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Abstract: Pollution accidents that occur in surface waters, especially in drinking water source areas,
greatly threaten the urban water supply system. During water pollution source localization, there
are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range.
This paper provides a scalable total solution, investigating a distributed localization method in
wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes.
A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles
and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible
spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a
self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel
distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where
one particle swarm optimization (PSO) procedure computes the water quality multi-parameter
measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global
solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm
uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental
results demonstrate that online multi-parameter monitoring of a drinking water source area with
a wide dynamic range is achieved by this wireless sensor network and water pollution sources are
localized efficiently with low-cost mobile node paths.

Keywords: pollution source localization; wireless sensor networks; mobile nodes; UV-visible
spectroscopy; water quality multi-parameter; distributed algorithm; particle swarm optimization

1. Introduction

Water quality monitoring is an important foundation for water environmental protection and
water resource management which have become major issues receiving much concern in social
sustainable development. Once pollution accidents, such as chemical leaks, occur in surface waters,
especially in drinking water source areas, the safety of urban water supply will be endangered [1].
Efficient identification and localization of pollution sources should be performed in water quality
monitoring systems, facilitating timely and accurate emergency treatment and reducing harmful
influences. The qualitative and quantitative determinations of pollutants are often made by chemical
or chromatographic analysis in traditional water quality monitoring systems [2]. Nevertheless, because
of some drawbacks, such as complex sample pretreatment course, long measurement period, and the
requirement of chemical reagents, these systems are not suitable for applications facing sudden
pollution accidents. UV-visible spectroscopy has been attracting growing attention in this application
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field with its advantages of fast response, in-situ multi-parameter analysis, no secondary pollution,
and low maintenance costs [3–5]. Existing studies on water quality monitoring with UV-visible
absorption spectra include building analytical models for certain parameters, such as total organic
carbon (TOC) and chemical oxygen demand (COD) [6–8], correcting turbidity influences [9], denoising
spectral data [10,11], and developing spectral compression approaches [12]. However, few efforts
have been made to construct one synthesis analytical model of multiple parameters, considering the
inherent features of continuous spectra. Moreover, the sensing requirement of UV-visible spectrometer
probes in the scenario of drinking water source areas facing pollution accidents has not been well
discussed. For each UV-visible spectrometer probe, the potential pollutant concentration of sensing
object varies in an extremely wide range during water quality monitoring. With a fixed optical
path, a common UV-visible spectrometer has a fixed measurement range and cannot provide optimal
performance at both high and low pollutant concentrations, leading to loss of accuracy or even invalid
results in the extended range. More importantly, since there are complicated pollutant spreading
conditions, including pollutant concentration, wind direction, wind velocity, water flow direction,
water flow velocity, etc., not only stationary UV-visible spectrometer probes but also mobile ones
should be involved in the water quality monitoring. Wireless sensor networks (WSNs) can implement
various complicated tasks in the sensing field via a number of smart wireless sensor nodes with
sensing, storage, processing and communication capabilities [13,14]. WSNs composed of stationary
and mobile UV-visible spectrometer probes have good potential in this application domain, which
have not been well explored yet. Therefore, it is significant to investigate a total solution of WSNs to
identify and localize water pollution sources efficiently, where the stationary and mobile UV-visible
spectrometer probes should be designed to work collaboratively for multi-parameter monitoring in a
wide measurement range.

During water pollution source localization, there are complicated pollutant spreading conditions
and pollutant concentrations vary in a wide range. This paper constructs a scalable framework to solve
these problems and a WSN-based distributed water pollution source localization method is proposed.
UV-visible spectrometer probes are well designed for in-situ measurement of multiple parameters,
including TOC, nitrate nitrogen, turbidity, etc. An adaptive optical path mechanism is adopted to
adjust the measurement range automatically in order to satisfy the performance demands at variable
pollutant concentrations. In the established WSNs for water quality monitoring, unmanned surface
vehicles (USVs) equipped with the probes act as mobile nodes, while buoys equipped with the probes
act as stationary nodes. A novel distributed algorithm, Dual-PSO, is presented to solve the problems
in pollution source localization, providing a scalable solution for different applications. One particle
swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on
each node, utilizing UV-visible absorption spectra, while the other one finds the global solution of the
pollution source position, regarding mobile nodes as particles. Meanwhile, the entropy of water quality
multi-parameter distribution is introduced as a metric to dynamically recognize the most sensitive
parameter of pollution sources during searching. In the experiments of water quality monitoring,
the efficiency of quantitative multi-parameter analysis and pollution source localization is verified.

Our former studies were mainly on quantification in total-reflection X-ray fluorescence analysis
and target tracking in WSNs. This research focuses on the distributed water pollution source
localization method in WSNs. Experience of spectral analysis and network deployment is gained
in the former research [15]. However, new application scenarios of WSNs and the very purpose
for water pollution source localization are particularly discussed here. The rest of this paper is
organized as follows: Section 2 presents the establishment of WSNs for water quality monitoring,
including configuration and deployment of wireless sensor nodes. In Section 3, the distributed water
pollution source localization method is described in detail. The problems during identification and
localization of water pollution sources are formulated, and accordingly the Dual-PSO algorithm is
given. The experimental results are presented in Section 4, where the distributed water pollution
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source localization method is performed in the established WSN and its efficiency is evaluated. We
conclude the paper in Section 5.

2. WSNs for Water Quality Monitoring

In the scenario of drinking water source areas facing pollution accidents, UV-visible spectrometer
probes are employed to analyze water quality in WSNs. Since the pollutant concentrations at each
probe can vary in a wide range, an adaptive optical path mechanism is developed to guarantee the
sensing performance at different concentrations, making the whole water pollution source localization
application feasible. Then, wireless sensor nodes are defined, where buoys and USVs equipped
with UV-visible spectrometer probes serve as stationary and mobile nodes respectively. Besides,
the deployment scheme of wireless sensor nodes in WSNs is designed for water quality monitoring.

2.1. UV-Visible Spectrometer Probes with Adaptive Optical Path

UV-visible Spectroscopy has advantages of fast response, in-situ multi-parameter analysis, no
secondary pollution, and low maintenance costs, receiving for these reasons widespread attention,
especially in the field of surface water quality monitoring. For traditional UV-visible spectrometer
probes, the fixed optical path may lead to loss of accuracy or even invalid results at high or low pollutant
concentrations, due to the instrumental factors and the sample properties. Also, the traditional dilution
approach makes the systems more complex and cannot achieve in-situ analysis, which is not suitable
for our application. However, reliable sensing at pollutant concentrations varying in a wide range is
essential here. Thus, the UV-visible spectrometer probes are not only designed to analyze multiple
parameters, including TOC, nitrate nitrogen, turbidity, etc., but also improved to adjust the optical
path dynamically with an adaptive optical path mechanism.

The structure of an UV-visible spectrometer probe with an adaptive optical path is shown in
Figure 1. With compact design, it mainly comprises a xenon flash lamp, a collimating lens, a condensing
lens, a slit, a flat-field holographic concave grating, a complementary metal oxide semiconductor
(CMOS) linear image detector, a motorized linear stage and a slider. The xenon flash lamp light source,
which delivers high stability and long service life, produces a broad spectral output from 185 nm to
2000 nm with a rated power of 5 W. The flat-field holographic concave grating works between 200 nm
and 800 nm with reduced aberrations, bringing benefits of low light losses and simplified optical
system. The CMOS linear image detector has 512 pixels, a spectral response range from 200 nm to
1000 nm, and on-chip charge amplifiers. During the operation of the UV-visible spectrometer probe,
the light from the xenon flash lamp is collimated by the collimating lens and the beam passes through
the water in the open flow cell. Then, the beam after absorption is condensed by the condensing lens
and emitted from the slit. Finally, the flat-field holographic concave grating acts as a spectroscopic
element and also an imaging element, while the CMOS linear image detector records the UV-visible
absorption spectra. The UV-visible absorption spectra has an effective wavelength range from 200 nm
to 800 nm and a resolution of 3 nm. Especially, the slider is driven by the motorized linear stage with a
maximum speed of 10 mm/s, which makes the optical path in the open flow cell adjustable from 2 mm
to 30 mm. The power and data cable, which supports power supply and data transmission, as well
as the probe encapsulation are waterproof, so the whole probe can be placed in the water for in-situ
analysis, the UV-visible absorption spectra can be acquired by a processor module for further process,
and the optical path can be adaptive to internal and external information. As shown in Figure 2,
the prototype of the UV-visible spectrometer probe is developed, which is used to analyze multiple
parameters. Figure 2a shows the outside view of the prototype, Figure 2b shows the internal structure
of the prototype, and Figure 2c shows the typical raw spectra of the blank and the multi-component
mixture with TOC at 16 mg/L, nitrate nitrogen at 8 mg/L, nitrite nitrogen at 2 mg/L and turbidity at
20 NTU.
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Figure 2. The prototype of the UV-visible spectrometer probe: (a) The outside view; (b) The internal 

structure; (c) The typical raw spectra of the blank and the multi-component mixture. 
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Figure 2. The prototype of the UV-visible spectrometer probe: (a) The outside view; (b) The internal
structure; (c) The typical raw spectra of the blank and the multi-component mixture.

According to the Beer-Lambert law, the absorbance of a monochromatic beam which passes
through a homogeneous medium is proportional to the product of the absorbing layer thickness and
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the absorbing component concentration [16,17]. For the absorbing component i and the wavelength λ,
the absorbance Aλ,i can be written as:

Aλ,i = log
I0
λ,i

It
λ,i

= Kλ,ibCi (1)

where I0
λ,i is the intensity of the incident radiation, It

λ,i is the intensity of the transmitted radiation, Kλ,i
is a constant absorption coefficient at a given temperature for a specific medium, b is the absorbing
layer thickness known as the adjustable optical path in the open flow cell here, and Ci is the absorbing
component concentration. For a multi-component mixture tested by this UV-visible spectrometer
probe, the total absorbance Aλ of the wavelength λ can be calculated as:

Aλ = log
I0
λ

It
λ

=
n

∑
i=1

Aλ,i =
n

∑
i=1

Kλ,ibCiλ ∈ [λmin, λmax] (2)

where I0
λ and It

λ can derive from the UV-visible absorption spectra of a blank and the mixture
respectively, n is the total number of absorbing components, λmin is the minimum wavelength which
is 200 nm, and λmax is the maximum wavelength which is 800 nm. According to Equation (2), our
UV-visible spectrometer probes can adjust the optical path b to tune the current absorbance curve
at different pollutant concentrations, so that deviations from the Beer-Lambert law is reduced and
accurate measurement in a wide dynamic range is feasible. Besides, the optical path adjustment
is performed in the in-situ analysis mode and its granularity can be customized. The optical path
adjusting rules and the quantitative multi-parameter analysis approach will be stated in Section 3.

2.2. Stationary and Mobile Wireless Sensor Nodes

In the sensing field of surface water, smart wireless sensor nodes are expected to complete
sensing, storage, processing and communication in order to gather sufficient information of pollutant
concentration distribution. Considering the complicated pollutant spreading conditions, not only
stationary nodes but also mobile nodes are designed to localize the pollution source. By integration
and miniaturization, buoys and USVs serve as stationary and mobile nodes respectively.

As shown in Figure 3, both stationary and mobile nodes are embedded with a processor module,
a sensing module, a global positioning system (GPS) module, a general packet radio service (GPRS)
module, and a power supply module. The processor module manages the resources of the other
modules. The sensing module includes the UV-visible spectrometer probe, cameras and other sensors.
The GPS module reports the current position of the node. The GPRS module supports wireless
communication between nodes. The power supply module uses lithium batteries with auxiliary power
supply from solar panels. In addition, each buoy is fixed by an anchor to prevent floating, while
each USV is driven by double propellers with a maximum speed of 3 m/s and a cruise duration
of 8 h. In the routine operation of wireless sensor nodes, the processor module acquires UV-visible
absorption spectra and other raw data from the sensing module which are used to compute the local
water quality multi-parameter measurements, and meanwhile obtains its own current position from
the GPS module. Utilizing the GPRS module, the processor module share its information of water
quality and node position with other nodes. Also, the processor module may send orders to adjust
the optical path of the UV-visible spectrometer probe. For the USVs, there are four navigation modes,
including remote control mode, fixed-path cruise mode, autonomous cruise mode and collaborative
cruise mode. In the remote control mode, users can control the direction and speed with remote
interfaces. In the fixed-path cruise mode, USVs move along predetermined navigation paths. In the
autonomous cruise mode, USVs schedule their navigation paths automatically with local information.
In the collaborative cruise mode, a group of USVs, usually accompanied by buoys, schedule their
navigation paths collaboratively with shared information. USVs and buoys have opportunity to
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accomplish complicated tasks, such as water pollution source localization, in the collaborative cruise
mode, which is mainly discussed in this paper.
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2.3. Deployment for Water Quality Monitoring

In the water quality monitoring application, WSNs are composed of a number of wireless sensor
nodes which are deployed in a two-dimensional sensing field and one sink node which is usually
located on the shore. Reasonable deployment of wireless sensor nodes is required to guarantee the
basic performance of WSNs.

As shown in Figure 4, the stationary nodes are deployed regularly in fixed positions to provide
stable and uniform coverage, while the mobile nodes are drifting with the waves in random positions
to save energy. The sink node gathers local information from stationary nodes and mobile nodes after
distributed processing, monitoring the water quality distribution in the sensing field. The task of
water pollution source localization is triggered by events. For instance, when the spatial-temporal
distribution of water quality satisfies pollution warning conditions or related commands are received
from external systems, the water pollution source localization begins. Once a certain kind of pollution
accident happens, pollutants spread from the water pollution source.

Since there are complicated pollutant spreading conditions, including pollutant concentration,
wind direction, wind velocity, water flow direction, water flow velocity, etc., especially for large areas
of water, it is difficult to build a precise pollutant spreading model from possible water pollution
source to wireless sensor nodes in practical applications. Thus, the mobility of wireless sensor nodes is
useful to localize the water pollution source. In order to find the water pollution source precisely and
quickly, the sink node schedules paths of the mobile nodes based on the complete information of all
the nodes. Therefore, the mobile nodes can move to proper positions and report detailed water quality
distribution. The water pollution source localization method will be stated in Section 3. Because the
sink node maintains a list of wireless sensor nodes to support their joining and leaving, the WSNs are
robust and scalable.
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3. Distributed Water Pollution Source Localization Method

With the defined WSNs, the problems of multi-parameter quantification, pollutant recognition,
water pollution source searching and optical path adjustment can be formulated, and then the
distributed Dual-PSO algorithm will be proposed to solve these problems and localize the water
pollution source.

3.1. Problem Formulation

Each wireless sensor node has UV-visible absorption spectra and other raw data from the sensing
module as well as its own current position from the GPS module. To localize the water pollution
source in WSNs, there are four main problems, including multi-parameter quantification, pollutant
recognition, water pollution source searching, and optical path adjustment.

First of all, the local water quality multi-parameter measurements should be computed, using the
UV-visible absorption spectra. As shown in Equation (2), the Beer-Lambert law is valid for mixtures of
absorbing components fulfilling the condition that there are no interactions between these components.
The relationship between absorbance curves and multiple parameters, such as TOC, nitrate nitrogen,
turbidity, etc., should be investigated. Existing studies on water quality monitoring with UV-visible
absorption spectra mostly concentrate on building analytical models for TOC or COD. For example,
the regressive model between absorbance curves and TOC is built employing least squares support
vector machine (LSSVM) [18]. It has been demonstrated that LSSVM has better performance than other
approaches, such as principal component analysis (PCA) and partial least square (PLS). However, few
efforts have been made to construct one synthesis analytical model of multiple parameters, considering
the inherent features of continuous spectra. A scalable UV-visible spectral decomposition strategy is
considered here, based on our former work on total-reflection X-ray fluorescence analysis [15]. As
shown in Figure 5, the measured absorbance curve is decomposed into one background curve and a
number of characteristic curves of possible components, which can be written as:

F(λ) = f0(λ) +
n

∑
i=1

wi fi(λ)λ ∈ [λmin, λmax] (3)

where F is the measured absorbance curve, f 0 is the background curve, fi is the normalized characteristic
curve of component i, and wi is the proportionality coefficient of component i. The background curve
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represents the contribution of uncontaminated water, which can be defined as the average absorbance
during normal water quality monitoring, since the exogenous pollution accidents are mainly concerned.
The normalized characteristic curves of multiple components, such as potassium hydrogen phthalate
(KHP), nitrate, turbidity, etc., are shown in the figure, where KHP solution is prepared as a standard
sample for TOC testing. According to Equation (2), the normalized characteristic curves can be
stated as:

fi(λ) =
Kλ,i

MAX
λ

(Kλ,i)
λ ∈ [λmin, λmax] (4)
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It can be found that the normalized characteristic curves do not depend on the adjustable optical
path. These characteristic curves contains corresponding characteristic peaks, while water quality
multi-parameter measurements can be derived from the proportionality coefficients. Hence, this
problem becomes finding the optimal combination of proportionality coefficients to fit the measured
absorbance curve. The objective function of combinatorial optimization problem can be formulated as:

O(w1, w2, . . . , wn) =
∫ λmax

λmin

[
F(λ)− f0(λ)−

n

∑
i=1

wi fi(λ)

]2

dλ (5)

By minimizing the objective function, the optimal set of proportionality coefficients can be found,
where intelligent computing can be applied to solve the combinatorial optimization problem [19–27].
According to Equations (2)–(4), the water quality multi-parameter measurements can be calculated as:

Ci =
wi

bMAX
λ

(Kλ,i)
λ ∈ [λmin, λmax] (6)
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The constant absorption coefficient Kλ,i can be determined by calibration, and the optical path
b is known during testing. This strategy is suitable for multi-parameter quantification in various
applications, because the characteristic curves of possible components can be added into the framework
flexibly. Benefitting from optimal fitting in the whole spectral scope and the usage of inherent
characteristic curves, it has potential to obtain high accuracy.

Then, the most sensitive parameter which reflects the water pollution source best should
be recognized among the multiple parameters. In traditional water quality monitoring systems,
the parameter of which the data exceed an established threshold is usually regarded as the most
sensitive parameter. However, the establishment of threshold is based on experience, and it may lead
to false positive alarms. The water quality distribution should be used to recognize the most sensitive
parameter in order to avoid such problems. While the mobile nodes move to more positions in our
case, more detailed water quality distribution can be obtained. Assuming that the number of stationary
nodes and mobile nodes is s and m respectively, water quality multi-parameter measurements on the
stationary nodes can be written as:

S(j)(x, y) = [C(j)
1 , C(j)

2 , . . . , C(j)
n ] j = 1, 2, . . . , s (7)

and those on the mobile nodes can be written as:

M(k,l)(x, y) = [C(k,l)
1 , C(k,l)

2 , . . . , C(k,l)
n ] k = 1, 2, . . . , m (8)

where x and y are X position and Y position of the wireless sensor nodes in the sensing field
respectively, and l indicates the movement times of mobile nodes. The distribution of parameter
i can be described as:

Di(x, y) =

{
C(j)

i (x, y) is the positon of stationary node j

C(k,l)
i (x, y) is the l − th position of mobile node k

(9)

Thus, pattern recognition should be performed to distinguish a certain distribution from the
others in order to find the most sensitive parameter.

Moreover, the mobility of wireless sensor nodes is used to search for the water pollution
source. In this paper, it is assumed that the position of water pollution source is fixed, the pollutant
concentration at this position is the highest, and the water quality distribution keep stable during
searching. Since the sink node gathers the information of all the nodes, it can schedule paths of
the mobile nodes utilizing the distribution of the most sensitive parameter. Hence, it becomes an
extremum seeking problem in the sensing field. Also, intelligent computing can be considered to solve
this problem.

In addition, the sensing object of wireless sensor nodes varies from high-quality surface water to
heavily polluted water, so the optical path of each wireless sensor node should be properly adjusted to
achieve reliable sensing. According to Equation (2), the absorbance curve can be tuned at different
pollutant concentrations with customized granularity. Assuming that the optical path can be adjusted
exponentially, it can be written as:

b = b0 ϕd b ∈ [bmin, bmax] (10)

where b0 is the default optical path, φ is the scaling unit, d is the scaling coefficient which is an integer,
bmin is the minimum optical path which is 2 mm, and bmax is the maximum optical path which is
30 mm. Commonly, the same absorption coefficient Kλ,i can be simply used when the optical path is
adjusted, so Equation (2) can be stated as:

Aλ = A0
λ ϕd λ ∈ [λmin, λmax] (11)
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where:

A0
λ =

n

∑
i=1

Kλ,ib0Ci λ ∈ [λmin, λmax] (12)

Therefore, the absorbance curve of the adjusted optical path can be predicted with Equation (11),
which can be utilized to set the optical path adjusting rules.

3.2. Dual-PSO Algorithm

Considering the mentioned requirements of water pollution source localization and the capacities
of WSNs, a distributed algorithm is developed here. For the problems of multi-parameter quantification
and water pollution source searching, similar intelligent computing approaches are considered. Some
algorithms, such as steepest descent and genetic algorithms (GA), may be discussed in optimization
problems [28]. It has been shown that GA has better performance than steepest descent. In our
case, however, the mobile nodes act as natural particles in water pollution source searching, different
solution dimensions of proportionality coefficients require different granularity in multi-parameter
quantification, and the whole procedure needs to be quick and low cost, where particle swarm
optimization (PSO) is preferred. Kennedy et al., developed PSO in 1995 based on the analogy of
swarms of birds and fish schools [29,30]. PSO is an efficient optimization tool for solving combinatorial
optimization problems and dynamic optimization problems. Like other evolutionary algorithms,
PSO uses fitness as criterion to evolve the behavior of the solution population. Potential solutions,
namely particles, fly through the searching space. Each particle keeps track of the best position it has
achieved so far, which represents a particle experiment. Another kind of experiment is the best position
which has been achieved by any companion of the particle so far. The particle velocity is constantly
adjusted according to the two kinds of experiences. The diagram of the Dual-PSO algorithm is shown
in Figure 6, where one PSO procedure computes the water quality multi-parameter measurements on
each wireless sensor node and the other one searches for the water pollution source with real particles.
With distributed processing, only a small amount of necessary information, such as multi-parameter
measurements and position coordinates, is exchanged between nodes, otherwise centralized processing
demands more communication cost for raw data transmission. Meanwhile, the entropy of water quality
multi-parameter distribution which reflects the disorder degree is introduced as a metric to dynamically
recognize the most sensitive parameter during searching, because it has low computational complexity
and does not need high resolution input [31–33]. Besides, the optical path adjusting rules are set to
work in a proper absorbance range adaptively for each wireless sensor node so that reliable sensing
at different pollutant concentrations is guaranteed. The pseudo-code for the Dual-PSO algorithm is
outlined in Algorithm 1, where more water quality parameters from UV-visible spectrometer probes
or other sensors, more wireless sensor nodes and larger sensing fields can be easily extended.
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Algorithm 1: Dual-PSO

One PSO procedure is performed globally to search for the water pollution source on the sink node and
wireless sensor nodes. It is assumed that there are M wireless sensor nodes, of which s are stationary nodes
and m are mobile nodes.
For α = 1, 2, . . . , M
Xα represents the current position of wireless sensor node α:

Xα(1) = [x, y]

Uα represents the current velocity of wireless sensor node α:

Uα(1) = [∆x, ∆y]

XG
α represents the local best position so far, which is initialized as:

XG
α (1) = Xα(1)

End
The maximum iteration of global PSO is set as nG.
For tG = 1, 2, . . . , nG
For α = 1, 2, . . . , M
The absorbance level on wireless sensor node α is defined as:

A(α)
=

∫ λ2
λ1

F(α)(λ)dλ

λ2 − λ1

where F(α) is the current absorbance curve. There are intense absorption in the ultraviolet band, so λ1
and λ2 are usually set as 200 nm and 300 nm respectively.
Assuming the current optical path is:

b(α) = b0 ϕd

the optical path adjusting rules is set as:

b(α) =


b0 ϕd+∆d A(α)

< Amin and Amin ϕ−∆d ≤ A(α)
< Amin ϕ−∆d+1

b0 ϕd Amin ≤ A(α) ≤ Amax

b0 ϕd−∆d A(α)
> Amax and Amax ϕ∆d−1 < A(α) ≤ Amax ϕ∆d

where ∆d is a positive integer representing the adjustment amount, Amin is the minimum absorbance
level, and Amax is the maximum absorbance level.
With the adjusted optical path b(α), the absorbance curve F(α) is updated.
The other PSO procedure is performed locally to compute water quality multi-parameter measurements on
wireless sensor node α and the population of particles is set as N.
For β = 1, 2, . . . , N
Pβ represents the current solution, initialized randomly in the solution space:

Pβ(1) = [w1, w2, . . . , wn]

Vβ represents the current velocity, initialized as a random velocity:

Vβ(1) = [v1, v2, . . . , vn]

PG
β represents the local best solution so far, which is initialized as:

PG
β (1) = Pβ(1)

End
The maximum iteration of local PSO is set as nL.
For tL = 1, 2, . . . , nL
The global best solution PG is defined as:

O(PG(tL)) = MIN
β

(O(PG
β (tL)))β = 1, 2, . . . , N
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For β = 1, 2, . . . , N
The weighted particle velocity is updated as:

Vβ(tL + 1) = η(tL)Vβ(tL) + c1R1[PG
β (tL)− Pβ(tL)] + c2R2[PG(tL)− Pβ(tL)]

where R1 and R2 are two separate random numbers between 0 and 1, while c1 and c2 are acceleration
constants which represent the weight of acceleration terms that pull each particle toward the local best solution
and the global best solution. Besides, η is a inertia weight which decreases during iterations:

η(tL) = 0.9− tL
nL
× 0.5

A large inertia weight facilitates global searching while a small inertia weight facilitates local searching.
Hence, particles converge to the neighborhood of global optimal solution smoothly in the prophase and to the
global optimal solution quickly in the anaphase.
The solution of each particle is updated as:

Pβ(tL + 1) = Pβ(tL) + Vβ(tL + 1)

The local best solution is updated as:

PG
β (tL + 1) =

PG
β (tL) O(Pβ(tL + 1)) ≥ O(PG

β (tL))

Pβ(tL + 1) O(Pβ(tL + 1)) < O(PG
β (tL))

End
End
The optimization result of the proportionality coefficients is recorded as:

PG
(α) = [w(α)

1 , w(α)
2 , . . . , w(α)

n ]

Then the current water quality multi-parameter measurements on wireless sensor node α can be
calculated as:

C(α)
i =

w(α)
i

b(α)MAX
λ

(Kλ,i)
λ ∈ [λmin, λmax]

End
A discrete function Di(x, y) of water quality multi-parameter distribution is maintained as:

Di(x, y) =



C(j)
i Stationary node j (j = 1, 2, . . . , s) is at (x, y)

C(k,1)
i Mobile node k (k = 1, 2, . . . , m) is at (x, y) in the first iteration

C(k,2)
i Mobile node k (k = 1, 2, . . . , m) is at (x, y) in the second iteration

...
...

C(k,tG)
i Mobile node k (k = 1, 2, . . . , m) is at (x, y) in the tG − th iteration

where its domain is a set of current and past positions of wireless sensor nodes, and its range is a
corresponding set of water quality multi-parameter measurements at these positions.
The entropy of water quality multi-parameter distribution is evaluated.
For i = 1, 2, . . . , n
The discrete distribution function of parameter i is given. Measurements in its range are sorted in ascending
order as:

Q1 ≤ Q2 ≤ . . . ≤ Qq q = s + mtG

Normalization is performed as:

0 ≤ Q2 −Q1
Qq −Q1

≤ Q3 −Q1
Qq −Q1

≤ . . . ≤
Qq−1 −Q1

Qq −Q1
≤ 1 q = s + mtG
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The entropy of the distribution of parameter i is calculated as:

Hi =
1
q

q

∑
τ=1

log
q(Qτ+δ −Qτ−δ)

δ(Qq −Q1)ρτ
0 < δ ≤ q

2

where

ρτ =


1 + τ−1

δ 1 ≤ τ ≤ δ

2 δ < τ ≤ q− δ

1 + q−τ
δ q− δ < τ ≤ q

Qτ+δ = Qq τ > q− δ

Qτ−δ = Q1 τ ≤ δ

End
The entropies Hi (i = 1, 2, . . . , n) are compared, and parameter γ with the minimum entropy is recognized as
the most sensitive parameter of the water pollution source.
The global best position XG is defined as:

Dγ(XG(tG)) = MAX
α

(Dγ(XG
α (tG))) α = 1, 2, . . . , M

For α = 1, 2, . . . , M
The weighted velocity is updated as:

Uα(tG + 1) = η′(tG)Uα(tG) + c′1R′1[X
G
α (tG)− Xα(tG)] + c′2R′2[X

G(tG)− Xα(tG)]

where R′1 and R′2 are two separate random numbers between 0 and 1, c′1 and c′2 are acceleration constants,
and η′ is a inertia weight, similarly.
The new position of each wireless sensor node is scheduled as:

Xα(tG + 1) =

{
Xα(tG) Wireless sensor node α is a stationary node

Xα(tG) + Uα(tG + 1) Wireless sensor node α is a mobile node

The local best position is updated as:

XG
α (tG + 1) =

{
XG

α (tG) Dγ(Xα(tG + 1)) ≤ Dγ(XG
α (tG))

Xα(tG + 1) Dγ(Xα(tG + 1)) > Dγ(XG
α (tG))

End
End
The optimization result XG of the water pollution source position is recorded.

4. Results and Discussion

A simulation scene is constructed as shown in Figure 4. The sensing field is 3000 m long
and 3000 m wide, where nine stationary nodes are deployed regularly in fixed positions and nine
mobile nodes are drifting with the waves in random initial positions. During water pollution source
localization, the sink node gathers multi-parameter measurements and position coordinates from
all wireless sensor nodes, and sends the scheduled paths to the mobile nodes. For the designed
UV-visible spectrometer probes, multiple parameters, including TOC, nitrate nitrogen, nitrite nitrogen
and turbidity, are considered. In the optical path adjusting rules, the default optical path b0 is set
as 10 mm, the scaling unit φ is set as 2, the minimum absorbance level Amin is set as 0.3, and the
maximum absorbance level Amax is set as 0.7.

The efficiency of multi-parameter quantification is examined first. KHP solution is prepared
as a standard sample for TOC testing, potassium nitrate solution is prepared as a standard sample
for nitrate nitrogen testing, sodium nitrite solution is prepared as a standard sample for nitrite
nitrogen testing, and formazine solution is prepared as a standard sample for turbidity testing. Both
single-parameter samples and multi-parameter samples are used in the experiments. As shown
in Figure 7, normalized characteristic curves of multiple parameters are acquired. For a measured
absorbance curve, quantification with Dual-PSO is accomplished on a single wireless sensor node.
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A multi-parameter sample with TOC at 16 mg/L, nitrate nitrogen at 8 mg/L, nitrite nitrogen at 2 mg/L
and turbidity at 20 NTU is tested. Figure 8 shows the measured absorbance curve, the fitting curve and
the multi-parameter contributions. It can be found that the measured absorbance curve is approximated
with high accuracy. More multi-parameter samples are tested to examine the performance utilizing
adaptive optical path. Table 1 gives the relative error (RE) and the relative standard deviation (RSD) of
TOC, nitrate nitrogen (NO3-N) and turbidity measurements, compared with the LSSVM method. The
optical path (OP) switches between 5 mm, 10 mm and 20 mm in our method, while it keeps 10 mm
in LSSVM. It is shown that the quantification performance is enhanced by our method, especially
in the case that there is opportunity to optimize the optical path. With the designed UV-visible
spectrometer probe and the Dual-PSO algorithm, optimal fitting in the whole spectral scope is taken
into account and deviations from the Beer-Lambert law are reduced, so RE and RSD are smaller and
do not vary drastically when the pollutant concentrations vary in a wide range. Besides, simultaneous
and fast quantification of multiple parameters is achieved without the requirement of a large number
of training populations.
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Table 1. Comparison of multi-parameter quantification with Dual-PSO and LSSVM.

Sample No. Parameter Concentration
Dual-PSO LSSVM

OP RE RSD OP RE RSD

1
TOC 8 mg/L

20 mm
−4.23% 1.03%

10 mm

−6.97% 2.36%
NO3-N 4 mg/L 4.85% 1.49% 6.13% 3.10%

Turbidity 10 NTU 3.06% 2.05% 5.50% 3.89%

2
TOC 16 mg/L

10 mm
−3.52% 1.12% −4.16% 1.25%

NO3-N 8 mg/L 4.59% 1.47% 5.73% 1.62%
Turbidity 20 NTU 2.70% 2.08% 2.82% 2.19%

3
TOC 32 mg/L

5 mm
−7.36% 1.26% −12.55% 2.85%

NO3-N 16 mg/L 5.02% 1.51% 15.13% 2.93%
Turbidity 40 NTU 3.92% 2.16% 6.12% 3.67%

In the sensing field, the water quality multi-parameter distribution is simulated as shown in
Figure 9. Quantitative analysis of TOC, nitrate nitrogen and turbidity are considered, and TOC is
set as the most sensitive parameter which reflects the water pollution source best. The Dual-PSO
algorithm is performed on the wireless sensor nodes and the sink node to identify and localize the
water pollution source. The entropy of water quality multi-parameter distribution during searching is
calculated dynamically as shown in Figure 10. It can be found that the entropy of TOC distribution
keeps lower than that of nitrate nitrogen or turbidity distribution, and the difference becomes more
significant with more detailed distribution during searching. Thus, the entropy is an effective metric to
recognize the most sensitive parameter, of which the disorder degree is lower than that of the other
parameters which are more evenly distributed. In this way, more parameters from the UV-visible
spectrometer probe or other sensors can be easily added into the Dual-PSO algorithm for recognition.

In Figure 11, water pollution source searching with Dual-PSO and GA is compared, where GA
uses the same swarm of mobile nodes as Dual-PSO. It can be seen that the convergence of Dual-PSO is
faster than that of GA and the total path length of mobile nodes in Dual-PSO is much shorter than
that in GA. Dual-PSO finished searching within 20 iterations, while GA does not achieve the same
searching result after even 80 iterations.
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The Dual-PSO algorithm enjoys high convergence speed and global optimization ability.
In Dual-PSO, the scheduled path of each mobile nodes is smoother, the path length of each mobile node
within one single iteration decreases during searching, and the path lengths of different mobile nodes
are balanced. That is because PSO is based on the analogy of swarms of birds and fish schools. Given
the maximum speed of mobile nodes, each iteration can be completed within 1 minute in Dual-PSO,
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while the time consumption of each single iteration is unpredictable and the longest iteration in this
case lasts over 5 min in GA. Moreover, the step length of searching can be adaptive to different mobile
abilities or deployment densities in Dual-PSO. Therefore, efficient water pollution source localization
can be achieved by the Dual-PSO algorithm with less time consumption, less power consumption
and more feasible navigation paths. Also, it can be realized that water quality measurements, no
matter direct measurements or indirect measurements, which reflect the pollutant concentration
distribution is applicable for searching, which means that there is opportunity to miniaturize and
strengthen the wireless sensor nodes with more optional sensors and soft measurement models. During
water pollution source localization, the water quality multi-parameter distribution is simulated under
complicated pollutant spreading conditions, and the proposed method can find the water pollution
source within 20 min. When pollutant concentrations vary in a wide range, the UV-visible spectrometer
probes keep acceptable sensing performance. The Dual-PSO algorithm obtains better multi-parameter
quantification results than LSSVM and also obtains better water pollution source searching results
than GA. Besides, the most sensitive parameter is efficiently recognized using the entropy of water
quality multi-parameter distribution during localization.

5. Conclusions

To identify and localize water pollution sources efficiently in surface water-facing pollution
accidents, this paper proposes a distributed water pollution source localization method in WSNs.
Firstly, WSNs are established for water quality monitoring, where wireless sensor nodes equipped with
well-designed UV-visible spectrometer probes are deployed to analyze multiple parameters. Buoys
and USVs serve as stationary and mobile nodes respectively, and the optical path of each UV-visible
spectrometer probe is adjustable. Then, the Dual-PSO algorithm is presented to solve the problems of
multi-parameter quantification, pollutant recognition, water pollution source searching and optical
path adjustment. One PSO procedure computes the water quality multi-parameter measurements on
each wireless sensor node and the other one searches for the water pollution source with real particles.
With distributed processing, only a small amount of necessary information, including multi-parameter
measurements, position coordinates and scheduled paths, is exchanged between nodes. The entropy of
water quality multi-parameter distribution which reflects the disorder degree is introduced as a metric
to dynamically recognize the most sensitive parameter during searching. The optical path adjusting
rules are set so that each wireless sensor node can work in a proper absorbance range adaptively
for reliable sensing. Finally, experiments and simulations demonstrate the efficiency of quantitative
multi-parameter analysis and water pollution source localization. The Dual-PSO algorithm enhances
the multi-parameter quantification performance without the requirement of a large number of training
populations, and it completes the pollution source searching with less time consumption, less power
consumption and more feasible navigation paths. The main contribution of this paper is that the
total solution of WSNs is investigated to identify and localize water pollution sources efficiently
under complicated pollutant spreading conditions, the novel distributed Dual-PSO algorithm is
studied particularly to solve the related problems, the adaptive optical path mechanism reduces
deviations from the Beer-Lambert law in a wide measurement range, and the scalable framework is
constructed to support the extension of more water quality parameters from UV-visible spectrometer
probes or other sensors, more wireless sensor nodes and larger sensing fields. This paper focuses
on the application scenario of one certain stationary water pollution source, making use of multiple
parameters from UV-visible spectrometer probes. In future research, the distributed water pollution
source localization method shall be evolved, considering more application scenarios, such as multiple
water pollution sources with different pollutants, mobile water pollution sources, interactions between
multi-components, extension of parameters, and energy-aware management of mobile nodes.
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