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ABSTRACT The objective of this study is to characterize the molecular mechanism
of a clinical carbapenem-resistant Citrobacter portucalensis strain K218, which coprodu-
ces KPC and NDM carbapenemases. K218 was isolated from a patient's blood sample
in a Chinese tertiary hospital. Carbapenemases were detected by the immunocolloidal
gold technique. The MIC values were determined by VITEK2. Whole-genome sequenc-
ing was performed on K218 and sequence data were analyzed using phylogenetics
and extensive genomic comparison. This study reveals that K218 contains a single
5.08 Mb chromosome (51.8% GC content) and four plasmids, pK218-KPC (106 Kb),
pK218-NDM (111 Kb), pK218-SHV (191 Kb), and pK218-NR (5 Kb). Twenty-nine types of
antibiotic resistance genes were carried on K218, including blaKPC-2 harbored on
pK218-KPC and blaNDM-1 harbored on pK218-NDM. Detailed comparison of related plas-
mids of pK218-KPC, pK218-NDM, and pK218-SHV showed that they shared similar con-
served backbone regions, respectively. Comprehensive annotation revealed large
accessory modules were recombined on the genome of K218. Further analysis specu-
lated that mobile genetic elements bearing abundant resistance genes facilitated the
formation of these accessory modules. In conclusion, this study provides an in-depth
understanding of the genomic characterization of K218, an extensively drug-resistant
C. portucalensis strain coproducing NDM and KPC carbapenemase. To the best of our
knowledge, this is the first report of C. portucalensis strain coharboring blaKPC-2 and
blaNDM-1 from the clinical setting.

IMPORTANCE This is the first report of extensively drug-resistant C. portucalensis har-
boring both blaKPC-2 and blaNDM-1. This study will not only extend the understanding
of the structural dissection of plasmids and chromosomes carried in C. portucalensis,
but also expand knowledge of the genetic environment of the blaKPC-2 and blaNDM-1

genes. blaKPC-2 and blaNDM-1 genes have been suggested to facilitate the propagation
and persistence of their host bacteria under different antimicrobial selection pres-
sures. Large accessory regions carrying blaKPC-2 and blaNDM-1 genes have become hot
spots for transposition and integration, and their structural variation and evolution
should receive attention. The multidrug-resistant plasmids pK218-KPC, pK218-NDM,
and pK218-SHV with several multidrug resistance regions and the chromosome
cK218 with two novel transposons Tn7410 and Tn7411 contribute to the formation
of extensively drug-resistant C. portucalensis.
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C itrobacter portucalensis, recently identified as an emerging species in the Citrobacter
genus, is a Gram-negative facultative anaerobic bacterium of the Enterobacteriaceae

family (1). In 2017, strain A60 isolated from aquatic ecosystems in Cantanhede, Portugal,
was identified as C. portucalensis, a novel species according to phenotype, genotype,
and phylogenetic analysis (1). Since then, a series of multidrug-resistant C. portucalensis
strains have been reported. In 2018, a highly multidrug-resistant C. portucalensis strain
MBTC-1222 was isolated from vegetables (uziza leaves) in Nigeria and analyzed by
whole-genome sequencing, which showed that both A60 and MBTC-1222 carried genes
blaCMY (encoding b-lactamase that contribute to broad-spectrum b-lactams resistance)
and qnrB, and MBTC-1222 also carried blaTEM (encoding b-lactamase) (2). In 2019, a ge-
nome-wide analysis of C. portucalensis strain NR-12 of poultry origin in Bangladesh was
performed and extensive antimicrobial resistance genes (including blaCMY-39 and blaTEM-176)
and related mobile genetic elements (MGEs) were identified (3). In 2020, scanning electron
micrographs of the C. portucalensis strain RIT669 were obtained, and its antibiotic resist-
ance profile was reported (4). In particular, in 2021, a clinically isolated carbapenems-resist-
ant C. portucalensis strain 3839 was reported in China. Further analysis showed that strain
3839 carried the resistance gene blaNDM, and that is the first report of blaNDM-carrying
C. portucalensis from the clinical setting (5). Overall, the growing prevalence of multidrug-
resistant C. portucalensis strains is becoming a potential threat to human society and pub-
lic health in recent years.

Ambler class A b-lactamase Klebsiella pneumoniae carbapenemase (KPC) and Ambler
class B b-lactamase New Delhi metallo-b-lactamase (NDM), the two most common car-
bapenemases in Enterobacteriaceae (6, 7), can hydrolyze nearly all classes of b-lactam
antibiotics. Although KPC or NDM carbapenemases have been widely reported broadly,
Enterobacteriaceae strains that produce both KPC and NDM are rare. Strains coproducing
KPC and NDM are a significant threat to public health due to higher-level resistance to
carbapenems. Until now, the strains coproducing KPC and NDM have been sporadically
reported in Enterobacteriaceae such as K. pneumoniae, Escherichia coli, Raoultella ornithi-
nolytica, and Enterobacter hormaechei, but not in C. portucalensis (8–12).

In this work, a carbapenem-resistant C. portucalensis strain K218 coproducing KPC
and NDM carbapenemases from a clinical setting was discovered. The whole genome
of K218 including the chromosome of K218, two different IncFII plasmids pK218-KPC
and pK218-NDM (IncFII:FIB), IncC plasmid pK218-SHV, and unknown type plasmid
pK218-NR were sequenced. All the drug-resistant related MGEs of strain K218 were
detailed in genetic dissection. Comprehensive genomic comparisons of plasmids
pK218-KPC, pK218-NDM, and pK218-SHV with their closely related plasmids were per-
formed, respectively. In addition, two novel transposons Tn7410 and Tn7411 integrat-
ing into the chromosome of K218 were identified. Overall, this is the first report of C.
portucalensis strain co-carrying blaKPC-2 and blaNDM-1 in a clinical setting, and the analysis
in this study will provide insight into the genomic characterization and the structure of
antibiotic resistance genes harbored on C. portucalensis strains.

RESULTS
Species identification and antimicrobial susceptibility test. On April 27, 2017, a

56-year-old male was admitted to the neurosurgery department with a diagnosis of left
thalamic hemorrhage into the ventricle, hydrocephalus, and hypertension due to lopsided
walking with vomiting for 4 h. After admission, craniotomy was performed, blood transfu-
sion, fluid replacement, brain protection, prevention of ulceration and bleeding infection,
and neurological rehabilitation were given. On the fifth day postadmission, a carbapenem-
resistant Citrobacter strain K218 was isolated from the patient's blood sample and initially
identified by Vitek 2. Later, bacterial species identification was performed using genome
sequence-based average nucleotide identity (ANI) analysis (http://www.ezbiocloud.net/
tools/ani), which finally proved that K218 belongs to C. portucalensis (13).

The results of antimicrobial susceptibility tests on strain K218 showed that K218
was extensively drug-resistant, exhibiting resistance to all tested antimicrobials except
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tigecycline and colistin (Table 1). Consistent with the results of the antibiotic suscepti-
bility test, the production of both KPC and NDM carbapenemases was confirmed by
the immunocolloidal gold technique (Fig. S1). Corresponding to the multidrug resist-
ance profile results, K218 contained 29 types of resistance genes, all of which are listed
in Table S1, conferring resistance to aminoglycosides (aacA4cr, aadA1, aphA1, armA,
rmtC, strA, and strB), b-lactams (blaCMY-35, blaKPC-2, blaNDM-1, blaOXA-1, blaSHV-12, and blaTEM-1),
quinolones (qnrB9), sulfonamides (sul1 and sul2), and other antibiotics listed in Table 1.

Phylogenetic analysis of C. portucalensis K218. To explore potential associations
and the evolutionary relationships between K218 and other C. portucalensis strains,
phylogenetic analysis was performed based on the core genomes of K218 and all C.
portucalensis strains from GenBank of NCBI whose assembly levels are scaffold, chro-
mosome, or complete (Table S2) (14). A total of 39 C. portucalensis strains from
GenBank were included (last accessed on February 16, 2022), and the main collection
sites of these strains were China, Germany, the United States, Japan, etc. The chromo-
some sequence of C. portucalensis FDAARGOS_617 (accession number CP044098, the
standard strain of C. portucalensis) was used as reference. In addition, strain FDAARGOS_549
(accession number CP033744, the standard strain of Citrobacter freundii), was used as the
outgroup. In total, 308,026 single nucleotide polymorphisms (SNPs) were identified from
these genome sequences. A maximum likelihood (ML) phylogenetic tree was constructed
using these SNPs’ data set (Fig. 1). Basic background information such as the collection
date, location, isolation source, host, and sequence type (ST) of these strains were marked in
Fig. 1. K218 and the standard strain of C. portucalensis CP044098 belonged to two main
groups, respectively, suggesting that K218 had a less relevant evolutionary relationship with
the standard strain CP044098. K218 was most closely related to GCF_003990165, a C. portu-
calensis strain isolated from an Andrias davidianus (Chinese giant salamander) in Chongqing
China in 2017. They both belonged to the same branch on the evolutionary tree and both
of their ST types were ST170. Compared with the average pairwise SNP distance among all
strains (50,860 SNPs), these two genomes have a relatively closer relationship with a pair-
wise SNP distance of 272 SNPs.

Overview of the C. portucalensis K218. Genome analysis revealed that K218 con-
tained a chromosome of 5,082,363 bp in length (accession number CP089316), with an
average GC content of 51.8%, carrying 4,859 open reading frames (ORFs) (Table 2).
Seven key genes (arcA, aspC, clpX, dnaG, fadD, lysP, and mdh) on the chromosome of
K218 were identified and typed using the MLST method and proved that K218
belonged to ST170. Meanwhile, four circular plasmids were carried in K218, designated

TABLE 1 Antimicrobial drug susceptibility profiles

Antibiotics

MIC (mg/L)/interpretation

K218 K218-NDM-EC600d K218-KPC-EC600d EC600c

Ceftazidime $64/Ra $64/R 32/R 0.5/Sb

Piperacilin/tazobactam $128/R $128/R $128/R #4/S
Aztreonam $64/R #1/S $64/R #1/S
Imipenem $16/R $16/R $16/R #0. 25/S
Meropenem $16/R $16/R $16/R #0.25/S
Amikacin $64/R $64/R #2/S #2/S
Tobramycin $16/R $16/R #1/S #1/S
Ciprofloxacin $4/R #0.25/S #0.25/S #0.25/S
Levofloxacin $8/R 0.5/S 0.5/S 0.5/S
Tigecycline 2/S #0.5/S #0.5/S #0. 5/S
Doxycycline $16/R 2/S 1/S 1/S
Minocycline $16/R #1/S #1/S #1/S
Colistin #0.5/S #0.5/S #0.5/S #0.5/S
Trimethoprim/sulfamethoxazole $320/R #20/S #20/S #20/S
aR, resistant.
bS, sensitive.
cEC600 is a rifampicin-resistant E. coli used as a recipient in conjugal transfer experiments.
dK218-NDM-EC600 and K218-KPC-EC600 are transconjugants formed by the transfer of pK218-NDM and pK218-
KPC from the wild-type isolate (susceptible to rifampin) into EC600, respectively.
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as pK218-KPC, pK218-NDM, pK218-SHV, and pK218-NR (Table 2; Fig. S2). Macroscopically,
both pK218-KPC and pK218-NDM were IncFII plasmids, although pK218-NDM, encoding
two different replication proteins RepA and RepFIB, was more precisely assigned to the
IncFII:FIB incompatibility group.

Genetic characterization of pK218-KPC. Plasmid pK218-KPC carrying blaKPC was
105,561 bp in length, its average GC content was 52.8% and it contained a total of 111
predicted ORFs (Table 2). According to the type of replicon repA, pK218-KPC belonged
to the IncFII family (15). Accurate annotation and genomic dissection revealed that
pK218-KPC can be divided into backbone regions and accessory regions (Fig. S2 and
3). Backbone regions consisted of the major IncFII backbone genes or gene loci such as
repA (replication), parA (partition), umuCD (maintenance), and one conjugal transfer
region. Accessory regions (13.7-kb blaKPC-2 region and IS1X2) were inserted into differ-
ent sites of the pK218-KPC backbone regions. blaKPC-2 carrying in the 13.7-kb blaKPC-2

FIG 1 Population distribution of C. portucalensis K218 with 39 C. portucalensis genomes. The phylogenetic tree was constructed by the Maximum-likelihood
method. The degree of support (percentage) for each cluster of associated taxa, as determined by bootstrap analysis, was shown with blue dots next to each
branch. The bar corresponded to the scale of sequence divergence. cK218 (the chromosome of K218) was indicated in red and CP044098 was indicated in
blue. The annotation denotes (from left to right) were collection date, location, isolation source, host, and ST type. -, not available.

TABLE 2Whole-genome information of C. portucalensis K218

Sequence
Mean G+C
content (%) Length (bp)

Total no.
of ORFs MLST Inc type Accession no.

cK218 51.8% 5,082,363 4,859 ST170 -a CP089316
pK218-KPC 52.8% 105,561 111 - IncFII OL988823
pK218-NDM 54.8% 110,709 107 - IncFII:FIB OL988824
pK218-SHV 50.5% 190,960 219 - IncC OL988825
pK218-NR 52.1% 5,400 11 - Unknown OL988826
anot available.
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region was the only resistance gene that existed on pK218-KPC (Table S1), and pK218-
KPC did not contain any resistance genes other than blaKPC-2.

BLAST analysis of pK218-KPC against the GenBank database showed that pK218-KPC
was partially homologous to three plasmids (Fig. S3; Table S3): plasmid p112298-KPC
(accession number KP987215, from C. freundii), an unnamed plasmid (accession number
CP035635, from Enterobacter cloacae), and another unnamed plasmid (accession number
CP073009, from Citrobacter sp.). The BLAST comparison of these three plasmids with
pK218-KPC showed that all these three plasmids had both 80% to 83% coverage and
.98% identity. Strain origins distribution of these plasmids also indicated these three
plasmids were mainly distributed within the genus Citrobacter.

Accessory module designated as 13.7-kb blaKPC-2 region was identified in pK218-KPC
(Fig. 2). The primary component of the 13.7-kb blaKPC-2 region was a transposon Tn6296
with part of genes missing. Tn6296, originally identified in plasmid pKP048 from K. pneu-
moniae, is a unit transposon of the Tn21 subfamily in the Tn3 family and is widely consid-
ered to be one of the most important vehicles for blaKPC-2 (16–19). Compared with the
intact reference Tn6296, a pair of 6-bp direct repeats (DR), target site duplication signals
for transposition) at the upstream end were missing in DTn6296. A 38-bp inverted repeat
left (IRL) existed upstream of the interior of DTn6296. Following the IRL was the core mod-
ule of the Tn6296: tnpA (transposase)–tnpR (resolvase)–res (resolution site). Deletion of a
sequence fragment (orf396–DrepB–IRR) occurred within DTn6296, and truncation of part of
tnpA from Tn6376 and Dmcp resulted in an interruption of the tnpA. The main structure of
the local blaKPC genetic environment remained Tn6376–blaKPC-2–DISKpn6–korC–klcA–orf279,
and this local environment was consistent with the relevant region of Tn6296. The follow-
ing IS26–Tn1722 remnant–DIS1S together formed the end of the 13.7-kb blaKPC-2 region.

Genetic characterization of pK218-NDM. Plasmid pK218-NDM carrying blaNDM-1

was 110,709 bp in length, with an average GC content of 54.8%, and it contained 107
predicted ORFs (Table 2). Although pK218-NDM was an IncFII plasmid, it was more pre-
cisely assigned to the IncFII:FIB incompatibility group. The structure of pK218-NDM can
also be divided into backbone regions and accessory regions (Fig. S2 and 4), and its
backbone regions contained key maintenance genes such as repA, repFIB, parA, umuCD,
and one conjugal transfer region. However, unlike pK218-KPC, accurate annotation
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FIG 2 13.7-kb blaKPC-2 region from pK218-KPC. Genes were denoted by arrows. Genes, mobile genetic elements, and other features were
colored based on their functional classification. Shading denoted regions of homology (nucleotide identity . 95%). A single quotation
mark in front of the gene name indicated pseudogene. The accession number of Tn6296 for reference was FJ628167.
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demonstrated that a massive amount of accessory regions (23.1-kb blaNDM-1 region,
DIS5–ISSen4 region, IS1R, IS26–DIS5–IS1R region, IS1X2, ISEc33, IS903, and ISKox3) were
inserted at different sites in the backbone regions. 23.1-kb blaNDM-1 region from pK218-
NDM contained the drug-resistance gene sul1, rmtC, blaNDM-1, and bleMBL (Table S1), and
the other regions on pK218-NDM did not contain antibiotic-resistance genes.

BLAST analysis revealed that a total of 39 plasmids in the GenBank database were
similar to pK218-NDM (.80% coverage and .99% identity) (Fig. S4), and 11 plasmids
among these 39 plasmids were almost identical to pK218-NDM (100% coverage and
.99% identity). As listed in Table S4, these 11 plasmids were distributed in E. coli,
E. cloacae, K. pneumoniae, Serratia marcescens, and other bacteria species, suggesting a
widespread of pK218-NDM related plasmids in various species worldwide. At the same
time, these 11 plasmids also demonstrated the stability of the blaNDM-1 genetic environ-
ment and the wide distribution of related plasmids.

pK218-NDM contained a complex multidrug-resistance (MDR) region harboring blaNDM-1

designated as a 23.1 kb blaNDM-1 region (Fig. 3). The genetic contexts of the 23.1-kb blaNDM-1

region shared a common structure in the above-mentioned 11 plasmids related to pK218-
NDM. The upstream of the 23.1-kb blaNDM-1 region was composed of DIS5–unknown gene–
DIS5, following a 10.9-kb sul1–rmtC region composed of sul1–tniQ–tniB–tniA–ISCR3–rmtC.
Of these, sul1 showed resistance to sulfonamides, and rmtC showed aminoglycoside resist-
ance. DTn125 harboring blaNDM-1 and bleMBL was a truncated region of Tn125 (accession
number JN872328), leaving only a small part of the original upstream ISAba125 and down-
stream ISCR27 after truncation. Both ends of DTn125 were flanked by the same miniature
inverted-repeat transposable elements (MITEs) with a length of 256 bp (20, 21), and these
two copies of the MITE were reported to form a composite transposon-like element, which
can mobilize the intervening genetic contexts (17, 22, 23). In DTn125, DISAba125 was
located upstream of blaNDM-1, while bleMBL (a bleomycin resistance gene) was located down-
stream of blaNDM-1. A set of several genes trpF–dsbD–cutA–groES–groEL and ISCR27 are
located further downstream of bleMBL. The downstream end of the 23.1-kb blaNDM-1 region
consisted of IS5.

Genetic characterization of pK218-SHV. pK218-SHV was an IncC plasmid of
190,960 bp in length with an average GC content of 50.5% and 219 predicted ORFs
(Table 2). Compared with pK218-KPC and pK218-NDM, the size of the pK218-SHV plas-
mid was larger. In addition to the basic maintenance genes such as repA and parAB,
the backbone regions of the pK218-SHV also contained three conjugal transfer regions
tra1/tra2/tra3 (Fig. S2 and 5). There were a total of four accessory regions on pK218-
SHV named 34.9-kb MDR-1 region, DIS5708, 12.9-kb MDR-2 region, and ISLead2.
Among them, DIS5708 and ISLead2 were two insertion sequences (ISs). 34.9-kb MDR-1
region and 12.9-kb MDR-2 region were two larger accessory regions, both of which
contained multiple MGEs and putative resistance units (likely able to mobilize as a
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whole element), suggesting that they had undergone multiple genetic recombinations.
pK218-SHV had the largest number of drug-resistance genes among the plasmids car-
ried in K218. Except for chrA, mph(A), and aphA1 located in the 12.9-kb MDR-2 region,
drug-resistance genes including blaSHV-12 and blaOXA-1 were all located in the 34.9-kb
MDR-1 region.

BLAST analysis of pK218-SHV showed that pK218-SHV shared similarity to seven
plasmids with 80% to 83% coverage and.99% identity in the GenBank database (Fig. S5;
Table S5): pASP-a58 (CP014775, from Aeromonas veronii) (24), pKC3-1/2b (MT560001, from
K. pneumoniae), pCf53 (KY887593, from C. freundii), pCf52 (KY887592, from C. freundii),
p13ARS_GMH0099 (LR697099, from K. pneumoniae), pKp55 (KY887594, from K. pneumo-
niae), and pVFN3-blaOXA-193K (CP089604, from Vibrio furnissii). Although no such plas-
mids with 100% coverage had emerged that were nearly identical to pK218-SHV, plasmids
related to pK218-SHV had widely spread and distributed among different bacterial species.

All drug-resistance genes on pK218-SHV were located in the 34.9-kb MDR-1 region
and the 12.9-kb MDR-2 region (Fig. 4). The 34.9-kb MDR-1 region was a complex MDR
region composed of multiple MGEs (Fig. 4a). IS26 was located upstream within the
34.9-kb MDR-1 region followed by DTn1548. Tn1548 was a composite transposon first
reported in 2005 to be identified as a vector of armA, a worldwide disseminated ami-
noglycoside resistance methylase gene (25). DTn1548 was the remaining part of trun-
cation from the interior of ISEc28, and this truncation also resulted in only a small part
of tnpA of ISEc28 in DTn1548. Downstream of DTn1548 was the truncated IS26–blaSHV-12–
IS26 unit, which shared the same IS26 with DTn1548. The IS26–blaSHV-12–IS26 unit was
likely able to mobilize as a whole module.

After IS26–blaSHV-12–IS26 unit, In1387, a concise class 1 integron (GCA: aacA4cr–
blaOXA-1–catB3–gene of unknown designation), was distributed on the 34.9-kb MDR-1
region. The IS26–tetA(D)–IS26 unit was distributed after In1387 and was also a whole
putative resistance unit although it cannot be considered a composite transposon
because DRs were not discovered at both ends. Next, a floR–lysR–ISCR2 fragment was
inserted into a virD2 gene, resulting in the virD2 being interrupted into 59 and 39 ends
and reversed. The 34.9-kb MDR-1 region of pK218-SHV was bounded downstream by
the sul2 gene.

The 12.9-kb MDR-2 region consisted of three resistant modules: chrA–orf98 unit, IS26–
mph(A)–IS6100 unit, and Tn4352 (Fig. 4b). The upstream of Tn4352 shared the same IS26
with the IS26–mph(A)–IS6100 unit. The downstream end of the 12.9-kb MDR-2 region
was IS903B and ISLead2.
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Genetic characterization of pK218-NR. pK218-NR was the smallest plasmid among
all the plasmids of K218; its full length is 5,400 bp, the average GC content was 52.1%,
and it contained 11 predicted ORFs (Table 2). Because the replicon gene rep was not
found on pK218-NR, the Inc type of pK218-NR could not be distinguished. pK218-NR did
not contain accessory regions and MGEs, nor did it contain drug-resistance genes.

Genetic characterization of transposons Tn7410 and Tn7411. Composite trans-
poson Tn7410 and unit transposon Tn7411 were two novel discovered MGEs on chro-
mosome cK218 of K218 (Fig. 5a). Composite transposon Tn7410 was 15,788 bp in
length bounded by two copies of IS1R. A pair of 23-bp IRL/IRR and 9-bp DRs flanked
Tn7410. Due to the structural similarity, Tn7410 may be formed by the insertion of
other MGEs and gene fragments into the IS1R-based composite transposon Tn9 (26).
Tn7410 contained IS5075, DTn21 remnant, and DTn6029. Tn6029 was an IS26-based
composite transposon, carrying resistance genes blaTEM-1, sul2, and strAB inside (27).

Tn7411 was 17,352 bp in length and was a unit transposon of the Tn7 family (Fig. 5b)
(28, 29). Tn7411 had an IRL/IRR of 28 bp at both ends, and a pair of DRs with a length of
5 bp were respectively flanked. There were four repeat regions as TnsB-binding sites
upstream of Tn7411 and three repeat regions as TnsB-binding sites downstream of
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Tn7411. Like other unit transposons from Tn7 family, Tn7411 contained the core transposi-
tion determents of Tn7-family: TnsA (endonuclease), TnsB (transposase), TnsC (transposi-
tion regulator), and TnsD plus TnsE (target-site selection proteins) (28, 29). The difference
between Tn7411 and Tn7 was that In2-4 had been replaced with In2-81. Both In2-4 and
In2-81 belonged to class 2 integrons, which were often associated with Tn7 and its var-
iants. In cassette arrays of In2-81, sat2 was replaced with gene coding Retron-type RNA-
directed DNA polymerase, and no new resistant genes were added. This phenomenon
was consistent with previous studies that cassette arrays in class 2 integrons were highly
conserved (30). Except for qnrB9 and blaCMY-35, all drug-resistance genes on chromosomes
were located in Tn7410 and Tn7411.

Plasmid transfer and resistance phenotypes. As for conjugation experiments,
pK218-KPC and pK218-NDM were transferred from the wild-type isolate (susceptible to
rifampin) into E. coli EC600, generating the transconjugant K218-NDM-EC600 and K218-
KPC-EC600, respectively. K218-NDM-EC600 was highly resistant to aminoglycosides and
carbapenems owing to the presence of blaNDM-1 and rmtC (Table 1). K218-KPC-EC600 was
highly resistant to carbapenems due to producing KPC carbapenemase.

DISCUSSION

Since the first report, as a newly identified bacterial species in recent years, C. portu-
calensis was discovered to be associated with multidrug resistance (1–5), indicating
that C. portucalensis may naturally be an important repository for drug-resistant genes.
Until now, there is only one report on C. portucalensis producing NDM in existing
reports (5). Thus far, the C. portucalensis strain coproducing KPC and NDM carbapene-
mases have not been reported. To our knowledge, this study is the first report of an
extensively drug-resistant C. portucalensis strain carrying both blaKPC-2 and blaNDM-1. This
study would provide an overall in-depth understanding of the genomic characteriza-
tion of clinically isolated carbapenem-resistant C. portucalensis strains.

In previous reports, the hosts of C. portucalensis rarely originated from clinical sam-
ples, while K218 was obtained from a blood sample of a patient admitted to our hospi-
tal. The patient was admitted to the hospital for treatment in April 2017, therefore,
making it difficult to identify whether he had contact with animals before admission.
From the distribution of the phylogenetic tree (Fig. 1), GCF_003990165 (a C. portucalen-
sis strain isolated from Andrias davidianus) is most closely related to cK218. Further
analysis showed that GCF_003990165 contained only a small number of drug-resistant
genes (aadA1, blaCMY-35, blaTEM-1A, dfrA1, qnrB9, and qnrS1); only contained the IncR plas-
mid replicon (suggesting that it may only carry the IncR plasmid); its chromosome only
carried Tn7 (Fig. 5), which is the prototype of Tn7411, and has the same insertion posi-
tion as Tn7411 in K218. These results indicated that wild-derived GCF_003990165 had
weak drug resistance and did not have the ability to resist multiple antibiotics. However,
K218 had undergone multiple capture, integration, and recombination of MGEs in the
hospital. During these events, K218 acquired more abundant drug-resistant genes and
stronger drug resistance to face natural selection pressure. Therefore, we speculated that
the infection occurred after K218 was transmitted from the animal/environment into the
hospital. Furthermore, the patient's medical records showed that K218 was isolated
sometime after admission, which supported the conclusion about nosocomial infection.

In this work, the whole-genome sequence of K218 was sequenced and the sequen-
ces of its chromosome cK218, IncFII plasmid pK218-KPC, IncFII:FIB plasmid pK218-NDM,
IncC plasmid pK218-SHV, unknown type plasmid pK218-NR were obtained, respec-
tively. While both pK218-KPC and pK218-NDM were generalized IncFII plasmids,
pK218-NDM belonged to IncFII:FIB in IncFII. Previous research has demonstrated that
when FII replicons are associated with FIA or FIB replicons, they can diverge freely
because they are not involved in the initiation of plasmid replication (15). pK218-NDM
and other IncFII:FIB compatible variants can be used to overcome incompatibility bar-
riers with incoming IncFII plasmids.

For the first three plasmids (pK218-KPC, pK218-NDM, and pK218-SHV), all current
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corresponding similar plasmids in the GenBank database (with a cut-off value of .80%
coverage) were separately included in this study by BLAST analysis (Table S3, 4, and 5).
BLAST analysis showed that the identity values of all plasmids included were greater
than 98%, indicating that, apart from K218, similar plasmids were also present in other
strains and shared conserved backbone regions (Fig. S3, 4, and 5). In particular, for
pK218-NDM, a total of 39 plasmids were selected for inclusion in the analysis, of which
11 plasmids had 100% coverage and .99.8% identity. Although these 11 plasmids
were carried by different genera of bacteria, they were almost identical to pK218-NDM.
The presence of these 11 plasmids illustrated that plasmids related to pK218-NDM
plasmids had been widely disseminated and the genetic structure of plasmids related
to pK218-NDM was highly stable under different environments. In contrast, for pK218-
KPC and pK218-SHV, the maximum coverage of similar plasmids involved was 83%,
implying that these two types of plasmids were prone to recombination, deletion,
insertion, and transfer of genetic fragments during inheritance and propagation, and
their structures were less stable than pK218-NDM. Meanwhile, plasmids related to
pK218-KPC were mostly located within the genus Citrobacter, whereas plasmids related
to pK218-SHV were distributed in several genus, implying that the wide distribution of
these three plasmids did not correlate with their structural stability.

Large accessory regions were present on pK218-KPC, pK218-NDM, and pK218-SHV of
K218: 13.7-kb blaKPC-2 region from pK218-KPC, 23.1-kb blaNDM-1 region from pK218-NDM,
34.9-kb MDR-1 region, and 12.9-kb MDR-2 region from pK218-SHV (Fig. 2, 3, and 4). In these
accessory regions, insertion or homologous recombination events mediated by various
types of MGEs occurred. At the same time, two novel transposons, Tn7410 and Tn7411,
were present on chromosome cK218, and multiple insertions, truncations, and substitutions
of MGEs and genetic fragments occurred on these two transposons (Fig. 5). These longer
accessory regions have become hot spots for gene truncation and the integration of foreign
resistance markers which encoded multiple antibiotic resistance phenotypes. Their struc-
tural variation and evolution should receive attention. The multidrug-resistant plasmids
pK218-KPC, pK218-NDM, and pK218-SHV with several MDR regions and the chromosome
cK218 with two transposons Tn7410 and Tn7411 contribute to the formation of extensively
drug-resistant K218.

Conclusion. In conclusion, we characterized and deciphered the genomic features
and population distribution of K218, a newly identified extensively drug-resistant C. por-
tucalensis strain harboring both blaKPC-2 and blaNDM-1 isolated from the clinical patient. To
the best of our knowledge, this is the first report of C. portucalensis harboring both
blaKPC-2 and blaNDM-1. The characterization of K218 will not only significantly extend the
understanding of the structural diversification of plasmids and chromosomes carried in
K218, but also expand knowledge of the genetic environment of antibiotic resistance
genes, especially the blaKPC-2 and blaNDM-1 genes. blaKPC-2 and blaNDM-1 are drug-resistant
genes encoding carbapenemases, and their coexistence will facilitate the propagation
and persistence of their host bacteria under different antimicrobial selection pressures.
In addition, novel drug-resistant MGEs on chromosomes cannot be ignored during the
formation of multidrug-resistant C. portucalensis. More whole-genome epidemiological
studies are necessary to perform, and active monitoring of extensively drug resistant
C. portucalensis strains is warranted to prevent these novel strains from further spreading
in a hospital environment.

MATERIALS ANDMETHODS
Ethics statement. The specimens were obtained with the patient’s consent. The use of human

specimens and all related experimental protocols were reviewed and approved by the Ethics Committee
of Taizhou Municipal Hospital, Zhejiang, China, in accordance with the medical research regulations of
the Ministry of Health, China. Research and all related procedures involving biohazardous materials were
approved by the Biosafety Committee of Taizhou Municipal Hospital affiliated with Taizhou University.
This research was conducted in China.

Antibiotic susceptibility test and carbapenemases phenotype detection. The drug MICs of K218,
EC600, transconjugant K218-NDM-EC600, and K218-KPC-EC600 were determined by bioMérieux VITEK2
(Table 1). The antibiotic susceptibility test results were determined by the Clinical and Laboratory
Standards Institute (CLSI) guidelines (2021).
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The production of carbapenemases in K218 was detected on an NG-Test CARBA 5 (Fig. S1). NG-Test
CARBA 5 (NG Biotech, Guipry, France), a rapid diagnostic test based on the immunocolloidal gold tech-
nique, was used for the detection of the five most common carbapenemase families (KPC, OXA-48-like,
VIM, IMP, and NDM).

Plasmids conjugal transfer. Conjugal transfer experiments were performed with rifampicin-resist-
ant E. coli EC600 being used as a recipient, and strain K218 as a donor. The donor and recipient strains
were grown in 3 mL brain heart infusion (BHI) broth overnight at 37°C. And then, 50 mL of donor strain
culture was mixed with 500 mL of recipient strain culture (v:v = 1:10) and 4.5 mL of fresh BHI broth. In
addition, 100 mL of the mixture was applied onto a cellulose filter membrane (pore size, 0.22 mm) al-
ready placed on a BHI agar plate. After incubation at 37°C for 16 h to 18 h, the filter membrane was
taken out and vortexed in 1 mL of BHI broth. The vortex mixtures were plated on BHI agar plates con-
taining 2 mg/L imipenem and 1,500 mg/L rifampicin for the selection of the transconjugants.

Sequencing and sequence assembly. The genomic DNA of C. portucalensis K218 was extracted
using a Gentra Puregene Yeast/Bact. Kit (Qiagen, Valencia, CA). Libraries were prepared separately using
the TruePrepTM DNA Library Prep Kit V2 and the SQU-LSK109 Ligation Sequencing kit. After the prepara-
tion of the library was completed, it was separately sequenced on an Illumina HiSeq X 10 platform
(Illumina Inc., San Diego, CA, USA) and GridION X5 platform (Oxford Nanopore, UK). Raw data from the
HiSeq X 10 platform and the GridION X5 platform were trimmed to obtain the high-quality clean reads
(clean data) by Canu v1.8 (https://canu.readthedocs.io/en/latest/index.html). The paired-end short
Illumina reads and the long Nanopore reads were assembled de novo utilizing Unicycler (v0.4.5) (https://
github.com/rrwick/Unicycler).

Whole-genome phylogeny and genetic background analysis. A total of 39 public sequences of
C. portucalensis sequenced at the scaffold, chromosome, or complete level were downloaded from NCBI
(last accessed on February 16, 2022), which were isolated from various sources from 2012 to 2019.
Genomes were aligned against the reference genome to create a core genome alignment using MUMmer
v3.1, and a total of 308,026 SNPs in the backbone regions were identified and extracted (31). A maximum-
likelihood phylogenetic tree based on the SNPs was constructed. Phylogenetic trees and detailed informa-
tion (collection date, location, isolation date, host, and ST type) were shown using the Interactive Tree of
Life (iTOL) programs (32). The ST types of these C. portucalensis genomes were obtained using the web
tool PubMLST (https://pubmlst.org).

Sequence annotation and comparison analysis. Genome annotation and ORFs/pseudogenes pre-
diction of K218 genomes (cK218, pK218-KPC, pK218-NDM, pK218-SHV, and pK218-NR) were conducted
using RAST 2.0 (33). Further manual annotation and detailed dissection were done with BLASTP/BLASTN
(34) against the UniProtKB/Swiss-Prot (35) and RefSeq (36). Annotation of drug-resistance genes, MGEs,
and other features was performed using online databases such as CARD (37), ResFinder (38), ISfinder
(39), and INTEGRALL (40), and the Tn Number Registry (41). Alignments with homologous plasmids
sequences of pK218-KPC, pK218-NDM, pK218-SHV, and pK218-NR available in NCBI were performed by
using the BRIG tool (42). Genome circle maps and gene organization diagrams of accessory regions were
drawn using Inkscape 1.1 (https://inkscape.org/en).

Data availability. The data presented in this study are available on request from the corresponding
author. The plasmid sequences analyzed in this study can be found in the public NCBI GenBank data-
base. The accession numbers were provided in this article when these plasmids were initially indicated.

The complete sequences of the chromosome of K218 (cK218) and plasmids pK218-KPC, pK218-NDM,
pK218-SHV, and pK218-NR were submitted to the GenBank database, under accession numbers CP089316,
OL988823, OL988824, OL988825, and OL988826, respectively.
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