-cell RNA-seq analysis. scVI is a more
recent method that uses a zero-inflated negative binomial variational auto-encoder
model to infer latent space for each single cell. For both the first two methods,
cluster identities are then assigned using k-means clustering. The third method,
SIMLR, performs dimensionality reduction and cluster identity iteratively to
maximize cluster separation. The fourth method, implemented in Seurat, uses PCA
for dimensionality reduction and the Louvain clustering.

Simulation of differentially expressed genes. Diff-EVFs give rise to differences
between populations as well as DE genes between populations. DE genes by design
are the ones with non-zero gene effect values corresponding to the Diff-EVFs
(Fig. 6a), as the gene effect vectors are sparse with a majority of values being 0 s.
Nevertheless, in some cases, the actual expression values of genes with at least one
Diff-EVFs might not differ since the effects of different Diff-EVFs or the effects of
modifying different kinetic parameters may cancel out. Differential expression
might also be blurred by a high within-population variability. Thus we also use the
log2 fold change (LFC) of mean gene-expression from the two populations as
another criteria. The mean expression can be calculated based on simulated true
counts, which is subject to gene-expression intrinsic noise, or based on the kinetic
parameters themselves, directly from the theoretical gene-expression distribution.
If the kinetic parameters of a gene in a cell is kon, koff, and s, the expected gene-
expression of this gene in this cell is s*kon/(kon + koff). We use multiple thresholds
ranging from 0.6 to 1 on the |LFC| to define a gene is DE, in order to avoid being
biased with one single artificial threshold.

Detection of differentially expressed genes. DE genes in observed counts are
detected, respectively, with edgeR, DESeq2, Wilcoxon test, and Student t-test. For
edgeR, we used the quasi-likelihood approach (QLF) with cellular detection rate
(the fraction of genes that are detected with non-zero counts in each cell) as
covariate. For DESeq2, we use local for the fittype parameter, and we evaluate its
performance, respectively, based on the output p-values and adjusted p-values,
which serve as filtering of genes.

The output from each DE method is a p-value for each gene, with smaller values
meaning the gene is more likely to be a DE gene. We use two metrics to evaluate
the performance of a DE method: (a) AUROC (area under receiver operating
characteristic curve), where we apply different thresholds on the p-values to obtain
different sets of predicted DE genes, and we can then plot ROC curves with
different combinations of 1-specificity and sensitivity, thus calculate the area under
the ROC curve. (b) Negative of Spearman correlation between the p-values of each
detection method and the log fold difference of the true expression levels. Genes
with high log fold change in true transcript counts should correspond to low p-
value if the DE method works well. As the inferred p-values and log fold change in
true counts are expected to be anti-correlated, we take the negative of this
correlation, such that higher value corresponds to better performance.

Applying trajectory inference methods. We use the R packages dynwrap (https://
github.com/dynverse/dynwrap, version 0.1.0) and dynmethods (https://github.
com/dynverse/dynmethods, version 0.1.0) to run the three trajectory inference
methods compared in this manuscript: Monocle (version 2.6.4), Slingshot (version
0.99.12), and MST (a basic method implemented in dynmethods). All methods
were run with default parameters. Both dynwrap and dynmethods are under the
collection of R packages dynverse used in the manuscript by Saelens et al.52.

Effect of parameter bimod on gene-expression levels. To investigate if
increasing bimod will cause decrease in overall gene-expression levels of genes thus
lead to the decrease in performance of both clustering and DE methods, we

Table 2 Parameters and their ranges for simulating the UMI and nonUMI databases

Parameters non-UMI database UMI database

Sigma (σ): within-population heterogeneity 0.1, 0.2, 0.6 0.2, 0.6
Gene_effects_sd: standard deviation for
generating gene effect vectors

1, 2 2

scale_s: cell size parameter, use small values
for cell types known to be small

0.3, 0.5, 0.6, 1 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1

prop_hge: proportion of extreme high-
expression outlier genes

0.015, 0.02, 0.025, 0.03 0.01, 0.015, 0.02, 0.025, 0.03

mean_hge: scale factor for high-expression
outlier genes

3, 4, 5, 6 3, 4, 5, 6

Alpha_mean (α): mean mRNA capture
efficiency

0.05, 0.1, 0.15, 0.2, 0.25 0.007, 0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.1

Alpha_sd (β): standard deviation of mRNA
capture efficiency across cells

0.005, 0.01, 0.015, 0.02, 0.03, 0.045,
0.06, 0.075

7e-04, 0.001, 0.0014, 0.002, 0.003, 0.0035, 0.004,
0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.012, 0.015,
0.02, 0.025, 0.03, 0.035, 0.05

depth_mean (depth): mean sequencing depth
for a set of cells

1e+ 05, 5e+ 05, 1e+ 06, 2e+ 06 45,000, 70,000, 95,000, 150,000, 3e+ 05, 5e+ 05

Depth_sd: standard deviation of sequencing
depth for a set of cells

100,00,30,000, 50,000, 1e+ 05,
150,000, 2e+ 05, 3e+ 05, 6e+ 05

4500, 7e3, 9e3, 9.5e3, 13500, 14e3, 15e3, 19e3, 21e3,
22,500, 28,500, 3e4, 35e3, 4.5e4, 47500, 5e4, 7.5e4, 9e4,
15e4, 25e4

nPCR1: number of PCRs in pre-
amplification phase

14, 18 10, 14

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10500-w

14 NATURE COMMUNICATIONS |         (2019) 10:2611 | https://doi.org/10.1038/s41467-019-10500-w |www.nature.com/naturecommunications

https://github.com/dynverse/dynwrap
https://github.com/dynverse/dynwrap
https://github.com/dynverse/dynmethods
https://github.com/dynverse/dynmethods
www.nature.com/naturecommunications


calculate the percentage change of total number of transcripts of genes from bimod

= 0 to bimod= 1. That is, for each gene, we calculate
Pm

j¼1
xj �

Pm

j¼1
x′j

 !

=
Pm

j¼1
xj,

where xj is the number of transcripts of this gene in cell j when bimod= 0, x′j is the
number of transcripts of this gene in cell j when bimod= 1, and m is the number of
cells. From Supplementary Fig. 10d we see that there is no consistent increase or
decrease of total number of transcripts for the genes when changing bimod.
Therefore, we conjecture that the drop in the performance of clustering and DE is
rather caused by change in the distribution of gene-expression levels of genes
instead of overall gene-expression levels.

Calculating the probability of detecting a population. Assuming all sequenced
cells are correctly assigned to its original population, the probability that at least x cells
are detected from a population only depends on the binomial sampling. Denote the
total number of cells by N and the proportion of the cells in the given population by r,
the probability that at least x cells are detected for the population is:

1�
Xx�1

k¼0

N

k

� �

rkð1� rÞðN�kÞ ð2Þ

This formula is used to generate the black curves in Fig. 8a–d.
During our simulation to estimate the number of cells needed to detect a rare

population, we simulate the random sampling process as follows: we start with a
total of 10,000 cells for all five populations with 2000 cells for each population. We
set probability vector of a cell belonging to each population as (0.25, 0.05, 0.25,
0.25, and 0.2), where Population 2 is the rare population with smallest probability.
For each randomization and given total number of cells N (N ≤ 7000), we randomly
sample N cells from the pool of 10,000 cells according to the probability vector.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
We use four experimental datasets throughout this paper, one is from41 which does not use
UMIs and the other three use UMIs. The non-UMI datasets profiles Th17 cells under
various conditions and in our paper we use a subpopulation of 130 TGF-β1+ IL-6 cells. We
refer to this dataset as the “non-UMI Th17” dataset. This dataset is available at GEO with
accession number GSE74833. The first UMI dataset profiles 3006 cerebral cortex cells38.
This data are available at GEO with accession number GSE60361. The authors found nine
classes in these cells. In this paper, to get distributions of kinetic parameters to map our
simulated parameters to the same distribution, we perform parameter estimation,
respectively, on (1) 628 cells sampled from the oligodendrocyte class; (2) 715 cells sampled
from the CA1 pyramidal neurons; (3) 296 cells sampled from the S1 pyramidal neurons. To
verify that SymSim can simulate data with similar statistics with given experimental dataset,
we use all 948 oligodendrocyte cells in the cortex dataset. The other two UMI datasets are
downloaded from the 10x Genomics website: one has around 4538 Pan T Cells (denoted as
the “UMI 10x t4k” dataset, https://support.10xgenomics.com/single-cell-gene-expression/
datasets/2.0.1/t_4k) and the other has 8381 PBMC cells (denoted as “UMI 10x pbmc8k”,
data available at https://support.10xgenomics.com/single-cell-gene-expression/datasets/
2.1.0/pbmc8k). For both 10x datasets, we use cluster 1 (the largest cluster) identified at their
respective analysis page. All other relevant data are available upon request.

Code availability
SymSim is publically available as an R package on GitHub (https://github.com/YosefLab/
SymSim).
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