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Abstract 

Metabolic dysfunction-associated fatty liver disease (MAFLD) is among the most widespread metabolic disease 
globally, and its associated complications including insulin resistance and diabetes have become threatening condi-
tions for human health. Previous studies on non-alcoholic fatty liver disease (NAFLD) were focused on the liver’s lipid 
metabolism. However, growing evidence suggests that mitochondrial metabolism is involved in the pathogenesis 
of NAFLD to varying degrees in several ways, for instance in cellular division, oxidative stress, autophagy, and mito-
chondrial quality control. Ultimately, liver function gradually declines as a result of mitochondrial dysfunction. The 
liver is unable to transfer the excess lipid droplets outside the liver. Therefore, how to regulate hepatic mitochondrial 
function to treat NAFLD has become the focus of current research. This review provides details about the intrinsic 
link of NAFLD with mitochondrial metabolism and the mechanisms by which mitochondrial dysfunctions contribute 
to NAFLD progression. Given the crucial role of mitochondrial metabolism in NAFLD progression, the application 
potential of multiple mitochondrial function improvement modalities (including physical exercise, diabetic medica-
tions, small molecule agonists targeting Sirt3, and mitochondria-specific antioxidants) in the treatment of NAFLD 
was evaluated hoping to provide new insights into NAFLD treatment.

Keywords NAFLD, Mitochondrial division, Mitophagy, Oxidative stress, Mitochondrial quality control, Lipid 
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Introduction
Over the past two decades, nonalcoholic fatty liver dis-
ease (NAFLD) has developed to rank among the most 
chronic and widespread hepatic diseases, and with the 
global obesity epidemic, its prevalence is increasing. It 
has become a serious threat to human health [1], because 
of the increased risk of comorbidities including cardio-
vascular disease, hepatocellular carcinoma (HCC), and 
type 2 diabetes (T2D) [2–4]. NAFLD is a metabolic stress 
liver injury closely related to insulin resistance (IR) and 
genetic susceptibility, with hepatic steatosis in the liver. 
However, other causes such as alcoholic liver disease, 
autoimmune hepatitis, drug damage and hypothyroidism 
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are excluded. Genome-wide association studies (GWAS) 
have shown that changes in genes such as patatin-like 
phospholipase domain-containing 3 (PNPLA3) and 
transmembrane 6 superfamily member 2 (TM6SF2) have 
a differential impact on the development of NAFLD [5].
The liver has an indispensable function in balancing 
lipid metabolism by modulating the production, oxida-
tion, and transport of triglycerides (TGs), free fatty acids 
(FFA), cholesterol, and bile acids (BA) [6]. Excessive 
fat accumulation in the liver includes multiple condi-
tions associated with the emergence and hepatic steato-
sis progression, these range from simple non-alcoholic 
fatty liver (NAFL) to complicated non-alcoholic steato-
hepatitis (NASH). NAFLD is not only closely related to 
liver cancer, but also involved in many extrahepatic dis-
eases, such as bladder cancer and sarcopenia. Among 
them, the occurrence of bladder cancer is largely due 
to insulin resistance. A retrospective study shows that 
most patients with bladder cancer suffer from NAFLD, 
insulin resistance and T2D [7]. In addition, NAFLD is 
also closely related to sarcopenia, which we will focus 
on below. The excessive fat accumulation in Metabolic 
Dysfunction-Associated Fatty Liver Disease (MAFLD) 
patients, produces cytotoxic lipid oxidation byproducts 
that can cause NASH with a chronic necro-inflammatory 
state [8]. Notably, impaired mitochondrial metabolism 
is extensively associated with NAFLD by mediating the 
dysregulation of lipid metabolic homeostasis. With fur-
ther research, the exclusive diagnosis of NAFLD can not 
meet the clinical needs, which is not conducive to early 
diagnosis and early intervention of diseases. Therefore, 
to reflect the hepatic manifestations of this metabolic 
disorder, the name NAFLD has been reconsidered and 
recently renamed MAFLD [9–11]. MAFLD is more likely 
to be obese and overweight.

The mechanism by which mitochondrial function 
regulates liver metabolism and therefore, interferes 
with the disease progression has been intensively inves-
tigated. Several studies have shown that factors such as 
mitophagy, oxidative stress, differentiation, and qual-
ity control, differentially influence mitochondrial func-
tion to promote liver fat accumulation and injury. These 
steps in part mediate impaired lipid metabolism to 
exacerbate the development of NAFLD. In patients with 
MAFLD, mitochondrial dysfunction-mediated disrup-
tion of lipid metabolism leads to excessive accumula-
tion of TGs (> 5%) in hepatocytes and hepatic steatosis 
[12, 13]. MAFLD covers a range of diseases from NAFL 
with no obvious inflammatory manifestations to NASH, 
these hepatic steatoses are linked with lobular inflam-
mation, pericyte fibrosis, and apoptosis, and cannot dis-
tinguish histologically from alcoholic steatohepatitis [14, 
15]. However, the transition from NAFL to NASH is not 

only based on steatosis but is also driven by mitochon-
drial dysfunction characterized by dysregulated oxidative 
phosphorylation (OXPHOS) and reactive oxygen spe-
cies (ROS) generation [16, 17]. Therefore, mitochondrial 
function regulation appears to be a potential strategy to 
stop the progression or even treat MAFLD.

Because of the underlying importance of mitochon-
drial metabolic disorders in NAFLD development, it is 
crucial to target its metabolic regulatory mechanisms 
for therapeutic strategies against NAFLD. The avail-
able literature suggests that physical exercise, antidia-
betic drugs, and antioxidants may have the potential to 
reverse mitochondrial metabolic disorders and hold good 
promise for large-scale clinical application. Overall, this 
review focuses on the impact of mitochondrial metabolic 
dysregulation and lipid accumulation on the progression 
of NAFLD and discusses multiple potential therapeutic 
strategies to improve mitochondrial function, hoping 
to provide new insights for clinically targeted therapies 
based on NAFLD.

In reviewing the relevant literature, we drew on the 
approach of Baethge et al. to develop the following meth-
odology for the literature search [18]. The first step is 
to retrieve the corresponding subject and free words in 
the corresponding database, using the logical opera-
tors “AND” and “OR”, the wildcard character “*”, etc. to 
connect the subject and free words. Also note the field 
identification of the corresponding phrase in the search 
box to limit the search and compose an advanced expres-
sion for advanced searching. The second step is to import 
the searched documents into the literature management 
software and subsequently read the title, abstract and, 
if necessary, the text in the literature management soft-
ware to filter the required documents. If there is a large 
amount of literature, the relevant literature from the last 
5 years was chosen.

Lipid accumulation promotes MAFLD progression
Recently, multiple theories have been put forth to elabo-
rate on the occurrence and development of MAFLD. The 
“multiple-hit” hypothesis has replaced the “double-hit " 
hypothesis of NASH, the former takes into account the 
promotion of MAFLD by multiple impairments in genet-
ically susceptible individuals, such as hormones secreted 
by adipose tissue, insulin resistance, nutritional factors, 
and gut microbiota [19, 20]. Adipose tissue stores excess 
food calories in the form of TGs, and the accumulation 
of TGs and FFA in the liver is the result of dysregulated 
fat metabolism [21]. Excessive caloric intake may induce 
MAFLD/NASH by mediating gut microbiota imbalance 
and increasing portal circulation of bacterial products, 
causing activation of the natural immune system [22, 23]. 
Due to the enhanced circulating plasma FFA, IR occurs 
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in the muscles of the body, which is a key step in MAFLD 
development [24, 25]. Furthermore, IR increases hepatic 
De novo lipogenesis (DNL) and stimulates adipose tis-
sue to secrete adipokine and inflammatory cytokine, 
ultimately leading to the dysregulation of adipose tissue’s 
lipolytic processes [26]. Interestingly, fat accumulation 
in the liver increases lipotoxicity, causing an increase in 
oxidative stress which can severely impair normal mito-
chondrial metabolic programs and cellular functions in 
the liver and provide the potential for FA accumulation 
[27]. Therefore, this positive feedback loop (FA accu-
mulation- IR-impaired mitochondrial metabolism -FA 
accumulation) may support the continued progression 
of MAFLD/NASH and establishes the possibility for the 
development of certain malignant diseases such as HCC.

During MAFLD, FAs from different sources (such as 
dietary, DNL, and lipolysis) are utilized in hepatocytes 
to produce TGs, contributing to liver fat accumulation 
[28, 29]. Approximately 59% of the FAs that accumulate 
in the liver are sourced from adipose tissue lipolysis, 
26% is from DNL and 15% is from the diet (Fig. 1) [28]. 
FFA can also be transformed into TGs and transported 

as very low-density lipoproteins (VLDL) [30]. This met-
abolic dysfunction mediates the accumulation of liver 
fat and causes the continued development of MAFLD. 
Interestingly, increased circulating levels of FFA and 
TGs and adipose tissue stored TGs also contribute to 
peripheral IR [31, 32], while persistent hyperglycemia 
and compensatory hyperinsulinemia contribute to the 
progression of T2D and fatty liver in obese patients. 
Indeed, FA accumulation mediates liver damage and 
fatty liver development in different dimensions. The 
ongoing fat metabolic breakdown related to IR causes 
elevated blood circulating FFA levels, which are read-
ily transported to the liver and provide the conditions 
for fatty liver development [31]. Similarly, high carbo-
hydrate consumption increases hepatic lipogenesis, 
thereby supporting fatty liver progression by increas-
ing the synthesis and uptake of FFA [33, 34]. Notably, 
sustained accumulation of FFA may induce liver injury 
by activating immune-inflammatory pathways. FFA 
promotes nuclear factor-κB-dependent TNF-α expres-
sion by mediating lysosomal instability and stimulating 

Fig. 1 Diagram of the mechanism of MAFLD/NASH occurrence, and the various metabolic problems that occur along with it. High calorie 
foods, and the ab initio synthesis of fats lead to the production of large amounts of free fatty acids in the liver, which, together with excess total 
cholesterol, leads to insulin resistance in the body. High levels of free fatty acids can lead to a range of problems in the body such as polycystic 
ovary syndrome, oxidative stress, inflammation, apoptosis, pyroptosis and a decrease in mitochondrial membrane potential, ultimately leading 
to the development of NAFLD/MAFLD in the body
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increased hepatotoxicity to impair normal hepatic met-
abolic function [35].

It has been suggested that an abnormally high DNL 
could potentially contribute to the development of 
MAFLD [36]. A high carbohydrate diet supports NAFLD 
progression by inducing DNL to regulate the sterol regu-
latory element binding protein 1c (SREBP1c) expression 
[37, 38]. The development of NAFLD is accompanied by 
severe mitochondrial metabolic disruption and therefore, 
contributes to lipid accumulation to support NAFLD 
progression. For example, impaired mitochondrial 
metabolism in NAFLD impairs FA oxidation processes 
(e.g., mitochondrial beta-oxidation) and induces elevated 
DNL, which ultimately continues to drive NAFLD pro-
gression in the form of lipid accumulation [39, 40]. More-
over, when mitochondrial beta-oxidation is impaired, 
peroxisomal and cytochrome oxidation of FFA alternate, 
resulting in high ROS levels and dangerous oxidative by-
products that support disease progression [41, 42]. Ma 
et  al. [43] revealed that initially, the increased hepatic 
lipid availability in obese individuals with NAFLD 
enhances hepatic mitochondrial competence, however, 
it eventually stimulates enhanced hepatic oxidative stress 
and therefore, decreases mitochondrial activity, promot-
ing the development of NAFLD into NASH [44]. Studies 
have also demonstrated that dysfunction in liver mito-
chondria precedes NAFLD and IR onset in obese rodent 
models [45]. Additionally, the endoplasmic reticulum 
(ER) is a crucial part of the stress response, it regulates 
a distinctive set of intracellular pathways, a phenomenon 
collectively referred to as the unfolded protein response 
[46, 47]. Interestingly, nuclearfactorkappa-B/calcium 
release-activated calcium modulator 1 (NFκB/Orai1) 
stimulates the regulation of the ER in intracellular path-
ways via oxidative stress to support the development of 
NAFLD [48]. Multiple NAFLD pathogenic mechanisms 
should not be viewed independently, as there may be 
ongoing crosstalk between different tissues or organs, 
where an intrinsic association of adipose tissue and the 
gut may contribute to NAFLD [49] because dysregulated 
intestinal metabolism contributes to fat accumulation 
and lipid deposition in the liver via the gut-adipose tis-
sue-liver axis and mediates hepatic disease development 
[50]. Additionally, NAFLD pathogenesis is also influ-
enced by genetic and epigenetic factors (including DNA 
methylation and histone modifications), with heritability 
estimates ranging from 20 to 70% [51, 52]. Specifically, 
activator protein-1 (AP-1) and early growth response 
(EGR) reprogram Kupffer cell properties and LXR func-
tions required for survival to transform the associated 
macrophage phenotype and drive myeloid cell diversity 
in NASH [53]. As such, the known information suggests 
that epigenetic reprogramming may contribute to the 

phenotypic transformation of immune cells and favor the 
development of NAFLD by influencing their inflamma-
tory environment [54, 55].

The elucidation of different mechanisms of disease pro-
gression facilitates the development of targeted thera-
pies, while the intrinsic linkages in disease mechanisms 
are equally noteworthy, as their interactions pose serious 
challenges for clinical treatment. Therefore, understand-
ing the interaction between different mechanisms is also 
beneficial for the clinical application of NAFLD-based 
targeted combination therapy.

Mitochondrial metabolic dysfunction and MAFLD
Mitochondrial division
The liver is one of the most mitochondria-rich organs, 
as the density of mitochondria depends mainly on the 
energy metabolic demand [56]. In hepatocytes, the 
mitochondrial activity includes metabolic pathways 
and signaling networks, which depend on mitochon-
drial DNA (mtDNA) integrity, affinity and antioxidant 
balance, membrane composition, transport of lipopro-
tein, and metabolic demand and supply [57]. For exam-
ple, a case-control study assessed epigenetic changes in 
mtDNA, and mitochondria-encoded NADH dehydro-
genase-6 (MT-ND6) hypermethylation was determined 
in liver biopsy tissue from MAFLD patients and corre-
lated with the severity of histological disease [58]. These 
alterations are associated with ultrastructural changes 
in the mitochondria, manifested by inner mitochondrial 
membrane (IMM) loss, deep ridges folding, and mito-
chondrial granules loss, although these changes may 
be reversed by exercise [58]. The structural stability of 
mitochondria is essential for the maintenance of normal 
physiological activity. For example, exosomes released by 
Trem2-deficient macrophages can exacerbate NAFLD by 
damaging the mitochondrial structure of hepatocytes. 
The specific reason for this is because high levels of miR-
106b-5p block Mitofusin 2 (MFN2) [59]. Similarly, the 
protein components of mitochondria-associated endo-
plasmic reticulum membranes (MAMs) are involved in 
the development of many diseases. Drp1 is a key factor 
in the control of mitochondrial division. In the striatum 
of Huntington’s chorea (HD) mice, overactive Drp1 activ-
ity is able to induce mitochondrial fragmentation, forc-
ing mitochondria away from the endoplasmic reticulum 
and leading to the destruction of the MAM [60]. MAM 
proteins also include PTEN-induced putative kinase 1 
(PINK), sigma-1 receptor (S1R), presenilin-1 (PS1) and so 
on. The above proteins are involved in Parkinson’s disease 
(PD) and Alzheimer’s disease (AD) respectively.In addi-
tion, genetic variants and metabolic stressors can stimu-
late mitochondrial dysfunction [61]. mtDNA mutations, 
particularly copy number variants and somatic point 



Page 5 of 21Zheng et al. Journal of Translational Medicine          (2023) 21:510  

mutations, and mitochondrial metabolism abnormalities 
have been observed in HCC associated with NAFLD [62]. 
In this case, mitochondrial functions such as mitotic-
nuclear communication and mitochondrial-ER contact 
(MERS) are impaired due to structural disruption, and 
this phenomenon may confer resistance to apoptosis and 
trigger the development of HCC [63, 64]. In addition, 
there is an association between impaired mitochondrial 
function and the development of sarcopenia. Mitochon-
drial dysfunction with impaired proteostatic mechanisms 
has been reported as an important factor in sarcopenia 
[65]. Interestingly, a reduction in muscle mass may con-
tribute to the development of IR. Together with obesity, 
chronic inflammation and vitamin D deficiency, these 
factors are involved in the pathophysiological mecha-
nisms of NAFLD [66]. Therefore, improving mitochon-
drial function can effectively alleviate sarcopenia and 
NAFLD. Maintaining the stability of mitochondrial 
structure and function and facilitating a complex balance 
between physical contacts between organelles and regu-
latory mechanisms at multiple levels, is also an essential 
basis for ensuring cellular homeostasis.

The length of the continuous mitochondrial renewal 
and degradation cycle determines the total number of 
mitochondria in the cell. During mtDNA replication, 
new mitochondria are produced from pre-existing ones 
when the transcription and translation processes of the 
nuclear and mitochondrial encoded genes are coor-
dinated. Because mitochondria cannot be produced 
ab  initio, cells use the alternating fusion-division steps 
in the mitochondrial pool to achieve its turnover [67, 
68]. Mitochondrial fusion is usually associated with 
increased OXPHOS function and mitochondrial elonga-
tion, whereas, the main mitochondrial fusion proteins 
are Mitofusin 1 (MFN1)、MFN2 and optic atrophy 1 
(OPA1), which are also required to maintain normal 
mitochondrial function. Specifically, MFN1 and MFN2 
are widely distributed on the outer mitochondrial mem-
brane (OMM), but they have different activities within 
the cell (Fig. 2). MFN1 is shown to have an 8-fold higher 
GTPase activity than MFN2 and mediates the fusion of 
the OMM in a guanosine triphosphate (GTP)-dependent 
reaction with a higher affinity for mitochondrial bridg-
ing [69]. OPA1 is crucial for the attachment of IMM with 
mitochondrial cristae formation. ATP-dependent Yme1L 

Fig. 2 The process of mitochondrial fusion. Mitofusin 1 and Mitofusin 2 coordinate mitochondrial fusion, giving higher oxidative phosphorylation 
and mitochondrial elongation. Optic atrophy 1 is disassembled into S-optic atrophy 1 and L-optic atrophy 1 by the action of Oma1 and Yme1L, thus 
participating in mitochondrial connection and the formation of mitochondrial cristae
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and Oma1 proteases regulate the cleavage of OPA1 into 
L-OPA1 or S-OPA1 [70, 71]. Depletion or abnormal 
activity of proteins mediating OMM fusion may lead 
to the emergence of defective mitochondria, which are 
then removed by autophagy. For example, uncontrolled 
Oma1-dependent cleavage prolongs the dissipation of 
mitochondrial potential, a phenomenon that leads to the 
complete inactivation of OPA1 and consequent disrup-
tion of mitochondrial structure [68].

Dynamin-related protein-1 (Drp1), which is mediated 
by mitochondrial fission protein 1 (FIS1), mitochondrial 

fission factor (Mff), and the mitochondrial dynamin 
49/50 receptor, and is recruited and activated around 
OMMs, is the main trigger for the cytokinesis process 
(Fig. 3) [72]. Activation of Drp1 may drive cell division in 
different dimensions and impair normal mitochondrial 
metabolic functions. Interestingly, post-translational 
modifications, energy insufficiency, physical exercise, 
and enhanced cyclic adenosine monophosphate (cAMP) 
stimulate protein kinase-A (PKA), which phosphoryl-
ates serine 656 (S656) and S637 residues of Drp1, thereby 
inhibiting the activity of Drp1 on mitochondrial damage 

Fig. 3 The process of mitochondrial division. mitochondrial fission factor and Mid49/50, as well as dynamin-related protein 1, are the main 
triggers of mitochondrial fission. Among them, dynamin-related protein 1 aggregates around the mitochondrial membrane to form a helical 
homopolymeric complex, followed by contraction of the complex causing mitochondrial fracture. Among them, energy shortage, physical exercise, 
and high levels of cyclic adenosine monophosphate lead to phosphorylation of dynamin-related protein 1 residues S656 and S637 by stimulating 
protein kinase A, which inhibits mitochondrial membrane breakage. Besides, high concentration of cyclic adenosine monophosphate can 
promote a kinase anchoring protein 1 binding to protein kinase A, and the formed complex inhibits dynamin-related protein 1 aggregation 
in the mitochondrial membrane and hinders mitochondrial membrane break
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in cytokinesis and offers the possibility of delaying the 
progression of MAFLD [73]. Research suggests that high 
cAMP concentrations favor co-localization and anchor-
ing of PKA and Drp1 on OMMs via the protein scaffold 
A-kinase anchoring protein 1 (AKAP1) and Mff respec-
tively, while the PKA-AKAP1 complex inhibits Drp1 
and the fission process [74, 75]. In contrast, calcium-
regulated neurophosphatase, a calcium ion/calmodu-
lin-dependent phosphatase, promotes the formation of 
a helical homopolymer complex of Drp1 to wrap the 
mitochondrial membrane by reversing the phospho-
rylation of S637 and Drp1, which gradually contracts 
and induce mitochondrial rupture [76]. In liver cells, 
redox status, energy stress, reduced ATP, and NADH 
may stimulate the division of mitochondrial via the Sir-
tuin1 (SIRT1)/cAMP-dependent AMP-activated protein 
kinase (AMPK) signaling pathway [77], which regulates 
Mff phosphorylation resulting in Drp1 functioning on 
OMMs. However, in the muscle and liver tissues, dur-
ing autophagy, a cascade reaction via cAMP/PKA/AMPK 
can phosphorylate Drp1 and prevent mitochondria from 
dividing [78, 79], which may be attributed to autophagy 
against cell division. In general, Drp1 activity is closely 
related to mitochondrial function, and specific means 
to modulate Drp1 expression or activity may be a viable 
strategy to rescue mitochondrial dysfunction and treat 
MAFLD.

Mitophagy
The selective elimination of dysfunctional mitochondria 
by autophagic vesicles is called mitophagy [80]. Recog-
nition of damaged mitochondria by autophagic vesicles 
is performed in a ubiquitin-independent and depend-
ent pathway by LC3 adapters [81]. The PTEN-induced 
PINK1/Parkin pathway is the most researched mito-
chondrial autophagic pathway. In healthy mitochondria, 
progerin-associated rhodopsin-like (PARL) proteases 
and matrix processing peptidase (MPP) degrade PINK1 
[82]. However, on the impaired mitochondria, PINK1 
assembles and stimulates the elimination of these mito-
chondria in a docked manner [82]. The ubiquitin kinase 
PINK1 phosphorylates ubiquitin and activates the ubiq-
uitin ligase Parkin [81]. GTPase mitofusin 2 on OMM is 
thought to regulate Parkin assembly in impaired mito-
chondria. PINK1 phosphorylates Mfn2 and promotes its 
parkin-mediated ubiquitination [83]. Parkin ubiquitinates 
proteins of OMM and facilitates their cross-talk with 
phagosomal adapters including NBR1, p62, and HDAC6 
[81]. These junctions have LC3 interaction region (LIR) 
motifs, and LC3 can recognize and recruit labeled mito-
chondria into the autophagosome. In the mitophagy 
receptor pathway, receptors including Bcl2/Adenovirus 
E1B 19 kDa and Nip3-like protein X (Nix) and interacting 

Protein 3 (BNIP3) were found to bind directly to LC3 
and promote mitochondrial phagocytosis by autophagic 
vesicles, thereby eliminating lysosome-induced mito-
chondrial destruction. Moreover, mice with Bnip3 gene 
deletion exhibited some degree of inflammation and 
higher levels of ROS [84]. Impaired mitophagy has been 
associated with a variety of human diseases (e.g. MAFLD 
and tumors) [85]. Diminished or impaired mitophagy 
disrupts the production of healthy mitochondria and 
causes impaired mitochondria aggregation. In addition, 
mitophagy also has a function in activating inflammatory 
vesicles [86]. Moore et  al. linked mitochondrial damage 
to increased severity of NAFLD in obese patients [87]. He 
indicated a 40-50% alleviation in ß-oxidation in individu-
als with NASH, which was linked with elevated hepatic 
ROS and decreased indices of mitochondrial biosyn-
thesis, mitosis, autophagy, fission, and fusion. The study 
of mitophagy and NAFLD goes far beyond this. Mac-
rophage-stimulated 1 (Mst1) is a novel upstream regu-
lator of mitophagy that affects apoptosis in cancer cells 
by inhibiting mitophagy. Mst1 was found to promote 
NAFLD by disrupting Parkin-associated mitophagy. 
The specific mechanism is that Mst1 regulates parkin 
expression through the AMPK pathway. AMPK block-
ade inhibits Parkin-associated mitophagy and thus affects 
hepatocyte mitochondrial apoptosis [88]. In addition 
to this, mitosis is regulated by hormones. Thyroid hor-
mones also reportedly alleviate NAFLD by enhancing 
FA oxidation, mitosis, and mitochondrial biogenesis [89, 
90], as these hormones can increase mRNA expression of 
NIX, BNIP3, p62, ULK1, and LC3 under certain condi-
tions to mediate mitophagy [91]. Mitochondrial bioreg-
ulation alters and coordinates the mitochondrial pool’s 
amount and quality between mitoses, allowing cellular 
mitochondrial activity regulation in response to cellular 
stress, metabolic status, and other intracellular hormonal 
and environmental signals and to induce mitophagy to 
complete the repair of diseased mitochondria to slow the 
progression of NAFLD.

Oxidative stress
Mitochondria are organelles with complex structures 
and comprise OMM the IMM, and the mitochondrial 
matrix. Most mitochondria-associated proteins are pro-
duced in the cytoplasm and then transported to their site 
of action. The OMM is porous and allows the passage of 
ions and small uncharged molecules, while IMM consists 
of a complex of electron transport systems, transport 
proteins, and ATP synthases [92].

Energy is mainly produced in mitochondria in the form 
of ATP via pyruvate and FAs metabolism. To undergo 
β-oxidation, cytoplasmic FAs need mitochondrial entry 
[93], whereas, short- and medium-chain FAs can freely 
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diffuse into the mitochondrial matrix. Long-chain Acyl-
Coenzyme-A synthase in OMM activates long-chain FAs 
to Acyl-Coenzyme-A. On the outer side of the IMM, 
CPT1 transfers acyl groups from Acyl-Coenzyme-A to 
carnitine to form acyl-carnitine. Carrier protein carno-
sine-acylcarnitine translocase transports acyl-carnitine 
across the IMM. The mitochondrial matrix’s CPT2 con-
verts acyl-carnitine to carnitine and Acyl-Coenzyme-A. 
Within the mitochondria, the β-oxidation cycle of four 
enzymatic steps degrades Acyl-Coenzyme-A [94]. In 
each cycle, Acyl-Coenzyme A shortens and two carboxy-
terminal carbon atoms are released as acetyl coenzyme-
A [95]. The first β-oxidation step is the dehydrogenation 
of acyl coenzyme-A to trans-2-enoyl-Coenzyme-A by 
Acyl-Coenzyme-A dehydrogenase. The last three steps 
are catalyzed by the mitochondrial trifunctional protein 
complex (MTP). In the second step, enoyl coenzyme-A 
hydratase catalyzes the hydration by producing (S)-3-hy-
droxy-Acyl-Coenzyme-A, which is then dehydrogenated 
by (S)-3-hydroxy-Acyl-Coenzyme-A dehydrogenase to 
generate 3-ketoacyl coenzyme A [39]. Lastly, thiolase 
cleaves 3-ketoacyl coenzyme-A to produce a two-carbon 
chain shortened Acyl-Coenzyme A and Acetyl-Coen-
zyme A. Aside from Acetyl-Coenzyme-A that enters 
ketogenesis and the TCA cycle, β-oxidation also gener-
ates nicotinamide adenine dinucleotide (NADH) and fla-
vin adenine dinucleotide (FADH2). Electron Transport 
Chain (ETC) utilizes NADH and FADH2 to produce ATP. 
ATP is also generated by OXPHOS, which links the oxi-
dation of NADH or FADH2 with the phosphorylation of 
ADP to form ATP [94].

Mitochondria produces 90% of cellular ROS [96, 97]. 
Fatty degeneration of the liver reduces the efficiency of 
the respiratory transport chain, generating ROS and ER 
stress (Fig.  4) [98]. Few electrons may escape ETC dur-
ing ATP synthesis and react with oxygen to generate 
ROS. Under physiological conditions, only about 1–2% 
of mitochondrial oxygen loss produces ROS [99]. At this 
stage, electrons react with oxygen to form superoxide, 
which disrupts mitochondria by peroxidizing mtDNA 
[100], phospholipid Acyl chains, and respiratory trans-
port chain enzymes [101]. In these conditions, ROS work 
as signaling molecules, and their production is countered 
by non-enzymatic and enzymatic antioxidant mecha-
nisms. Additionally, increased lipid flow to hepatocytes 
dysregulates the de-phosphorylating activity of mito-
chondrial voltage-dependent anion channels and inner 
membrane permeability, causing mitochondrial depo-
larization, reduced ATP production, and loss of antioxi-
dant activity [102–104], enhanced production of ROS 
[105, 106], and lipid peroxidation products (malondial-
dehyde (MDA) and 4-Hydroxy-2-nonenal (HNE) [107]. 
These processes then subsequently promotes apoptosis, 

inflammation, and liver fibrosis. Saturated FAs disrupt 
the mitochondrial membrane composition, favoring 
NAFLD progression [108]. In NAFLD, sustained FFAs 
flow and chronic acetyl coenzyme-A production can sep-
arate the function of the TCA cycle from mitochondrial 
respiration, producing excessive ROS production [109]. 
Excessive production of ROS causes oxidative damage 
to hepatocytes and exacerbates NAFLD [109, 110]. The 
release of ROS outside of liver cells causes hepatic stellate 
cells (HSCs) activation and extracellular matrix deposi-
tion. The relationship between ROS and NAFLD is much 
more than that. By analysing mitochondrial circular RNA 
(circRNA) expression profiles in fibroblasts with NASH, 
the investigators found that circRNA was down-regu-
lated in a significant proportion. However, the construc-
tion of mitochondria-targeted nanoparticles that target 
circRNA SCAR can alleviate high-fat diet-induced cir-
rhosis and insulin resistance [111]. Excess liver FFA can 
induce the storage of toxic lipid intermediates, including 
ceramides [112]. Research suggests that the use of anti-
oxidants to eliminate ROS from the cytoplasmic lysates 
and mitochondrial matrix can prevent simple steatosis 
and NASH [113]. Distinctive GPX1 deletion in hepato-
cytes protects mice from diet-associated NASH. How-
ever, there are few investigations show conflicting results 
[114–117]. The association of increased ROS production 
with enhanced detoxification and antioxidant activity 
of hepatic steatosis, but not with NASH, indicates that 
in NASH, the ROS overproduction mechanism may be 
inadequate [44]. As a continuous cycle sustained ROS 
release further damages hepatic tissue and dysregulates 
mitochondrial activity, thereby promoting fatty liver con-
version to NASH in which mitochondrial adaptations are 
lost [118]. Indeed, ROS aggregation may activate c-Jun 
amino-terminal kinase (JNK) signaling and block the 
PPARα-FGF21 axis, thereby impeding mitochondrial 
β-oxidation and ketogenesis [119]. Chronic JNK stimula-
tion is linked with apoptosis and chronic hepatic injury 
because it disrupts the function of the proto-oncogene 
non-receptor tyrosine kinase Src in the IMM, which is 
essential for the physiological activity of ETC [120, 121].

Decreases in the free hepatic radical scavengers, 
including mitochondrial MnSOD [45, 122], an increase 
in the oxidized form glutathione (GSH), and a reduction 
of glutathione disulfide (GSSG), also exacerbate oxida-
tive stress. For instance, lower levels of MnSOD were 
similarly observed in humans, and in the liver of high-fat 
diet (HFD) fed rodents [44, 122]. In HFD-fed mice, accu-
mulation of GSSG in the liver sensitizes hepatocytes to 
TNF-α-regulated cytotoxicity [123]. In addition, a study 
revealed that the level of both GSSG/GSH ratio and Glu-
tathione-S-transferase (GST) were increased in the blood 
samples of 21 pediatric NASH children. Glutathione 
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transferase is the second line of defense against oxidative 
stress. Simultaneously, increased electron donors from 
enhanced nutrient supply flood the mitochondria, for 
example, and create a high proton gradient at the IMM. 
In case the ATP synthase response to proton leakage fails 
to increase its activity, mitochondria may produce more 
ROS [124]. Compared to NAFLD and controls, obese 
NASH patients had the most enhanced levels of hydro-
gen peroxide  (H2O2) and 8-OH-deoxyguanosine (8-OH-
DG) in the liver, a marker of oxidative DNA damage. 
Thus, the imbalance between antioxidant defense and 
free radical growth creates a favorable environment for 

oxidative damage, inflammation, and fibrosis in hepato-
cytes, promoting lipid peroxidation of cell membranes, 
apoptosis, and ROS-mediated somatic mutations of 
nuclear and mtDNA.

Mitochondrial quality control
Excess lipids in hepatocytes stimulate the production 
of both mitochondrial ROS production and FA oxida-
tion. In a vicious cycle, impaired mitochondria lose their 
activity, leading to aberrant OXPHOS and increased ROS 
generation. Increased accumulation and uncontrolled 
mitochondrial ROS generation can harm mitochondrial 

Fig. 4 Specific flow diagram of oxidative stress. Specific flow diagram of oxidative stress. The large amount of free fatty acids produced 
by hepatocytes can act on the four oxidative respiratory enzymes of the mitochondria, leading to electron spillage. The spilled electrons combine 
with oxygen to form superoxide and cause the mitochondria to produce large amounts of reactive oxygen species. High levels of reactive oxygen 
species can lead to endoplasmic reticulum stress and reduce cellular beta-oxidation levels through stimulation of nuclear factor E2-related factor 2
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components, including proteins, membranes, and 
mtDNA, and induce mitochondrial quality control 
(MQC) [125–127]. As an initial reaction to stress/ROS, 
MQC includes biogenesis, division, fusion, and mitosis, 
where mitochondria first try to retain their function and 
structure via DNA repair, antioxidants, protein folding, 
and degradation mechanisms. Mitochondrial biosynthe-
sis, fusion, and division compensate for its activity. If the 
first response is ineffective, a more extensive MQC sys-
tem is initiated [128, 129]. Impaired mitochondria can be 
improved by fusing with healthy mitochondria, however, 
severely damaged ones are isolated from healthy mito-
chondria by division and then targeted for degradation 
by mitophagy as described earlier [130, 131]. Endothe-
lial nitric oxide synthase (eNOS) is a master regulator of 
mitochondrial quality control, and mice lacking eNOS 
are more susceptible to liver inflammation and fibrosis. 
A series of studies on liver mitochondria from eNOS 
knockout mice, among others, revealed that eNOS is an 
important regulator of liver mitochondrial content and 
function as well as NASH sensitivity [132]. MQC failure 
leads to loss of mitochondrial function and is among the 
potential causes of NAFLD progression [133].

Therapeutic potential of improved mitochondrial 
function for NAFLD
So far, several therapeutic strategies have emerged in this 
field, but with different goals, as stated below. More evi-
dence is needed to validate these treatments before they 
can enter clinical trials.

Physical exercise
The current study shows that physical exercise stimulates 
the synthesis of mitochondria in the liver and transverse 
muscle [134]. Therefore, it can be hypothesized that 
physical activity can prevent and treat NAFLD by regu-
lating mitochondrial activity and structure [135]. Studies 
have shown that an effective acute physical exercise ses-
sion performed once has an impact on liver metabolism 
and redox status. However, whether there is permeabil-
ity of protons in the mitochondrial membrane, 4th and 
enhanced 3rd state respirations, and stress response 
to mitochondrial permeability transition are affected 
needs further exploration [136, 137]. Prolonged physi-
cal activity for endurance training (or voluntary running) 
improves indices of the liver mitochondrial integrity and 
function and may promote a more stress-resistant or 
disease-resistant typical phenotype of the liver [137]. The 
restoration of mitochondrial function by physical exer-
cise is not only seen in the liver. It was shown that in ova-
riectomised rats, exercise restored mitochondrial oxygen 
consumption and that even after ovariectomy, physical 

exercise compensated for the damage caused by ovariec-
tomy by improving mitochondrial function [138].

The results of existing animal model studies have now 
presented an association between physical exercise and 
functional transformations of mitochondria. For exam-
ple, Otsuka Long-Evans Tokushima Fatty (OLETF) rats 
developed obesity and T2D with multiple phenotypes of 
the metabolic syndrome [139, 140], the liver of OLEFT 
rats after daily voluntary running cycles for 16 or 36 
weeks showed many changes including enhanced mito-
chondrial FA oxidation, oxidase function, and protein 
content. In addition, rat-based studies have also shown 
that levels of proteins associated with hepatic neolipo-
genesis are suppressed after physical exercise [141, 142]. 
Of course, this change parallels several indices of the 
mitochondrial OXPHOS apparatus, namely, increased 
citrate synthase, palmitate oxidation, β-hydroxyacyl-
CoA dehydroacenaphthene, palmitoyl-CoA trans-
ferase 1 activity, cytochrome c, and ETC complex IV. 
Other effects include increased phosphorylated form 
of acetyl-CoA carboxylase (ACC) and decreased ACC, 
FA synthase, and activity of stearoyl-CoA desaturase 
(SCD) (inhibition markers of new hepatic lipogenesis) 
[143], further supporting the idea that physical exercise 
slows the progression of NAFLD by restoring normal 
mitochondrial biogenesis. In addition to this, exercise 
increases the oxidative capacity of liver mitochondria, 
which in turn improves the IR that drives hepatic steato-
sis. The mechanisms include enhanced FA oxidation and 
decreased synthesis of FA-derived ceramides and dia-
cylglycerols associated with hepatic IR [144, 145]. Physi-
cal exercise and endurance training improve biogenesis 
and autophagy of mitochondria [146] and reduce mPTP 
opening in HFD-fed rats [147]. Daily physical activity 
is also linked with increased orthomorphic mitochon-
dria in the liver, epigenetic modification of mtDNA (i.e., 
MT-ND6 hypermethylation), and improved severity of 
NAFLD [58]. In addition, physical exercise improves 
NAFLD by reducing intrahepatic fat content, increasing 
beta-oxidation of fatty acids, inducing hepatoprotective 
autophagy, overexpressing peroxisome proliferator-acti-
vated receptor gamma (PPAR-γ), and attenuating hepat-
ocyte apoptosis and increasing insulin sensitivity. In 
conclusion, physical activity is closely related to the res-
toration of mitochondrial function and is essential for the 
treatment of NAFLD[148]. However, the low adherence 
to patients’ lifestyles has reflected the immediate medi-
cine requirement [149].

Anti‑diabetes drugs
Peroxisome proliferator-activated receptors (PPARs) 
belongs to the superfamily of nuclear receptor that 
binds to a variety of FAs and their derivatives, including 
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binding to several FFAs and their derivatives, and tran-
scriptionally modulates intracellular metabolic pathways 
[150]. Current studies suggest the existence of three 
types of PPARs, which are classified as PPAR-α, PPAR-δ 
(also called PPAR-β), and PPAR-γ based on the ligand 
and PPARs tissue distribution. PPAR-α is expressed in 
the adipose tissue, liver, skeletal muscle, heart, and kid-
ney, and is responsible for the regulation of lipid trans-
port, gluconeogenesis, and the hormone fibroblast 
growth factor (FGF)-21. PPAR-α activation switches liver 
metabolism toward FA transport and β-oxidation [151], 
improve plasma lipids by alleviating TGs and enhancing 
high-density lipoprotein (HDL) cholesterol [152]. In ani-
mal models PPAR-α deficiency showed a parallel trend 
with worsening hepatic steatosis, however, activation of 
the receptor by typical PPAR-α agonists (e.g. fibrates) 
did not show a significant effect on NAFLD, although 
serum TGs were reduced [153]. Liver, skeletal muscle, 
and macrophages expressed PPAR-δ improved insulin 
sensitivity, reduced liver glucose production [154], ele-
vated FA oxidation, and reduced activation of Kupffer 
cells [155]. Liver PPAR-δ carried an anti-inflammatory 
role in macrophages [155]. Activation of PPAR-δ reduces 

steatosis, but overexpression of PPAR-δ may have an 
impact on maintaining glucose levels. For example, high 
doses of PPAR-δ agonists exhibit reduced fasting insu-
lin concentrations in the treatment of Rhesus monkeys 
[156]. Fortunately, Elafibranor shows unique effects as 
a PPARα/δ agonist, not only increases FA β-oxidation 
(PPARα activity) but also improves IR and inflamma-
tion [154]. Therefore, its distinct and efficient effects on 
hepatic mitochondria demand further research. PPAR-γ 
is majorly found in adipose tissues and modulates glu-
cose metabolism, adipogenesis, and adipose tissue differ-
entiation. Thiazolidinediones (TZDs) are PPARγ agonists 
that act as insulin sensitizers and antidiabetic agents, and 
recent studies have found that this family of drugs may 
also have potential against NAFLD (Table 1) [157–159]. 
For example, pioglitazone is effective in improving NASH 
to some extent [160, 161]. In addition to this, studies have 
shown that rosiglitazone also has the ability to improve 
NASH [162–164]. Notably, there may be mitochondrial 
targets of thiazolidinediones (mTOT) in animals that are 
able to act as mitochondrial membrane complexes to 
participate in pyruvate transport. However, in a mouse 
model with NASH, pioglitazone appears to reverse this 

Table 1 Drugs under study or approved for the treatment of MAFLD

Category Name Function References

PPARα/γ/δ agonists Elafibranor Increased fatty acid beta oxidation, 
improves insulin resistance and inflamma-
tion

[154]

Thiazolidinediones (TZD) [157, 159]

Pioglitazone
Rosiglitazone

Improves mitochondrial function, protects 
pancreatic beta cells and increases tissue 
sensitivity to insulin

MSDC-0602K [168]

Biguanide hypoglycemic drugs Dimethylbiguanide
Phenelzine

Targeted mitochondrial pyruvate carrier [224]

Buformin Improved insulin sensitivity of liver 
and peripheral tissues

[225, 226]

GLP-1 receptor agonist Liraglutide
Exenatide
Lisiratide

Enhancement of mitochondrial structure, 
attenuation of ROS production and promo-
tion of autophagy

[227]

Mitochondria-targeted antioxidants Ursodeoxycholic acid (UDCA)
Elamipretide

Decoupling agent Aramchol Affects mitochondrial electron transport [196]

Mito-quinone (Mito-Q)
MitoVitamin-E (MitoVit-E)

Reduction of SCD1 and maintenance of cel-
lular redox homeostasis

[198]

Silymarin Protects cells from peroxide-induced oxida-
tive damage and apoptosis

[228]

Controlled Release Mitochondrial Protonin 
(CRMP)

Regulation of thioredoxin and nitric oxide 
(NO) derivatives to reduce lipid peroxidation

[229, 230]

Intravenous injection of functional mito-
chondria

Mitotherapy Liver mitochondrial uncoupling, improving 
liver fibrosis and liver protein synthesis
Reduced lipid content, improve cellular 
redox balance

[216, 217]
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steatosis in the liver [165, 166]. The specific reason for 
this may be related to the ability of TZDs to inhibit the 
entry of pyruvate into the TCA cycle [167]. In addition, 
a new PPARγ agonist named MSDC-0602  K targets 
mitochondrial pyruvate carriers while minimizing direct 
binding to transcription factors [168]. Of course, fur-
ther proof is required to determine the function of novel 
agents in the treatment of NAFLD, such as selective 
PPARα modulators (fibrates, K-877), and PPARγ agonists 
(INT-131), PPARα/γ (DSP-8658), and PPARδ (HPP-593) 
[151].

The classic T2D treatment drug, dimethyl-biguanide, 
improves insulin sensitivity in the liver and periph-
eral tissues. Loading oleic acid in cultured HepG2 cells 
induced steatosis, and metformin was able to reduce 
steatosis and improve hepatocyte function [169]. Among 
the mechanisms are a decrease in oxidative stress impair-
ment, and modulation of protein levels linked with the 
mitochondrial apoptotic pathway and its inhibition. Met-
formin also stimulates AMPK, which activates mitochon-
drial synthesis and FA β-oxidation, which are important 
for maintaining and promoting mitochondrial function 
[170].

Liraglutide is an acylated glucagon-like peptide-1 
(GLP-1) agonist. In cultured hepatic HepG2 cells, it 
ameliorated NASH by inhibiting nucleotide-binding oli-
gomeric structural domains, NOD-like receptors fam-
ily pyrin domain containing 3 (NLRP3), and focalization 
via mitotic activation [171]. Additionally, liraglutide 
improved NAFLD in HFD-fed mice by increasing mito-
chondrial synthesis, decreasing ROS generation, and ele-
vating autophagy via the SIRT1/SIRT3 pathway [172].

Targeted at SIRT3
Recombinant Sirtuin 3 (SIRT3) is a mitochondrial 
NAD+-dependent deacetylase that is important for regu-
lating the activity of proteins related to cellular metabo-
lism [173]. The SIRT3 gene encodes three isoforms, and 
the two long isoforms in mice are SIRT3 protein (M1 and 
M2) expressed in mitochondria. On contrary, the short-
SIRT3 protein (M3) type is expressed on the cellular 
membrane and lacks N-terminal mitochondrial targeting 
signals. All isomers possess deacetylase activity, although 
they are distributed in different positions [174–176]. 
During fasting, SIRT3 upregulates β-oxidation and ATP 
generation [177], inhibits ROS, and enhances mitochon-
drial biosynthesis by peroxisome proliferators-activated 
receptor γ coactivator lalpha (PGC-1α) activation [178]. 
In contrast, in mice lacking SIRT3, mitochondrial pro-
teins are hyperacetylated and impair mitochondrial func-
tion [179]. SIRT3 is a greatly expressed sirtuin in the liver 
of mice, it improves mitochondrial activity and NAFLD 
by modulating ketogenesis, β-oxidation, mitogenesis, and 

antioxidant response systems [179]. In human and mouse 
NAFLD models, however, SIRT3 is downregulated 
[180]. SIRT3 and PGC-1α can be mutually regulated, 
and both decreased in HFD-fed mice, this downregula-
tion of SIRT3 caused mitochondrial proteins hypera-
cetylation and enhances fat storage and oxidative stress 
in the liver [181]. Exposure of SIRT3-deficient mice to 
an HFD further elevated this acetylated state of hepatic 
proteins, reduced the activity of respiratory complex III 
and IV, and exacerbated oxidative stress [182, 183]. Pal-
mitate-induced lipotoxicity increases ROS production 
and hepatocyte death in SIRT3-deficient primary hepato-
cytes [184]. SIRT3 overexpression altered the inhibition 
of ATP synthesis via palmitate treatment [185]. In addi-
tion, this overexpression also inhibited the production of 
ROS. HFD in SIRT3 deficient mice exacerbates obesity, 
IR, hyperlipidemia, hepatic steatosis, and inflammation, 
however, adenovirus overexpressing SIRT3 rescued this 
phenotype [183]. In addition to its mitochondrial effects, 
hepatic SIRT3 deficiency exacerbated hepatic steatosis in 
HFD mice by upregulating proteins associated with FA 
uptake, including CD36 and VLDL receptors [184].

SIRTs are a potent therapeutic NAFLD target because 
they provide protection to hepatocytes from the effects 
of lipotoxicity [186]. Small molecule sirtuin modulators 
have been developed, but a few compounds targeting 
human SIRTs are still in clinical development. The basic 
problem is to determine the isozyme specificity and site-
specific delivery of SIRTs activators [187, 188]. Notably, 
SIRT4 may be associated with coronary artery disease 
(CAD) in obese patients with NAFLD and normal or 
slightly elevated liver enzymes [189]. Low levels of SIRT4 
produce large amounts of ROS while regulating free fatty 
acids, which, together with the release of free fatty acids 
from adipose tissue breakdown, leads to endothelial cell 
dysfunction, resulting in the development of CAD.

Bile acids affect mitochondrial function
In bile acids (BA), the naturally present “tertiary” dihy-
droxy ursodeoxycholic acid (UDCA), exterior of che-
nodeoxycholic acid (CDCA), has shown multiple liver 
protecting effects and improved liver conditions in indi-
viduals with multiple chronic liver disorders [190]. On 
the basis of previous data, UDCA is also being exam-
ined in NASH individuals. Previously in an open-label 
pilot investigation, UDCA demonstrated some beneficial 
effects on hepatic enzymes and degree of steatosis (at 
biopsy) in NASH patients [191]. At the mitochondrial 
level, lipophilic BAs, such as deoxycholic acid (DCA), 
CDCA, and lithocholic acid (LCA), suppressed the ETC. 
The effect of high concentrations of BA (100 µmol/L) 
on the IMM of intact mitochondria was nonspecific, 
whereas the effect in broken or intact mitochondria 
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propagated with low BA concentrations (10 µmol/L) 
was specific (damage to complex I and III) [192]. In the 
liver condition of biliary stasis with excessive BA reten-
tion, the antioxidant capacity of mitochondria is reduced 
[193]. In addition, cholestasis is associated with impaired 
mitochondrial function. At toxicologically suitable levels, 
most (but not all) BAs changes mitochondrial bioenerget-
ics [194]. UDCA shows antioxidant and anti-inflamma-
tory properties and prevents mitochondrial dysfunction 
in the progression of obesity-related diseases. In addi-
tion to this, it has been found that UDCA and Taurour-
sodeoxycholic Acid (TUDCA) as well as a lipophilic BA 
(CDCA and LCA) in mitochondria isolated from rat liver 
can have some effect on ETC function [195].

Aramchol (Arachidyl-amido cholanoic) also demon-
strated potential effects in humans on hepatic steatosis, 
however, failed to improve glucose metabolism, hepatic 
enzymes, or insulin sensitivity [196, 197]. Aramchol in 
animal models ameliorates fibrosis and steatohepatitis 
by decreasing stearoyl coenzyme-A desaturase 1 (SCD1) 
and elevating fluxes that maintain cellular redox homeo-
stasis through the transsulfur pathway [196]. Mice defi-
cient in SCD1 have reduced lipid synthesis, increased 
mitochondrial FA β-oxidation, and insulin sensitivity in 
different tissues, including hepatic tissues. Therefore, 
SCD1 insufficiency has been associated with the preven-
tion of hepatic steatosis in several nonalcoholic fatty liver 
mice models, such as high carbohydrate and HFD mice.

Mitochondria‑targeted antioxidants
Several antioxidants targeting mitochondria exist, but 
their specific role in the clinical arena needs to be fur-
ther explored. Mito-quinone (Mito-Q) and MitoVitamin 
E (MitoVit-E) are potential new antioxidant classes. Both 
molecules contain covalently linked lipophilic triphe-
nylphosphine (TPP) cation molecules, which allow them 
to pass across and accumulate within the mitochondria 
[198–200]. Mito-Q ameliorated the metabolic syndrome 
in 8 weeks of HFD rats [201] and revealed enhanced 
hepatic mitochondrial cardiolipin levels and central 
phospholipid synthase expression [202]. Mito-Q can 
prevent increased cholesterol, TG, glucose, and mtDNA 
damage by oxidation, and hepatic steatosis in atheroscle-
rosis and metabolic syndrome experimental models [203, 
204]. Low Mito-Q and MitoVit-E doses provide protec-
tion to cells against peroxide-stimulated apoptosis and 
oxidative damage, in contrast to low concentrations of 
non-targeted antioxidants such as ubiquinone and Vit-E 
[205, 206]. The protective efficiency of MitoVit-E and 
Mito-Q may be regulated by the inactivation of caspase-3 
and cytochrome-c release. Additionally, they alleviate 
ROS-triggered transferrin receptor-induced iron uptake, 
lipid peroxidation and peroxidation-induced complex 

I inhibition, and aconitase in mitochondria [206]. A 
phase II investigation in chronic hepatitis-C individu-
als revealed that Mito-Q decreased circulating levels of 
transaminase; indicating a reduction in hepatic inflam-
mation and necrosis in these individuals [207].

Silymarin is the main compound extracted from sily-
marin (Silybum marianum). Silymarin has few hepato-
protective activities [208] and may improve IR, hepatic 
injury, and hepatic enzymes in NAFLD individuals [209, 
210]. Silymarin phospholipid complexes comprising 
vit-E alleviated hepatic steatosis in NAFLD patients and 
markedly reduced hepatic fat infiltration in HFD rats 
[211]. This phenomenon may be achieved by modulating 
thioredoxin and derivatives of nitric oxide (NO), as well 
as by substantially reducing lipid peroxidation. Silymarin 
also improved mitochondrial alterations in the respira-
tory complex and protected subunit CII-30 of complex II 
[212].

Inhibiting the production of mitochondrial ROS by 
uncoupling is an effective strategy and an antioxidant 
approach. 2,4-dinitrophenol (DNP) is an artificial uncou-
pling agent with a potential for toxicity [213], however, 
further verification is needed regarding whether it can 
alleviate NAFLD [214]. Controlled release mitochondrial 
plasmin (CRMP) is an oral DNP formulation that induces 
a mild uncoupling effect in liver mitochondria. In a rat 
model, it can alleviate increased TG, IR, hepatic steatosis, 
and T2D [215]. In addition, CRMP normalized plasma 
transaminase levels, alleviated liver fibrosis, and liver 
protein synthesis, and showed no toxicity at a systemic 
level in a methionine/choline-deficient NASH rat model 
[215].

Mitotherapy
Dispersion therapy is a procedure in which functional 
mitochondria from exogenous hepatocytes are admin-
istered intravenously. This process may be successful in 
ameliorating HFD-induced hepatic steatosis. Among the 
specific mechanisms include the reduction of lipid mol-
ecules and improvement of redox homeostasis in cells. 
With this approach, exogenous mitochondria can be 
labeled with a green fluorescent protein and reacquired 
in the lung, brain, liver, muscle, and kidney of mice [216, 
217]. This approach reduces fat deposition, prevents cel-
lular damage, and increases energy production while 
restoring liver cell activity. However, the mechanism by 
which intact mitochondria infiltrate various cells and 
resume cellular metabolic activities is still undetermined 
[218]. Currently, related studies are focused on mito-
chondrial metabolism, for instance, which metabolic 
and proteomic variations are present in mitochondria 
extracted from normal liver cells compared to those of 
non-tumor origin.
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Conclusions and future perspectives
For the moment, there is some literature on the rela-
tionship between NAFLD and mitochondrial function. 
However, according to the search results, this literature is 
more about the link between NAFLD and a certain func-
tion of mitochondria, such as aspects of mitophagy [12, 
80], oxidative stress [118], etc. Or a single presentation 
on how to treat NAFLD through mitochondria, such as 
mitochondrial transplants [32], herbal medicine [118], 
etc. We found no literature that integrates the above 
and the focus of this article is on the structure and func-
tion of mitochondria and the various current therapeu-
tic modalities regarding mitochondria, respectively, to 
give the reader a better understanding of the close link 
between mitochondria and NAFLD. Metabolic dysfunc-
tion-related fatty liver or NAFL diseases are now among 
the most widespread chronic liver diseases globally, with 
MAFLD expected to overtake viral liver disease and put 
people at increased risk of terminal-stage liver disease, 
HCC, and CVD. Environment, genetics, and metabolic 
dysfunctions may be the cause of the pathophysiologi-
cal development of NAFLD, such as alterations in liver 
lipid constituents, cellular impairment, and tumorigen-
esis [219]. Mitochondrial aberration and oxidative stress 
are hallmarks of NAFLD. Although animal models and 
human studies are contradictory, there is growing evi-
dence that mitochondrial cycling can fall into imbalance 
during NAFLD. In terms of the mechanisms responsi-
ble for the regulation of mitochondrial morphology and 
dimensions, recent investigations suggest that mito-
chondrial metabolism alterations may begin in the ini-
tial NAFLD stages [220], speculating whether it could be 
considered a mitochondrial disorder. In addition, mito-
chondrial abnormalities persist during the disease course 
and may contribute to the advancement of MAFLD to 
HCC and NASH [221]. Therefore, it is crucial to prevent 
and treat NAFLD at any possible stage.

Some new potent drugs and molecular targets have 
been determined for improving treatment outcomes. 
However, recent clinical trial results suggest that under-
standing the pathophysiology of NASH is still limited and 
is far from achieving an optimal therapeutic strategy. In 
addition to affecting the genetic, metabolic, or environ-
mental risk factors and stressors, therapeutic approaches 
may require several fundamentally important subcellular 
organelles as targets [222]. Shortly, one might consider 
using combination therapy. To date, no drug treatment 
has been approved against NAFLD, however, lifestyle 
alterations, physical exercise, and weight loss can regu-
late oxidative stress and the life cycle of mitochondria. 
The establishment of mitochondria-based therapies, some 
of which have been examined in humans (e.g., vit-E), has 
provided efficient benefits for NASH and has emerged as 

an anti-cancer adjuvant [223]. However, they depict only 
a small fragment of mitochondrial metabolism that may 
be regulated. Thus, a deep knowledge of the molecular 
structure of mitochondrial plasticity remains in its infancy, 
but it may furnish new doors for future physiological 
compound development having the potential for clinical 
NAFLD treatment. Ideally, factors that alter disease could 
simultaneously act on mitochondrial activity and energy 
production, rather than only on intracellular lipid metabo-
lism regulators. Overall, we still need to be equipped with 
sufficient time and power to determine the prolonged effi-
cacy and safety of each promising treatment option.
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lator 1
Nix  Nip3-like protein X
NLRP3  NOD-like receptors family pyrin domain containing 3
NO  Nitric oxide
NRF2  Nuclear factor E2-related factor 2
OLETF  Otsuka Long-Evans Tokushima Fatty
OMM  Outer mitochondrial membrane
OPA1  Optic atrophy 1
OXPHOS  Oxidative phosphorylation
PARL  Progerin-associated rhodopsin-like
PD  Parkinson’s disease
PINK  PTEN-induced putative kinase 1
PKA  Protein kinase A
PNPLA3  Patatin-like phospholipase domain-containing 3
PPAR-γ  Peroxisome proliferator-activated receptor gamma
PS1  Presenilin-1
ROS  Reactive oxygen species
S1R  Sigma-1 receptor
S637  Serine 637
SCD  Stearoyl-CoA desaturase
SIRT3  Recombinant Sirtuin 3
SREBP1c  Sterol regulatory element binding protein 1c
T2D  Type 2 diabetes
TC  Total cholesterol
TG  Triglycerides
TGS  Triglycerides
TM6SF2  Transmembrane 6 superfamily member 2
TNF-α  Tumor necrosis factor-α
TPP  Triphenylphosphine
TUDCA  Tauroursodeoxycholic acid
TZDs  Thiazolidinediones
UDCA  Ursodeoxycholic acid
VLDL  Very low density lipoproteins
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