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Intracellular mGluR5 plays a critical role in
neuropathic pain
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Spinal mGluR5 is a key mediator of neuroplasticity underlying persistent pain. Although brain

mGluR5 is localized on cell surface and intracellular membranes, neither the presence nor

physiological role of spinal intracellular mGluR5 is established. Here we show that in spinal

dorsal horn neurons 480% of mGluR5 is intracellular, of which B60% is located on nuclear

membranes, where activation leads to sustained Ca2þ responses. Nerve injury inducing

nociceptive hypersensitivity also increases the expression of nuclear mGluR5 and receptor-

mediated phosphorylated-ERK1/2, Arc/Arg3.1 and c-fos. Spinal blockade of intracellular

mGluR5 reduces neuropathic pain behaviours and signalling molecules, whereas blockade of

cell-surface mGluR5 has little effect. Decreasing intracellular glutamate via blocking EAAT-3,

mimics the effects of intracellular mGluR5 antagonism. These findings show a direct link

between an intracellular GPCR and behavioural expression in vivo. Blockade of intracellular

mGluR5 represents a new strategy for the development of effective therapies for

persistent pain.
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M
any G-protein-coupled receptors (GPCRs) are not only
expressed at the cell surface but also on various
intracellular membranes including the nucleus1–12.

Although intracellular GPCRs have been shown to play critical
roles in gene transcription, ionic homeostasis, cell proliferation,
neural circuit remodelling and synaptic plasticity2,5–7,12, the
physiological relevance of intracellular receptors in intact
organisms remains unknown1–12. Metabotropic glutamate 5
receptor (mGluR5) is a GPCR associated with both cell surface
and intracellular membranes in striatum, hippocampus and visual
cortex, where it couples with Gq/11/PLC/IP3 to release cytoplasmic
and nucleoplasmic calcium (Ca2þ )7–11. Intracellular mGluR5 is
activated following glutamate transport into the cell via excitatory
amino-acid transporters (EAATs), or cysteine–glutamate
exchangers (xCT), located on cell surface and endoplasmic
reticular (ER) membranes8. Selective activation of intracellular
versus cell-surface mGluR5 triggers unique Ca2þ patterns and
downstream signalling cascades associated with each receptor
pool7–10,12.

mGluR5 is abundantly expressed in neurons of the spinal cord
dorsal horn (SCDH)13,14, which serves as the first CNS relay in
the transmission of nociceptive information15. SCDH mGluR5
plays a key role in glutamate-induced plasticity of pain-related
processes, including nociceptive hypersensitivity after nerve
injury16–18. Specifically, spinal mGluR5 activation induces
nociception in normal animals19,20, while its blockade produces
analgesia16–18. Despite spinal mGluR5’s key role in neuropathic
pain16–18, it remains unknown whether its effects are due to cell
surface or intracellular signalling.

Here we show that mGluR5 and associated effector molecules
are increased on SCDH nuclear membranes following spared-
nerve injury (SNI), a model of neuropathic pain21. Nuclear
receptor-associated generation of downstream messengers are
also increased. Blockade of spinal intracellular mGluR5 inhibits
pain behaviours and mGluR5-linked signalling molecules in
nerve-injured rats, whereas blockade of cell surface mGluR5 has
little effect. Finally, inhibition of spinal EAAT3 mimics the effects
of intracellular mGluR5 antagonism by preventing intracellular
uptake of ligand. Our results demonstrate a selective involvement
of spinal intracellular mGluR5 in pain processing and provide
in vivo evidence for a pathophysiological function of a GPCR
associated with intracellular membranes.

Results
SCDH nuclear mGluR5 activates nuclear Ca2þ responses. We
used immunocytochemistry in neonatal SCDH cultures, as well as
sections and cellular fractions of adult lumbar (L4–L6) tissue to
assess the subcellular distribution of mGluR5. We found SCDH
cultures expressed mGluR5 on the cell surface, dendrites and on
intracellular membranes including the nucleus where mGluR5
colocalized with lamin-B2, a nuclear envelope marker (Fig. 1a;
upper panels). Detectable mGluR5 staining was seen only on
neurons, identified with the neuronal nuclear antigen, NeuN
(Fig. 1a; lower panels). Depending on the tissue preparation,
mGluR5-positive neurons constituted B30% of the cells plated.
Electron microscopy was used to assess mGluR5 subcellular
localization in adult rat SCDH with pre-embedding, silver-
intensified immunogold labelling. mGluR5 was detected on the
plasma membrane and intracellularly especially on nuclear
membranes (Fig. 1b,c). Nuclear mGluR5 was only detected on
SCDH neurons; glial and endothelial cell nuclei were not labelled
(Fig. 1b; Supplementary Fig. 1a,b). No mGluR5 labelling occurred
in the absence of primary antibody (Supplementary Fig. 1c),
and mGluR5 labelling was prevented by preincubation of
primary antibody with a specific mGluR5 blocking peptide

(Supplementary Fig. 1d). Subfractionation studies showed
mGluR5 in both nuclear and plasma membrane fractions,
indicated by membrane-specific markers, lamin-B2 and pan-
cadherin (Pan-Cad), respectively (Fig. 1d). The neuronal sodium-
dependent EAAT3 was also found on nuclear and plasma
membranes (Fig. 1d). The ratio of nuclear to plasma membrane
protein was higher for mGluR5 than for EAAT3 (Fig. 1e). Thus,
mGluR5 is highly expressed on intracellular and especially
nuclear membranes of SCDH neurons.

Striatal and hippocampal intracellular mGluR5 can be
activated by agonist uptake via glutamate transporters/
exchangers7–10. Alternatively, intracellular receptors can be
modulated by permeable ligands. Permeability can be gauged
using published lipophilicity values (LogP) where values 42 are
considered membrane permeable22. LogP values indicate that
glutamate (� 2.7) and the Group 1, mGluR agonists, quisqualate
(LogP, � 3.9) and DHPG (� 2.4) are membrane impermeable, as
is the Group 1 antagonist, LY393053 (0.6). In contrast, the
mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP;
3.3) is membrane permeable7–10. To directly test whether
sodium- or chloride-dependent processes were involved in
glutamate, quisqualate, DHPG or LY393053 uptake in SCDH
neurons, cultures were treated with radiolabelled ligand in the
presence and absence of transport or exchange inhibitors.
Sodium-dependent transporter activity accounted for B80% of
glutamate, but only B25% of quisqualate uptake, whereas
chloride-dependent uptake, likely via xCT transport, blocked
only B20% of glutamate uptake, but B50% of quisqualate
uptake (Fig. 1f). Sodium- and chloride-free conditions reduced
quisqualate and glutamate uptake by 480% (Fig. 1f). DHPG and
LY393053 did not compete with glutamate uptake, confirming
their designation as impermeable, non-transported ligands
(Fig. 1f). Two potent inhibitors of all EAAT subtypes, threo-
b-benzyloxyaspartate (TBOA) and threo-b-OH-aspartic acid
(THA) blocked about 60% of glutamate uptake, whereas
L-cystine, a blocker of the xCT exchanger, had no significant
effect (Fig. 1f). Thus, sodium-dependent, EAAT-mediated activity
primarily accounts for intracellular glutamate uptake.

Since mGluR5 couples to Gq/11 and PLC to generate
IP3-mediated release of Ca2þ , we used Ca2þ imaging to test
whether activation of intracellular SCDH mGluR5 is functionally
active. SCDH cultures grown on glass coverslips were loaded
with the Ca2þ indicator, Oregon Green BAPTA-AM, and
subsequently treated with agonists and/or antagonists with
variable intracellular access. Bath application of the impermeable,
non-transported DHPG (100 mM) led to a rapid, transient Ca2þ

rise (Fig. 1g). In contrast, the impermeable, transported agonist,
quisqualate (10 mM), produced a long, sustained rise in Ca2þ in
both the cytoplasm and the nucleus, which was terminated by
addition of the permeable mGluR5 antagonist, MPEP (10 mM;
Fig. 1h). Although the impermeable antagonist LY393053 blocked
DHPG-mediated Ca2þ responses (Fig. 1i), it did not affect those
induced by quisqualate (Fig. 1j). These data indicate that
functional activity is generated by two separate pools of
mGluR5—on the cell surface and on intracellular membranes.

Although surface receptors always contribute to the time
course of the Ca2þ response, their appearance of doing so varies
depending on the scan speed at which images are collected.
Because SCDH mGluR5-positive neurons are not as abundant as
in striatal or hippocampal cultures, a scan speed of 5.36 s per scan
was used here to capture a larger area with more neurons. Thus,
compiled data in Fig. 1k reflect group differences in which the
contribution of the surface receptor is obscured due to the slow
scan speed.

Results from multiple experiments assessing drug-induced
changes of both the amplitude of the initial Ca2þ peak and the

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10604

2 NATURE COMMUNICATIONS | 7:10604 | DOI: 10.1038/ncomms10604 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


magnitude of the overall Ca2þ response revealed that DHPG
peak amplitudes (for example, Fig. 1g) were 61.2±3.56% of the
LY393053þ quisqualate peak amplitudes (Fig. 1j) and that at
most the DHPG response constituted B10% (9.79±2.27%) of
the overall quisqualate response (B4 min). Thus, during periods
of high activity and/or sustained presynaptic glutamate release,
intracellular uptake of glutamate can lead to a Ca2þ response
that is not only spatially and temporally unique, but also
approximately nine times larger than a surface response.

Since Oregon Green Bapta AM is a global Ca2þ indicator dye,
the specific contribution of nuclear mGluR5 to intracellular Ca2þ

changes is equivocal. To address this we performed two
experiments. First, SCDH neurons were transiently transfected
with a genetically encoded Ca2þ indicator (pCMV-NL-S-R-
GECO) that is restricted to the cell nucleus (Fig. 2a). Once correct
targeting to the nucleus was verified, receptor-mediated
Ca2þ responses were determined as before. Consistent with
the previous data, bath application of the impermeable,
non-transported agonist, DHPG, did not induce changes in
the nuclear-restricted Ca2þ indicator, whereas quisqualate did
(Fig. 2b). Pretreatment with the cell permeant mGluR5 antagonist
fenobam blocked all quisqualate responses (Fig. 2c,d). To more

** **

**

KRS Free
DHPG LY53 TBOA THA L-Cys Na+, Cl–

0

20

40

60

80

100

120 [3H] Glu [3H] Quis

*

* *

**

%
 U

pt
ak

e/
co

nt
ro

l

KRS Cl– free

0.0

0.2

0.4

0.6

0.8

1.0

***

***

F
ol

d 
(N

u/
P

M
)

mGluR5 EAAT3
0

50

100

150 Cyto Nu

* *

* * * *

DHPG Quis LY/DHPG LY/Quis

ΔF
/F

0 
(%

)

ΔF
/F

0 
(%

)
ΔF

/F
0 

(%
)

ΔF
/F

0 
(%

)

ΔF
/F

0 
(%

)
nN

oN

oN

ON

IN

ER

b c

d
Nu

mGluR5

EAAT3

LB2

Pan-Cad

e

mGluR5 NeuN

mGluR5 Lamin B2

MPEP

Quis

s0 200 400
0

50

100

150

s0 200 400
0

50

100

150 DHPG
Cyto Nu

LY393053
DHPG

0

50

100

150

s0 200 400
0

50

100

150
LY393053

Quis

k

s0 200 400

 i

PM

Na+ free

g h

fa

j

Figure 1 | Functional nuclear mGluR5 in SCDH neurons. Fluorescence-microscopy showing (a) mGluR5 (red), Lamin-B2 (green-upper) or NeuN-IR

(green-lower) in cultured rat SCDH neurons. Scale bar, 10mm. (b,c) Electron-micrographs showing mGluR5-immunogold in L4–L6 SCDH. Scale bar,

(b) 2mm, (c) 0.5mm. mGluR5 is detected in cytoplasm and neuronal nuclei (nN), and on nuclear (white arrows) and plasma (black arrows) membranes,

but not glial nuclei (oN, oligodendrocyte nucleus) (b). mGluR5 is on inner (IN), and outer (ON), nuclear membranes (black arrows) and on endoplasmic

reticular (ER) membranes (c). (d) Western blots of mGluR5, EAAT3, Lamin-B2 (LB2), and Pan-cadherin (Pan-Cad) in nuclear (Nu), or plasma membrane

(PM) fractions of rat SCDH (L4–L6), quantified in e. Data shown represent the mean of three experiments, Student’s t-test ***Po0.001. (f) [3H]-glutamate

(Glu) or [3H]-Quis uptake in cultured rat SCDH neurons with buffer modified as indicated. DHPG (100mM), LY393053 (LY53: 20mM), or L-cystine

(400mM) did not block [3H]-Glu uptake, whereas TBOA or THA (100mM) inhibited it B60%. Data shown represent the mean of three experiments done

in triplicate, Student’s t-test *Po0.05, **Po0.01 compared to KRS. (g–j) Representative traces of cytoplasmic (cyto, blue) or nuclear (red) Ca2þ responses

to DHPG (100mM g,i), quisqualate (Quis, 10mM, h,j), MPEP (10mM, h) and/or LY393053 (20 mM, i,j) in cultured rat SCDH neurons. (k) Compiled data

from maximum response (DF/Fo, %) from N¼ 12 identified neurons (g); N¼ 32 identified neurons (h); N¼ 25 identified neurons (i); N¼ 23 identified

neurons (j); *Po0.05 compared with baseline. All values in figure are expressed as mean þ /� s.e.m. KRS, Krebs–Ringer solution.
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directly assess nuclear mGluR5 function, isolated nuclei were
prepared from P30 L4–6 SCDH. Nuclei were resuspended in
intracellular medium, and Oregon Green BAPTA-AM was
allowed to accumulate while nuclei were attaching to coated
coverslips (Fig. 2e). Although heterogeneous, B5 to 10% of
isolated nuclei were mGluR5 positive (Fig. 2e). Quisqualate, but
not DHPG, induced a sustained Ca2þ rise (Fig. 2f) that could be
blocked by fenobam (Fig. 2g,h). To confirm the presence of
mGluR5 on responding nuclei, coverslips were fixed and
processed for mGluR5 immunoreactivity combined with lamin
B2 staining and then field-relocated immediately following
imaging (Fig. 2e). Responsive nuclei were always mGluR5
positive, although not all mGluR5-positive nuclei responded,
possibly due to damage in the course of nuclear preparation.
Taken together, these data unequivocally establish that nuclear
mGluR5 is functionally active.

To test whether activated intracellular SCDH mGluR5 coupled
to PLC to generate IP3-mediated release of Ca2þ , we used a
fluorescence-based Ca2þ imaging plate-reader assay. Cells were
preincubated with various inhibitors (10 mM MPEP, 10 mM
fenobam, 5 mM U73122 (a PLC inhibitor), 5 mM U73343 (an
inactive analog of U73122) or 100 mM 2-APB (an IP3R inhibitor)
and loaded with Fura-2 AM before Ca2þ flux measurement.
Results showed that besides being blocked by MPEP and
fenobam, mGluR5-mediated Ca2þ responses can also be blocked
by the PLC inhibitor, U73122 and the IP3R inhibitor 2-APB, but
not the PLC inactive analogue, U73343 (Fig. 2i). These data show
that 490% of SCDH mGluR5 couples to PLC to induce release of
Ca2þ from intracellular stores associated with IP3Rs. Collectively,
these data show that intracellular, including nuclear, SCDH
mGluR5 can function independently of signals originating at the
cell surface and thus plays a dynamic role in mobilizing Ca2þ in
a specific, localized manner.

Nerve injury increases nuclear mGluR5 in SCDH neurons.
To test whether intracellular mGluR5 contributes to the known
role of this receptor in neuropathic pain we used the rodent
SNI model which mimics various aspects of human neuropathic
pain, inducing spontaneous pain, allodynia and hyperalgesia
(Supplementary Fig. 2a–d)21. Ultrastructural analysis showed that
the percentage of mGluR5 associated with the nuclear membrane
increased in SCDH neurons from SNI versus control rats
(Fig. 3a–c). Conversely, plasma membrane and intracellular
mGluR5 decreased in SNI rats, whereas the percentage of
intranuclear mGluR5 remained unchanged (Fig. 3a–c). Western
blotting of subcellular fractions from L4–L6 SCDH supported the
electron microscopy data showing increased levels of mGluR5 in
SNI versus sham nuclear fractions (Fig. 3d,e). In contrast, there
was no change in EAAT3 levels across membrane fractions or
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Figure 2 | mGluR5-mediated nuclear Ca2þ changes in SCDH neurons or

isolated nuclei. Cultured rat SCDH neurons were transfected with the

nuclear-targeted red fluorescent, genetically encoded Ca2þ indicator,

CMV-NL-S-R-GECO, on DIV6 and then immunostained or imaged in real

time on DIV9. (a) Images of SCDH neurons transfected with CMV-NL-S-R-

GECO (red) expressed in neuronal cells (as indicated by MAP2 staining;

green in the upper panel) and colocalized with the neuronal nuclear marker,

NeuN (green in the lower panel) Scale bar, 10mm. (b) Representative trace

of nuclear Ca2þ responses to agonist stimulation. DHPG application

(100mM) did not induce Ca2þ changes whereas quisqualate (Quis, 10mM)

application resulted in sustained nuclear Ca2þ rises. (c) Fenobam (10 mM)

blocked Quis-induced nuclear Ca2þ responses. (d) Compiled data from

peak DF/Fo (%) with N¼ 22 identified nuclei (b) and N¼ 50 nuclei

(c) Student’s t-test, *Po0.05, compared with baseline; wPo0.05, Quis

alone compared to Quisþ fenobam. (e) Image of purified nucleus from

L4–L6 SCDH stained with lamin B2 (red) and mGluR5 (green). Scale bar,

5 mm. (f) Isolated SCDH nuclei were loaded with Oregon Green BAPTA and

imaged to acquire baseline Ca2þ changes before agonist application in the

presence of AMPA and mGluR1 receptor antagonists. Representative trace

of nuclear Ca2þ responses to agonist stimulation. DHPG application

(100mM) did not induce Ca2þ changes, while quisqualate (Quis, 10 mM)

application resulted in sustained nuclear Ca2þ rises. (g) Fenobam (10mM)

blocked the nuclear Ca2þ response induced by Quis. (h) Compiled data

from peak DF/Fo (%) with N¼ 5 identified nuclei (f) and N¼ 15 identified

nuclei (g) Student’s t-test, *Po0.05, compared with baseline wPo0.05,

Quis alone compared to Quisþ fenobam. (i) SCDH cultures (35,000 cells

per well) were preincubated with indicated inhibitors (10 mM MPEP, 10 mM

Fenobam, 5 mM U73122, 5 mM U73343, 100mM 2-APB), loaded with Fura-2

AM before EC80 quisqualate (5.2 mM) addition and Ca2þ flux

measurement. Three separate experiments were done in triplicate,

Student’s t-test, *Po0.05, compared to quisqualate alone. All values in

figure are expressed as mean±s.e.m.
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treatment conditions (Fig. 3d,e). Although reactive astrogliosis is
observed after SNI, there was very little colocalization of mGluR5
and the astrocyte marker GFAP in SCDH of either sham or SNI
rats (Supplementary Fig. 2e).

Consistent with the above results, increased numbers of
mGluR5 binding sites were found in SNI, but not sham SCDH

nuclear membranes (Bmax of 2.87±0.15 pmol mg� 1 versus
1.96±0.21 pmol mg� 1; Fig. 3f). However, glutamate binding
assays showed no significant differences in receptor affinity for
DHPG or quisqualate using plasma membrane or nuclear
membrane fractions derived from either sham or SNI rat tissues
(Fig. 3g,h). These results suggest that nuclear mGluR5 has the
same affinity for binding ligands as plasma membrane receptors.
One caveat to these assays is that DHPG and quisqualate only
displaced B50% of glutamate. This is surprising since the
conditions used here were identical to protocols used previously
to determine half-maximal inhibitory concentrations (IC50s)
for DHPG and quisqualate in hippocampal and striatal
preparations7–10. In those experiments radiolabelled glutamate
displacement was between 75 and 80%, and the derived IC50

values were essentially the same for DHPG and quisqualate using
nuclear and plasma membrane (PM) fractions in striatal and
hippocampal preparations7,9, as shown here for SCDH. Although
we have blocked other glutamate binding sites (NMDA, AMPA,
kainate and mGluRs), there may be other sites we have not
accounted for. Nonetheless, the derived values are similar to those
published by ourselves7,9 and others23. Taken together, these
results demonstrate increased levels of nuclear mGluR5 in SCDH
neurons of neuropathic animals, implicating a pathophysiological
role of intracellular mGluR5 in neuropathic pain.

Nerve injury increases nuclear signalling. mGluR5 activation
leads to phosphorylation of ERK1/2 in SCDH20,24 and increased
activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) in
striatum12. However, it is unknown if these effectors are activated
by intracellular mGluR5 in SCDH. Using subcellular
fractionation followed by western blotting of tissue derived
from L4–L6 SCDH, we found increases in phosphorylated-ERK1
(pERK1, 4.4-fold increase) and pERK2 (8.7-fold increase) in
nuclear fractions from SNI rats as compared with sham rats after
normalization with total ERK1/2 (Fig. 4a,b). Both pERK1 and 2
were very low in cytoplasmic fractions, and along with total
ERK1/2 showed no difference between groups (Fig. 4a). Arc/
Arg3.1 levels in the SCDH nuclear fractions of SNI rats were also
increased compared with sham rats (6.5-fold increase; Fig. 4a,b).
These results indicate that there is a concomitant increase in
mGluR5 (Fig. 3a,b) and enhanced activation of downstream
signalling proteins, pERK1, pERK2 and Arc/Arg3.1 in the nuclear
compartment in SCDH of SNI rats versus shams (Fig. 4a,b).
Importantly, these effects were mGluR5-specific since SNI-
induced mGluR5 levels, pERK1, pERK2 and Arc were all
significantly reduced by fenobam (Fig. 4a,b).

In addition to triggering pain behaviours25,26 (Supplementary
Fig. 2b,c), spinal administration of glutamate induces a mGluR5-
dependent expression of transcription factors such as c-fos in
SCDH neurons26,27. However, the relative contributions of
intracellular versus plasma membrane mGluR5 to spinal
transcription factor expression are unknown. Here we found
that Fos and Jun were both increased in the SCDH ipsilateral
(Fig. 4c–f) and contralateral (Supplementary Fig. 3a–d) to the
nerve surgery 45 min after intrathecal injection of 400mg
glutamate in sham and SNI rats. Importantly, both gene
products were significantly higher in the ipsilateral SCDH of
SNI versus sham animals (Fig. 4c–f), paralleling increased
glutamate-induced pain behaviours in SNI rats (Supplementary
Fig. 2c,d). Taken together, increases in both glutamate-induced
pain behaviours and transcription factor expression in SNI rats
suggest that enhanced responses to spinal glutamate contributes
to neuropathic pain. We next ask whether increased levels of
intracellular mGluR5 observed in neuropathic animals are
responsible for these effects.
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nuclear (Lamin-B2 (LB2)) but not PM (Pan-cadherin (Pan-Cad)) or Cyt

(lactate dehydrogenase (LDH) fractions from SCDH of SNI rats, quantified

in (e). (e) Data shown represent the mean of three experiments, Student’s

t-test Po0.05. (f) There are significantly more 3H-glutamate sites in SNI

nuclear preparations (dashed line) with respect to sham nuclei (solid line)

(SNI Bmax¼ 2.87±0.15 pmol mg� 1, sham Bmax¼ 1.96±0.21 pmol mg� 1,

*Po0.05) (g,h) percentage binding and IC50 values of Quis (g) or DHPG

(h) on nuclear or PM are comparable in sham and SNI animals. Data shown

represent the mean of three experiments, comparisons with Student’s

t-test. All values in figure are expressed as mean±s.e.m.
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Intracellular mGluR5 blockade reduces pain and c-fos. To
investigate the role of intracellular versus cell surface mGluR5 in
neuropathic pain, we tested the in vivo effects of permeable and
impermeable antagonists on pain behaviours induced by 400 mg
of spinal glutamate in sham and SNI rats. Spinal pretreatment
with the permeable mGluR5 antagonist fenobam (1–100 nmol)
produced a highly significant, dose-dependent reduction of
glutamate-induced pain behaviours in SNI rats, whereas
pretreatment with the impermeable antagonist LY393053
(1–1,000 nmol; Fig. 5a,b) was less effective. As LY393053
antagonizes both mGluR1 and mGluR5, we also tested a 50:50
mixture of CPCCOEt, a permeable mGluR1 antagonist, with
fenobam. Contrary to canonical models, fenobam alone (B66%),
or combined with CPCCOEt (B70%), produced significantly
greater analgesia than LY393053 (B23%) in SNI rats (Fig. 5c).

To mimic physiological conditions (with no exogenous
glutamate added), mechanical sensitivity was assessed in both
sham and SNI rats by determining paw withdrawal thresholds
(PWTs) to plantar hind paw stimulation with von Frey filaments.
SNI rats exhibited allodynia (Fig. 5d), as their PWTs were lower
than shams (Fig. 5e). PWTs were evaluated in SNI rats following
spinal injection of LY393053, fenobam or vehicle. Treatment with
either vehicle or LY393053 did not elevate PWTs in SNI
rats (Fig. 5d), whereas fenobam significantly elevated PWTs
(reflecting relief of allodynia) for one hour post injection
(Fig. 5d). As expected, neither antagonist had a significant effect
on PWTs in sham animals (Fig. 5e).

Spontaneous pain was also assessed using a conditioned place
preference (CPP) paradigm in which a drug or its vehicle were
first paired (in counterbalanced order) with opposite sides of a
conditioning chamber with differing visual cues. After four daily
pairing sessions (two each with drug or vehicle), the time spent in
either chamber, or a neutral connecting compartment, was
measured for both naive and SNI rats. We first showed that both
groups of rats exhibited a preference for a compartment

previously paired with morphine (10 mg kg� 1; Supplementary
Fig. 4a), consistent with its well-established analgesic and
rewarding effects28. Further CPP experiments demonstrated
that fenobam produced a place preference effect (CPP Index
significantly above 50%) in SNI, but not in naive, rats (Fig. 5f).
However, no such place preference was observed in response to
spinal treatment with the impermeable mGluR5 antagonist
LY393053 (Fig. 5f), establishing that analgesia was produced by
fenobam only. Importantly, SNI rats treated with either fenobam
or LY393053 showed no baseline place preference (BPP) before
drug pairings (Supplementary Fig. 4b). Collectively, multiple pain
behaviour experiments show that intracellular mGluR5 is critical
for expression of spontaneous pain and mechanical allodynia in
neuropathic rats. These results show for the first time that an
intracellular GPCR modulates a behavioural phenotype, and that
intracellular availability of a given ligand is an important
determinant of its therapeutic efficacy.

To test whether blocking cell surface or intracellular mGluR5
would affect downstream signalling pathways associated with
pain behaviours, rats were pretreated with either LY393053 or
fenobam before measuring spinal glutamate-induced Fos and Jun
expression. Consistent with the pain behaviour results, LY393053
did not attenuate spinal glutamate-induced Fos in ipsilateral
dorsal horn of SNI rats, whereas pretreatment with fenobam did
(Fig. 5g,h). However, neither LY393053 nor fenobam reduced Fos
in the ipsilateral dorsal horn of sham rats (Fig. 5g,h), or the
contralateral dorsal horn of sham or SNI rats (Supplementary
Fig. 4c,d). Both LY393053 and fenobam were equally effective in
attenuating glutamate-induced Jun in the ipsilateral (Fig. 5i,j) and
contralateral (Supplementary Fig. 4e,f) SCDH of SNI and sham
rats. These results suggest that in neuropathic animals c-fos is
largely dependent on intracellular mGluR5, whereas c-jun is not.

EAAT3 inhibition reduces pain and c-fos. As intracellular
mGluR5 appears essential for the expression of neuropathic pain,
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we hypothesized that blocking ligand entry into SCDH
neurons would also alleviate pain behaviours. In SCDH glutamate
is primarily taken up by sodium-dependent transporters
including the neuronal EAAT3 (EAAC1; Slc1a1), glial EAAT1
(GLAST, Slc1a3) and glial EAAT2 (GLT-1; Slc1a2)29. Previously,
spinal administration of the pan-EAAT inhibitor, TBOA,
was shown to be pronociceptive in naive animals30, but
antinociceptive in animals with persistent pain31–33. We show
here that TBOA had similar paradoxical effects on spinal
glutamate-induced pain behaviours in sham versus SNI rats
(Supplementary Fig. 5a). Improved EAAT ligand specificity
allowed us to selectively test the contributions of either
neuronal or glial transporters in sham and neuropathic rats.

The EAAT3 specific inhibitor L-�-threo-benzyl-aspartate
(L-TBA, 0.01–1 nmol) was used to block neuronal uptake of
glutamate, whereas WAY213613 and UCPH-101 (WAYþUCPH;
1–100 nmol) were used to block EAAT1 and 2, respectively.
Pain behaviours induced by 400 mg of spinal glutamate were
recorded 10 min following administration of neuronal or glial
EAAT inhibitors. After intrathecal L-TBA, a dose-dependent
decrease in glutamate-induced pain behaviours was observed in
SNI rats, but not sham animals (Fig. 6a). In contrast, intrathecal
treatment with a 50:50 mixture of glial EAAT1,2 inhibitors,
produced a dose-dependent increase in pain behaviours in SNI
rats (Fig. 6b). These results are consistent with the hypothesis
that the accessibility of glutamate to intracellular mGluR5 is
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critical for enhanced pain behaviours to spinal glutamate in
SNI rats.

Spinal injection of L-TBA (1 nmol) also attenuated ipsilateral
mechanical allodynia for 1 h following injection in SNI animals
(Fig. 6c), whereas no change in the PWTs was observed in sham
rats (Fig. 6d). Conversely, spinal administration of WAYþ
UCPH produced no change in the PWTs of SNI rats (Fig. 6c), but
induced a very significant reduction in PWTs (or induced
allodynia) in sham rats for 2 h (Fig. 6d). CPP experiments
demonstrated that 1 nmol of spinal L-TBA produced an analgesic
effect (CPP Index significantly above 50%) in SNI, but not in
naive, rats (Fig. 6e). In contrast, the EAAT1,2 inhibitors failed to
produce a place preference in SNI rats, producing instead a
significant place aversion in naive rats (Fig. 6e). Importantly, the
rats in either the neuronal or glial EAAT inhibitors groups
showed no BPP before drug pairings (Supplementary Fig. 5b).
Taken together, these results demonstrate that intracellular
transport of glutamate contributes significantly to spontaneous
pain and mechanical hypersensitivity in SNI rats, consistent with
our hypothesis that increased intracellular mGluR5 plays a role in
neuropathic pain.

Spinal glutamate-induced changes in Fos/Jun were also tested
after blockade of neuronal and glial transporters. Pretreating rats
with L-TBA (1 nmol) 10 min before administering glutamate
(400 mg) reduced Fos in the ipsilateral and contralateral SCDH of
SNI and sham rats (Fig. 6f,g, Supplementary Fig. 5c,d). Although
Jun expression is lower after L-TBA, it was not significantly
reduced in any condition (Fig. 6h,i, Supplementary Fig. 5e,f).
These results suggest that both spinal glutamate-induced pain and
c-fos in SNI rats depend on the access of glutamate to intracellular
mGluR5.

In contrast, increasing synaptic glutamate by spinal
pretreatment with WAYþUCPH resulted in an increase in
spinal glutamate-induced Fos in the ipsilateral SCDH of sham,
but not SNI rats (Fig. 6f,g), and was not affected in the
contralateral SCDH of either sham or SNI rats (Supplementary
Fig. 5c,d). Spinal glutamate-induced Jun was not changed
by pretreatment with EAAT1,2 inhibitors in either sham or
SNI rats ipsi- (Fig. 6h,i) or contralaterally to the nerve
surgery (Supplementary Fig. 5e,f). These results indicate
that in SNI rats impeding glutamate clearance from the
extracellular space by blocking EAAT1,2 induces more pain
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behaviours and more c-fos in response to spinal glutamate
injection.

To exclude the possibility that pan-EAAT inhibitors produce
antinociceptive effects in neuropathic animals via previously
proposed reverse-operation of glutamate transporters31, in vivo
microdialysis was used in conscious behaving animals following
inhibition of glial EAATs with WAYþUCPH. As would be
expected with normal operation of glutamate transporters, glial
EAAT inhibition produced an increase in noxious stimulus-
induced glutamate concentration in the SCDH of both sham and
SNI rats (Supplementary Fig. 5g).

Discussion
Some GPCRs, like mGluR5, are localized on intracellular
membranes where, in vitro, they trigger unique signalling
effects9,12. Here we found that a membrane permeable agonist
activating intracellular SCDH mGluR5 produced sustained Ca2þ

responses, whereas an impermeable, non-transported agonist
produced transient Ca2þ peaks. Identical responses were
observed in SCDH neurons expressing a genetically encoded
Ca2þ indicator restricted to the nucleus, as well as in acutely
isolated SCDH nuclei. When activated, the peak amplitude of
nuclear Ca2þ responses was B40% higher and ninefold greater
than at surface mGluR5. Akin to striatal10 and hippocampal7

receptors, intracellular mGluR5 uses the canonical PLC/IP3R
signalling pathway to play a dynamic role in mobilizing Ca2þ in
a specific, localized manner. Using ultrastructural, cellular and
pharmacological techniques, we also showed that nerve injury
increases nuclear mGluR5 levels, along with the synaptic
plasticity effectors pERK1, pERK2, Arc/Arg3.1 and c-fos.
Behaviourally, blocking only cell-surface mGluR5 with an
impermeable antagonist had little effect on neuropathic pain
assays, whereas inhibiting intracellular mGluR5 using a
permeable antagonist markedly reduced all pain indices and
pERK1, pERK2, Arc and c-fos expression. Consistent with
intracellular mGluR5 driving pain behaviour, blocking
glutamate entry into SCDH neurons also produced analgesia
and decreased c-fos, whereas blocking glial glutamate transporters
increased pain behaviours and c-fos. To our knowledge, these are
the first experiments demonstrating a role for an intracellular
GPCR in an in vivo behavioural model (see schematic summary
diagram in Supplementary Fig. 6).

Although many GPCRs are found on nuclear membranes
(for example, receptors for epinephrine, endothelin, platelet-
activating-factor and bradykinin), deducing the functional
significance of such receptors remains challenging because of
limited techniques to probe the nucleus in situ, and since most
GPCRs are also present at the cell surface. One exception is the
a1A-adrenoceptor, which is only detected on nuclear membranes
in cardiac myocytes4, where binding results in PKC activation
and translocation leading to troponin phosphorylation and
sarcomere shortening4. A caged cell-permeable analog of
endothelin-1 was used to detect nuclear endothelin receptor-
mediated increases of nucleoplasmic Ca2þ in cardiac myocytes
after intracellular uncaging5. Also, activation of the GPCR F2Rl1
anchored at plasma membranes triggered the expression of Ang1,
whereas nuclear-activated F2Rl1 induced Vegfa in retinal
ganglion cells6. Despite these observations, until now in vivo
behavioural outcomes resulting from activation of endogenous
intracellular receptors have not been assessed.

Given that mGluR5 is an important target, many drugs have
been optimized for mGluR5 selectivity, affinity, and pharmaco-
kinetic parameters. Although recent compounds34–36 have been
developed that overcome the off-target effects35 and short-half-
lives36 of earlier drugs, little emphasis has been placed on which

receptor pool ligands act. In blocking cell surface mGluR5, the
impermeable antagonist, LY393053, demonstrated only weak
analgesia in pain models examined here. In contrast, the cell
permeable antagonist, fenobam (a negative allosteric modulator
that has both non-competitive antagonist and inverse agonist
activity) significantly reduced mechanical allodynia, glutamate-
induced pain and c-fos expression in neuropathic rats. This
suggests that drugs interacting with intracellular mGluR5 are
superior against neuropathic pain to those acting at cell surface
mGluR5. Also, while fenobam (IC50 80 nM)37 is more potent than
LY393053 (IC50 1.6 mM)38,39, we did not see increased analgesic
activity when the intrathecal dose of LY393053 was increased
from 10 nmoles to 1 mmole suggesting that its analgesic effects
plateaued at 10 nmoles. Indeed, the reported IC50 values for
LY393053 may be unavoidably high, since this impermeable
antagonist was assessed using an assay (PI hydrolysis) that
employed the transportable mGluR5 agonist quisqualate38,39.
Importantly, these same investigators reported an in vivo ED50

for LY393053 of 654–955 fmoles against DHPG-induced PI
hydrolysis (that is, when the agonist is impermeable) and
9 nmoles against DHPG-induced seizures, when administered
centrally as we did here. The fenobam-induced analgesic CPP in
neuropathic, but not naive, rats suggests that agents acting at
intracellular mGluR5 may produce analgesia with low potential
for abuse. In contrast, LY393053’s lowering of c-jun in SNI rats is
consistent with its analgesic effects in acute inflammatory
pain38,40, and suggests a minor contribution from cell-surface
mGluR5 in persistent pain. That LY393053 reduced glutamate-
induced c-jun, but not c-fos, while fenobam reduced both,
confirms in an in vivo model, our previous demonstration in vitro
that separate intracellular cascades are triggered by cell surface
and intracellular mGluR5. Specifically, we previously showed in
striatal cultures7,9,12 that cell surface mGluR5 stimulates
CAMKIV, p-CREB and c-jun, while intracellular mGluR5
phosphorylates ERK1/2 and Elk-1, and enhances c-fos, erg-1
and Arc/Arg3.1. The importance of intracellular mGluR5 for c-fos
induction was further supported here by the significant reduction
of glutamate-induced c-fos following EAAT3 inhibition.

EAAT3 inhibition not only replicated the analgesic and
c-fos-reducing effects of fenobam, but also explains the
paradoxical antinociceptive effects of pan-EAAT inhibitors on
persistent pain30–33. Here a selective EAAT3 inhibitor produced
antinociception in SNI rats, whereas EAAT1,2 inhibitors
produced pronociception, with similar diverging effects on
glutamate-induced pain, mechanical allodynia, CPP and
glutamate-induced c-fos expression. Our c-fos studies, explain
recent results showing that intracisternal TBOA significantly
increased noxious heat-induced Fos immunoreactivity in the
medullary dorsal horn of naive animals, while it significantly
reduced this response in animals with earlier inflammation of the
vibrissa pad41. Thus, TBOA’s c-fos reducing effects in animals
with persistent pain are likely due to EAAT3 blockade, while its
c-fos enhancing effects in naive animals are likely due to
inhibition of EAAT1/2. These results refute an alternative
hypothesis proposing abnormal reverse-operation of EAAT1,2
in rats with persistent pain31. Indeed, our in vivo microdialysis
studies demonstrated that EAAT1,2 inhibitors increased spinal
extracellular glutamate concentration after noxious stimulation in
both sham and SNI rats. These data provide direct evidence that
neuropathic pain does not depend on reverse-operation of
glutamate transporters; rather analgesia is achieved by blocking
the transporters responsible for ligand uptake into SCDH
neurons.

Intracellular glutamate concentrations are difficult to assess,
although 10 mM is frequently used as a cytoplasmic value with
levels ranging up to 100–200 mM within vesicles42. However,

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10604 ARTICLE

NATURE COMMUNICATIONS | 7:10604 | DOI: 10.1038/ncomms10604 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


anti-glutamate immunogold electron microscopy studies indicate
that particles representing glutamate are densest in terminal fields
reaching 10 mM, whereas far fewer particles are present in somas
and/or dendrites and spines (1 mM)43,44. The latter studies also
show large numbers of gold particles over cytoplasmic organelles
such as mitochondria, ER and the nucleus43–45. These data,
combined with glutamate’s complex metabolism and the myriad
of studies demonstrating that it is highly compartmentalized in
neurons46,47, suggest that there may be far less ‘free’ cytoplasmic
glutamate than previously suggested. Techniques such as
13C-NMR, 13C- and/or 15N-GC/MS provide compelling
evidence that glutamate has many fates within the cell46–48. For
example, a large proportion of extracellular glutamate is
transaminated and enters the mitochondria where it serves as a
substrate for the tricarboxylic acid cycle46–48. Then too, there is
growing precedent for many types of ER–cell surface contacts
that might be specialized for given functions49–51. Whether such
a relationship exists between EAAT3 and mGluR5 is unknown at
this moment and awaits further study.

Our electron microscopy studies would suggest that there is
more nuclear mGluR5 (B55%) than there is intracellular
(B25%), thus the sustained Ca2þ response should be largely
due to a nuclear source. However, we have shown in other studies
that hippocampal dendrites7 exhibit intracellular mGluR5
responses mirroring the sustained nuclear Ca2þ release seen
here. Thus, it seems likely that mGluR5 associated with dendritic
ER membranes can also proportionately contribute to the
intracellular signal. Although it has also been proposed that
glial mGluR5 may contribute to glutamate signalling, evidence for
mGluR5 in glia comes mostly from studies of cultured glia52.
Further, although mGluR5 immunostaining has been reported
colocalized with markers of astrocytes or microglial in spinal
cord, this typically occurs in pathological conditions such as
spinal cord injury or amyotrophic lateral sclerosis, particularly
when there is reactive gliosis53,54. Although we see evidence of
reactive astrogliosis in SCDH after SNI, we found very little
colocalization of staining for mGluR5 and GFAP (astrocyte
marker) in either sham or SNI rats (Supplementary Fig. 2e),
consistent with an earlier finding showing no change in such
colocalization in rat SCDH after nerve root compression55.

Although our study emphasizes the physiological significance
of the two pools of mGluR5, the mechanism by which nuclear
mGluR5 is increased in neuropathic rats remains unknown.
Altered trafficking and/or scaffolding are suggested by the
significantly decreased plasma membrane and cytosolic mGluR5
and increased nuclear receptors in SNI rats (Fig. 3c). Recent
studies suggest the scaffolding proteins Homer 1b/c and Preso1,
which interact with mGluR556–58, may be critical. Thus,
expression of Homer 1b/c is altered in neuropathic rats56, and
genetic manipulation of Homer 1b/c or Preso1 significantly
affects pain and SCDH Fos57,58. By further dissecting the effector
proteins associated with nuclear mGluR5-dependent processes,
more targeted pain therapies can be discovered.

Methods
Animals. Adult male Long Evans rats (250–400 g) were used in this study. All
experiments were carried out according to ethics protocols approved by McGill
University and Washington University Animal Care Committees and followed the
guidelines for animal research from the International Association for the Study of
Pain (IASP).

Materials. Glutamate, quisqualate, (S)-3,5-dihydroxyphenylglycine (DHPG),
L-TBA, TBOA, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), D-(� )-2-Amino-
5-phosphonopentanoic acid (2S)-2-Amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-
(xanth-9-yl) propanoic acid (LY341495), N-[4-(2-Bromo-4,5-difluorophenoxy)
phenyl]-L-asparagine (WAY 213613), 2-Amino-5,6,7,8-tetrahydro-4-(4-
met:hoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-4H-chromene-3-carbonitrile

(UCPH), MPEP, 7-(Hydroxyimino)-cyclopropan [b]chromen-1a-carboxylate
ethyl ester (CPCCOEt), and N-(3-Chlorophenyl)-N0-(4,5-dihydro-1-methyl-4-oxo-
1H-imidazol-2-yl)urea (fenobam) were purchased from Tocris Bioscience
(Ellisville, MO). THA was obtained from Sigma-Aldrich, (St Louis, MO).
2-Amino-2-(3-cis/trans-carboxycyclobutyl)-3-(9H-thioxanthen-9-yl) propionic
acid (LY393053) was obtained from Lilly Research Laboratories, Eli Lilly and
Company (Indianapolis, IN).

Cell culture and transfection. Primary cultures of SCDH neurons were prepared
from postnatal day 1 rat pups as previously described20. The cells were plated onto
12-mm poly-D-lysine-coated coverslips for immunostaining or Ca2þ imaging or
48-well plates for uptake assays. Cells were cultured in humidified air with 5% CO2

at 37 �C for 14–18 days before use. For experiments using the microplate reader,
cultures were plated at 35,000 cells per well in black-walled, clear-bottomed 96-well
plates and then cultured as above. SCDH cultures were transfected with plasmid
pCMV-NLS-R-GECO (Addgene, Cambridge, MA) using Mirus TransIT-X2
(Mirus Bio LLC, Madison, WI) on DIV 6 and then immunostained or imaged in
real time on DIV 9.

Immunocytochemistry of neurons in culture. Spinal neurons were fixed, blocked
and incubated with antibodies as described8–10. Primary antibodies included
polyclonal anti-C-terminal mGluR5 (1:250, Millipore, Billerica, MA, AB5675),
anti-NeuN (1:100, Millipore, ABN78), and monoclonal anti-lamin B2 (1:100,
Invitrogen, Grand Island, NY, 33-2100) and anti-MAP2 (1:500, Millipore,
AB5622). Secondary antibodies include goat anti-rabbit (111-165-144) or mouse
(115-165-146) Cy3 (1:300, Jackson ImmunoResearch Laboratories, West Grove,
PA) and goat anti-rabbit (A-11008) or mouse (A-11029) Alexa-488 (1:300,
Invitrogen).

3H-labelled agonist uptake. [3H]-Quisqualate (22.0 Ci mmol� 1, PerkinElmer
Waltham, MA) and l-[3H]-glutamate (29.0 Ci mmol� 1) were used for uptake
assay. The SCDH cultures (5� 104 cells per well) were maintained at 37 �C for
14–18 days before use. Cultured SCDH cells were washed three times in the
appropriate buffer (Krebs–Ringer solution containing the following (in mM): 137
NaCl, 5.1 KCl, 0.77 KH2PO4, 0.71 MgSO4 � 7H2O, 1.1 CaCl2, 10 D-glucose, and 10
HEPES), Naþ free, Cl� free or Naþ ,Cl� -free MNDG as described previously8)
and then incubated at 37 �C in the presence or absence of 100 mM DHPG, 100mM
TBOA, 100 mM THA or 400mM L-cystine for 15 min before adding labelled
agonist. Uptake was terminated after 15 min. Samples were rapidly rinsed three
times with ice-cold PBS, solubilized in 150 ml of 1% Triton X-100/PBS, and then
analysed by liquid scintillation.

Fluorescent measurements of intracellular Ca2þ . Days in vitro 14–18 SCDH
neurons grown on 12-mm glass coverslips (5� 104cells per coverslip) were loaded
with Ca2þ fluorophore, imaged and quantitated as described8. SCDH neurons
were treated with 100 mM DHPG or 20mM Quis as well as 10mM MPEP and/or
20 mM LY393053. Because Quis would also activate AMPA receptors and mGluR1,
it was always bath-applied in the presence of 25 mM SYM2206, an AMPA receptor
antagonist, and 20mM CPCCOEt, an mGluR1 antagonist. For consistency
SYM2206 and CPCCOEt were also added to controls and DHPG-treated samples.
We also used Ca2þ flux measurements to assess group responses. In this case
primary spinal cord cultures from 1-day-old rat pups were plated at 35,000 cells per
well in black-walled, clear-bottomed 96-well plates. After 10–14 days, the cells were
loaded with 0.75 mM Fura-2 AM (F14185, Invitrogen) for 30 min at 37 �C and
washed with Hanks’ balanced salt solution (HBSS). The cells were then
preincubated with various inhibitors for 20 min at 37 �C in the assay buffer
(HBSS containing 20mM CPCCOEt and 25mM SYM2206) before Ca2þ flux
measurement. Fura-2 fluorescence was measured using a BioTek Synergy H4
Hybrid Microplate Reader. The baseline 340/380 nm excitation ratio for fura-2 was
collected for 5 s before injecting 5.2 mM quisqualate. Data were collected for an
additional 30 s and then analysed using Biotek’s Gen5 analysis software. Percent
inhibition of the maximal quisqualate response was calculated by comparing the
normalized fold change of the indicator in inhibitor-treated wells to that of
controls.

[3H]-glutamate binding assay. L-[3H]-glutamate (29.0 Ci mmol� 1) was
obtained from GE Healthcare, Pittsburgh, PA. The fractionated plasma membrane
or nuclear pellet was resuspended in buffer containing 40 mM HEPES, pH 7.5,
2.5 mM Ca2þ , 10 mM CNQX (AMPA/kainate receptor antagonist), 10 mM APV
(NMDA receptor antagonist), 20 mM CPCCOEt (mGluR1 antagonist), 100 nM
LY341495 (group II & III mGluR antagonist) and protease inhibitors. Incubation
was for 60 min at 25 �C, and bound label was separated from free label by fast
filtration over #32 filters (Schleicher & Schuell, Keene, NH). Nonspecific binding
was determined in the presence of 4 mM glutamate. The binding curves were fit
using the GraphPad Prism 3.0 program (Graphpad Software, San Diego, CA, USA).
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Spared-nerve injury. Rats were anaesthetized with isofluorane (2% in 95% O2, 5%
CO2) and SNI was induced to the left sciatic nerve as previously described21. Sham
rats received the same surgery except the sciatic nerve was only exposed and
received no further manipulation. Sham and SNI rats were tested at 7 days
post-surgery, unless otherwise stated.

Electron microscopy. Pre-embedding immunogold immunocytochemistry was
conducted on SCDH sections as described previously14. We used a polyclonal anti-
mGluR5 antibody (1:400, Millipore, AB5675, lot nos. LV1364844 and LV1416963)
directed against a C-terminal sequence of the receptor (specificity and previous use
can be found at http://antibodyregistry.org/AB_2295173). Omitting primary
antibody was performed as a control (Supplementary Fig. 1c). Preincubation of
primary antibody with increasing concentration of synthetic blocking peptide
(AG 374, Chemicon) was performed using diaminobenzidine staining and light
microscopy (Supplementary Fig. 1d). Subcellular distribution of silver-intensified
gold grain labelling, representing mGluR5 antigenic sites, was carried out on
electron microscope images of labelled neuronal somata. Grains were counted in
four subcellular compartments: plasma membrane, cytoplasm, nuclear membrane
and intranuclear. The results were expressed as percentage of mGluR5 in each
compartment relative to the total grains in the cell.

Confocal microscopy. Double labelling of mGluR5 and GFAP was performed on
lumbar free floating 50mm thick transverse sections from SNI and sham rats
perfused with 4% paraformaldehyde 2 weeks following the surgical intervention.
Briefly, sections were incubated with a mixture of primary antibodies mGluR5
(1/500, Chemicon, AB5675, Lot 2585810) and GFAP (1/2,000, Cell Signaling,
3679, Lot 3) for 48 h at 4 �C. Secondary antibodies consisted of a mixture of donkey
anti-rabbit IgG conjugated to Rhodamine Red (1/200, Jackson ImmunoResearch
Laboratories, 711-296-152, Lot 103820) and donkey anti-mouse Alexa Fluor 488
(1/500, Molecular Probes, A21202, Lot 49728A). Images were captured with a Zeiss
LSM 510 confocal scanning laser microscope using an X63 oil immersion objective
and a multitrack scanning method for the detection of both signals.

Tissue isolation and western blot analysis. Dorsal regions of lumbar spinal cord
(L4–L6) were dissected from sham or SNI rats at 1 week or 2 weeks after nerve
injury and treatment and resuspended in 20 ml volumes of Buffer ‘A’ medium
containing 2.0 mM MgCl2, 25 mM KCl, 10 mM HEPES (pH 7.5), and protease
inhibitors (Complete Tablets; Roche Applied Science, Indianapolis, IN). Tissue was
homogenized and nuclei and plasma membranes were prepared as described11.
Aliquots from each fraction were used for gel electrophoresis as well as membrane
binding. Protein concentrations were determined using the Bradford assay (Biorad,
Richmond, CA). Fractionated proteins were separated by SDS–PAGE, blotted, and
probed with polyclonal anti-mGluR5 (1:1,000, Millipore, AB5675), polyclonal anti-
EAAT3 (1:250, Dr J. Rothstein, Johns Hopkins University), monoclonal anti-lamin
B2 (1:1,000, Invitrogen, Grand Island, NY, 33-2100), polyclonal anti-pan-cadherin
(1:1,000, Cell Signaling Technology, Beverly, MA, 4068), polyclonal anti-Lactate
Dehydrogenase-Biotin conjugated (1:8,000, Rockland Immunochemicals,
Gilbertsville, PA, 200-1673-0100), polyclonal anti-Arc/Arg3.1 (1:500, Synaptic
Systems, Germany, 156-003), monoclonal anti-ERK (1:1,000, Cell Signaling
Technology, Inc., 4696) and polyclonal anti-pERK (1:2,000, Cell Signaling
Technology, Inc., 9101). P-ERK1/2 was normalized to total ERK1/2 and Arc was
normalized to Lamin B2. A horseradish peroxidase conjugated with goat anti-rabbit
IgG (1:2,000, Cell Signaling Technology, Inc., Beverly, MA, 7074) or anti-mouse
IgG (1:2,000, Sigma-Aldrich, St Louis, MO, 7076,) was used in conjunction with
enhanced chemiluminescence (Clarity Western ECL Substrate, Bio-Rad, Hercules,
CA) to detect the signal. Densitometric analyses of proteins were performed using
the ChemiDoc MP System together with associated software (Bio-Rad). Full-length
western immunoblots are shown in Supplementary Figs 7 and 8.

Drug administration in vivo. All drugs were administered by intrathecal (i.t.)
injection at the L2-L5 spinal cord level, while the rat was under isofluorane
anaesthesia. Drugs were dissolved either in distilled water (glutamate or morphine)
or 5% dimethyl sulfoxideþ 0.1 M cyclodextrin or 25% dimethyl sulfoxide in dis-
tilled water (all other drugs). Except for morphine, which was given subcutaneously
(s.c.) in a volume of 1 mg ml� 1, all drugs were prepared to make an injectable
volume of 20ml for spinal injection. The prepared drugs were sonicated for 45 min
to generate a clear solution or a microsuspension. All drugs were prepared fresh on
the day of treatment. The drug dosages for later experiments were based on the
dose–response curves derived from the glutamate-induced pain behaviour
experiments. Unless otherwise stated in the Results section or below, pretreatment
drugs were all given 1-week post SNI or sham surgery.

Nociceptive testing. Glutamate-induced pain behaviours. One week post-SNI or
sham surgery rats were habituated to an observation chamber (30� 30� 30 cm)
fitted with a transparent floor under which was placed a mirror to allow an
unobstructed view of the animal’s paws for 30 min. Following habituation, rats
were given two i.t. injections 10 min apart: either a pretreatment drug or vehicle
followed by an injection of 400mg of glutamate. The rats were then returned to the

chamber and allowed to move freely. Pain behaviours were measured as the time
spent licking the hind paws, lower legs and tail over a 30-min period. The beha-
viours were recorded starting from when the rats awoke from anesthesia and made
their first coordinated movements.

Mechanical allodynia testing. Rats were tested for mechanical allodynia between
7 and 17 days after sham or SNI surgery, following each of the five i.t. drug
treatments (L-TBA, WAYþUCPH, fenobam, LY393053) or vehicle. Only one drug
was tested per day with 1 day in between drug testing, with drug order
counterbalanced with a Latin square design. Before each testing session, each rat
was habituated to a testing box (17� 15� 12 cm) with a wire-mesh grid floor, for a
1-h period. Before drug administration, a baseline was established using von Frey
hairs applied through the grid floor to the ventral surface of the hind paw. Each
hair was applied for a 10-s period or until the animal withdrew the hind paw
without ambulating. During each testing trial, the series of hairs were presented
following a validated up–down procedure59, and the 50% PWT was calculated for
each rat. After a baseline score was established, rats were given either the drug or
vehicle via i.t. injection and returned to the testing box. PWTs were measured 30,
60, 120 and 180 min following the injection.

Conditioned place preference (CPP). CPP procedures began on day 7 following
the sham or SNI surgery. The CPP chamber consisted of two pairing chambers
(22� 38 cm) connected by a third, neutral compartment (44� 22 cm). On the
habituation and test sessions (day 7 and 12 post surgery) the neutral compartment
had openings that allowed the rats to freely explore all three chambers. The pairing
chambers contained salient visual cues (horizontal versus vertical black and white
lines) on the chamber walls and floor. During the habituation session in which the
rats were allowed to explore all chambers for 30 min, an initial measurement of
BPP was taken by measuring the time spent in each chamber over 15 min. Rats
spending 475% of the time in any one chamber at habituation were removed from
the experiment. The next day, using a randomized block design, rats were assigned
a chamber-drug pairing. Either the drug or the vehicle was administered i.t. (except
morphine which was given s.c.) and the rats were restricted to one of the two
pairing chambers for a period of 60 min. The following day the rats would receive
the other drug in the opposite chamber. On the CPP test day, the rats placed in the
CPP chamber with the open gate configuration for 15 min and the time spent in the
drug- and vehicle-paired or neutral chamber was again measured. The CPP index
was defined as the time spent in the drug-paired chamber divided by the time spent
in both the drug- and vehicle-paired chambers multiplied by 100; a CPP 450%
indicates a preference for the drug-paired chamber while a CPP o50% indicates an
aversion to the drug-paired chamber.

Immunohistochemistry preparation for Fos and Jun. In Fos and Jun
experiments, animals were perfused 45–60 min following glutamate injection.
Twenty-micrometre thick cross sections of the lumbar spinal cord were cut using a
cryostat (Leica, Wetzlar, Germany) and collected on poly-L-lysine coated superfrost
plus slides (Fisher Scientific, PA, USA). The tissue sections were incubated for 1 h
at room temperature in 10% normal donkey serum in 0.1% Triton-X in PBS (PBS-
Tx) to block unspecific labelling. For Jun labelling, sections were incubated at 4 �C
for 48 h using rabbit polyclonal to Jun (1:1,000, Abcam, ab31419). After three
rinses in PBS-Tx, the sections were incubated for 72 h at room temperature with
donkey polyclonal anti-rabbit IgG conjugated to Rhodamine Red (1:500, Jackson
ImmunoResearch Laboratories, 711-296-152, Lot 90396) for Jun, visualization.
Separate slides were labelled for Fos using rabbit polyclonal to c-fos (1:5,000,
Millipore ABE 457) overnight at 4 �C. After three rinses in PBS, the sections were
incubated for 4 h at room temperature with donkey polyclonal anti-rabbit IgG
conjugated to Rhodamine Red (1:800, Jackson ImmunoResearch Laboratories,
711-296-152, Lot 90396). Finally, the sections were washed two times
in PBS-TX then once in PBS for 10 min and cover slipped with an anti-fading
mounting medium (Aqua PolyMount, Polysciences Inc., Warrington, PA).
Antibodies were always diluted in PBS-Tx.

Fos and Jun cell counting. The numbers of Jun-labelled cells were estimated using
ImageJ (NIH freeware, Bethesda, MD). Images were first converted into 8-bit
format. The threshold command was used to segment the image into labelled cells
and background, with particles o100 or 41000 pixels excluded. Fos-labelled cells
were counted manually. The average number of Fos- and Jun-labelled cells
per section was used as a single data point. All pretreatmentþ glutamate condi-
tions were compared with vehicleþ glutamate by subtracting the mean number of
Fos- and Jun-labelled cells in vehicleþ glutamate rats from each rat in the
pretreatmentþ glutamate condition to yield a DFos and DJun cell count for each of
the pretreatment drugs.

Microdialysis and intrathecal catheter. Microdialysis fibres and an intrathecal
injection catheter were implanted into rats as described previously60. After recovery
from surgery, rats were placed in a Raturn Interactive System (Bioanalytic Systems,
Inc, West Lafayette, IN, USA) with a tethering system, which allowed tubing from
the microdialysis catheter to be connected to a syringe pump on one end and to a
refrigerated fraction collector on the other. Sample collection was done as
described60 with collections taken every 5 min during a 30 min baseline period
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(with only the final three measurements assayed), for 30 min after spinal injection
of either vehicle or a 50:50 mixture of WAYþUCPH (100 nmoles), and for 30 min
following intraplantar injection of 1.0% formalin.

Sampling and statistical analyses. For in vivo studies, sample sizes were 6–9 per
group, which is commonly required to obtain statistical significance, while in vitro
studies utilized a minimum of three experimental replicates. In all experiments,
animals were randomly assigned to groups, with a randomized block design used
for the CPP experiments and randomization performed after BPP measurement. In
all experiments, measurements were performed with the experimenter blind to the
experimental conditions. All values are expressed as mean±s.e.m., and no sam-
ples/animals were excluded from analysis. All statistical tests were performed using
GraphPad Prism version 5 for Windows (GraphPad Software, La Jolla, CA or
Statistica 6 (Stat Soft, Tulsa, OK) and all reported statistical analyses were justified
based on sample size, homogeneity of variance and normal distribution of the data.
The behavioural dose–response curves were analysed using between measures
two-way analysis of variances (ANOVAs; pain condition� dose) and post hoc
comparisons between drug dose and vehicle condition, unless stated otherwise,
were performed using two-sided Dunnett’s test. Paw withdrawal thresholds were
similarly analysed by repeated measures ANOVA (drug� time) followed by post
hoc comparisons between drug conditions at each time point using the Bonferroni
test. For electron microscopy quantification, the grain count in each subcellular
compartment was expressed as a percentage of the total grain count for that cell.
Percentage counts were grouped by animal and condition (control or SNI).
A two-way nested model ANOVA was followed by Scheffé post hoc comparisons.
Immunohistochemical data were analysed using two-way ANOVAs to identify
significant changes in cell counts compared with the vehicle pretreatment
condition, which was normalized to zero. CPP scores were analysed using two-way
ANOVAs with Bonferroni correction for multiple comparisons used to compare
CPP index to a value of 50%. All other experiments were analysed using two-way
ANOVAs with Bonferroni correction and two-sided tests for multiple comparisons
or two-tailed Student’s t-test for comparing two groups.
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