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An emerging hypothesis in developmental and behavioral disorders is that they arise from disorganized brain
messaging or reduced connectivity. Given the importance of myelin to efficient brain communication, character-
ization ofmyelin development in infancy and childhoodmay provide salient information related to early connec-
tivity deficits. In this work, we investigate regional and whole brain growth trajectories of the myelin water
fraction, a quantitativemagnetic resonance imagingmeasure sensitive and specific tomyelin content, in data ac-
quired from 122 healthy male children from 3 to 60 months of age. We examine common growth functions to
find the most representative model of myelin maturation and subsequently use the best of these models to de-
velop a continuous population-averaged, four-dimensional model of normative myelination. Through compari-
sons with an independent sample of 63 male children across the same age span, we show that the developed
model is representative of this population. This work contributes to understanding the trajectory of myelination
in healthy infants and toddlers, furthering our knowledge of early brain development, and provides amodel that
may be useful for identifying developmental abnormalities.

© 2013 The Authors. Published by Elsevier Inc. Open access under CC BY license.
Introduction

The elaboration of the myelin sheath around neuronal axons, and
the associated white matter maturation, is a cornerstone of human
neurodevelopment. Myelinatedwhite matter forms efficient communi-
cation pathways that shape the integrated neural systems responsible
for higher order functioning (Fornari et al., 2007; Johnson and
Munakata, 2005). Given myelin's critical role in brain communication,
processes that disrupt its development may result in reduced brain
connectivity and inefficient interneuronal communication. In turn,
this may lead to altered neuronal functioning, and may contribute to
some neurodevelopmental and psychiatric disorders, including autism
and attention deficit and hyperactivity disorder (Courchesne, 2004;
Haroutunian and Davis, 2007; Konrad and Eickhoff, 2010).

Myelination during the first five years of life is a rapid and dynamic
process. Prior histological studies have established that myelination be-
gins in the cerebellum and brainstem in utero (Barkovich et al., 1988;
an).

c. Open access under CC BY license.
Flechsig, 1901; Paus et al., 2001; Yakovlev and Lecours, 1967). Following
birth, myelination proceeds caudocranially from the splenium of the
corpus callosum, optic radiations and internal capsule by 3–4 months;
occipital and parietal lobes by 5–6 months; temporal and frontal lobes
by 9–11 months (Flechsig, 1901; Yakovlev and Lecours, 1967); and con-
tinues into the second decade of life (Barnea-Goraly et al., 2005;
Bartzokis et al., 2010). However, while retrospective histological studies
provide the most faithful characterization of myelin development, they
suffer significant limitations. They are i) inherently cross-sectional;
ii) difficult to combine into a single temporal timeline, owing to differ-
ences in staining techniques and inconsistent brain coverage; iii) difficult
to obtain from large specimen pools spanning the infant age-range;
iv) preclude investigation of underlying structure–function relation-
ships; and v) labor intensive. Further, they may not necessarily reflect
healthy development as these studies are conducted post-mortem.

Recent in vivo magnetic resonance imaging (MRI) techniques, in-
cluding conventional T1- and T2-weighted structural imaging, diffusion
tensor (DT)-MRI, and magnetization transfer imaging (MTI), have be-
come popular for investigating early brain development (Giedd and
Rapoport, 2010; Giedd et al., 1999; Knickmeyer et al., 2008) and, espe-
cially, white matter maturation (Geng et al., 2012; Lebel et al., 2012;
van Buchem et al., 2001). These non-invasive techniques provide de-
tailed anatomical tissue contrast and micro-structural insight that af-
fords a more sensitive and direct means of examining white matter
development. However, these methods also have their disadvantages.
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While conventional MRI (T1- and T2-weighting) have shown alterations
in the gray/white matter contrast (Huang et al., 2006; Paus et al., 2001)
temporally mirroring myelination, these qualitative observations are
influenced by a variety of micro-structural and biochemical elements
(MacKay et al., 2009). DT-MRI offers a quantitative approach, with
metrics including fractional anisotropy (FA), mean diffusivity (MD),
and axonal and radial diffusivity (AD and RD, respectively). Changes in
these metrics during development have often been associated with
myelination, however these measures are also associated with changes
in the local tissue architecture (Jones et al., 2013; Mädler et al., 2008).
Many of these measures are also derived directly from the tensor
model of diffusion that does not apply to all brain voxels, making the in-
terpretation difficult (Wheeler-Kingshott and Cercignani, 2009). Simi-
larly, while the magnetization transfer ratio (MTR) has been shown to
correlate strongly with myelin content (Moll et al., 2011; van Buchem
et al., 2001; Zaaraoui et al., 2008), the MTR is also influenced by other
processes including edema and/or inflammation (Gareau et al., 2000;
Vavasour et al., 2011).

Multi-component analysis of relaxation time data, also termed
multi-component relaxometry (MCR), may provide a more sensitive
measure of myelin content. MCR decomposes the measured MRI signal
into contributions from distinct micro-structural water compartments.
Prior MCR studies have consistently reported at least two water com-
partments: a fast-relaxing water pool attributed to water trapped be-
tween the myelin-lipid bilayers; and a slower-relaxing water pool
attributed to intra-/extra-cellular water (MacKay et al., 2006; Whittall
et al., 1997). Quantification of the signal from the myelin-bound
water, termed the myelin water volume fraction (MWF), has been
shown to strongly correlate with histological assessments of myelin
content (Gareau et al., 2000; Laule et al., 2006, 2008; Odrobina et al.,
2005;Webb et al., 2003) and provide improvedmyelin specificity com-
pared to DT-MRI measures or MTR (Gareau et al., 2000; Mädler et al.,
2008; Vavasour et al., 2005).

While MCR has traditionally been performed using multi-echo T2
decay data, a more recent approach, termed mcDESPOT (multi-compo-
nent driven equilibrium single pulse observation of T1 and T2), has been
proposed (Deoni et al., 2008). Though at the expense of a more compli-
cated signal model that must include the effects of water exchange,
mcDESPOT offers the potential advantages of improved SNR, reduced
acquisition times, and increased spatial resolution and volumetric cov-
erage compared to the established T2 approach. While comparison of
multi-echo T2 andmcDESPOTMWF values present a known discrepan-
cy, withmcDESPOT values being consistently larger (Zhang et al., 2013),
they do, however, correspond qualitatively with histological myelin
content measures in a Shaking Pup model of dysmyelination (Hurley
et al., 2010), and have been used to investigate structure–function im-
pairment inMS (Kitzler et al., 2012; Kolind et al., 2012) and other demy-
elinating disorders (Kolind et al., 2013). More recently, the mcDESPOT
has been applied to the study of white matter maturation and healthy
infant neurodevelopment (Deoni et al., 2011, 2012), revealing a strong
consistency with the known spatial–temporal pattern of myelination.

A continuous and probabilistic model of myelination could alleviate
these concerns. Derivation of an appropriate growth model would
allow estimation of the typical mean MWF, and variance, for any age.
This work sought to develop such a model by comparing common
growth functions fit to measured MWF data. The most appropriate
model was then used to generate a continuous, four-dimensional
“atlas” of healthy MWF development, allowing calculation of the
‘typical’ average and standard deviation MWF maps at any desired
age. As proof-of-concept, individual and group-averaged MWF maps
were statistically compared to the growth model derived MWF maps,
with no significant differences found. The developed atlas, therefore,
represents the first continuous model of myelin maturation in healthy
male infants; provides an important step for understanding the typical
myelination trajectory; and provides a framework from which to iden-
tify the earliest of white matter changes.
Materials and methods

Subjects

MRI data analyzed in this work are part of an ongoing longitudinal
study investigatingwhitematter maturation in healthy, typically devel-
oping children and its relationship to behavioral development (Deoni
et al., 2012). Informed parental consent was obtained in accordance to
ethics approval from the Institutional Review Board of the host institu-
tion. Enrolled infants met the following inclusion criteria: uncomplicat-
ed single birth between 37 and 42 weeks; no exposure to alcohol or
illicit drugs during pregnancy; no familial history of major psychiatric
or depressive illness; no diagnosis of major psychiatric, depressive or
learning disorder in participant; and no pre-existing neurological
conditions or major head trauma. In total, 122 healthy male infants
and toddlers between 70 and 1809 days of age (mean = 690.14 days,
corrected for a 40-week gestation) were analyzed. Table 1 provides an
age-group break down of these participants.

Measuring MWF in infants

Whole-brain MWF maps were acquired using the rapid mcDESPOT
(Deoni et al., 2008) imaging technique. Imaging protocols for this age-
range, using acoustically-muffled sequences, have been presented pre-
viously (Deoni et al., 2011, 2012), and comprise 8 T1-weighted spoiled
gradient echo images (SPGR or spoiled FLASH), 2 inversion-prepared
(IR)-SPGR images and 16 T1/T2-weighted steady-state free precession
(SSFP or TrueFISP) images.

MWF maps were calculated from these data using a three-pool sig-
nal model estimating intra/extra-axonal water; myelin-associated
water; and a non-exchanging free water pool (Deoni et al., 2013). Cor-
rections for flip angle (B1) and off-resonance (B0) inhomogeneities
were also performed (Deoni, 2010). Total imaging times ranged from
19 min for the youngest infants to 24 min for older and larger children.

Children under 4 years of age were scanned during natural, non-
sedated, sleep; while children over this age were able to watch a favor-
ite TV show or movie. All data was acquired on a 3 T Siemens Tim Trio
scanner equipped with a 12 channel head RF array. To minimize intra-
scan motion, children were swaddled with an appropriately sized pedi-
atric MedVac vacuum immobilization bag (CFI Medical Solutions, USA)
and foam cushions were placed around their head. Scanner noise was
reduced by limiting the peak gradient amplitudes and slew-rates to
25 mT/m/s. A noise-insulating insert (Quiet Barrier HD Composite,
UltraBarrier, USA) was also fitted to the inside of the scanner bore.
MiniMuff pediatric ear covers and electrodynamic headphones (MR
Confon, Germany) were used for all scanned children, while a pediatric
pulse-oximetry system and infrared camera were used to continuously
monitor the sleeping infants during scanning. After acquisition, image
data was assessed for motion artifacts (blurring, ghosting, etc).

MR analysis and myelin trajectory modeling

Following calculation of the 122 MWF maps, all maps were non-
linearly aligned to a study specific template (Deoni et al., 2012) using
the Advanced Normalization Tools software package (Avants et al.,
2008) and smoothed with a 3 mm Gaussian kernel. Non-brain paren-
chyma was removed using FSL's brain extraction tool (BET) (Smith,
2002). Regional masks for bilateral frontal, temporal, parietal, and oc-
cipital lobes, cingulum, and cerebellar white matter, as well as the
genu, splenium and body of the corpus callosum were derived from
the MNI adult template (Mazziotta et al., 2001), co-registered to the
study template, and superimposed upon each infant's MWF maps
(Deoni et al., 2012). Mean MWF values for each mask were obtained
for each infant and plotted against the infant's gestational-corrected
age. To examine whether the nonlinear transformation affected the
quantitative values, mean MWF values were also extracted from native
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space after applying the inverse warp transformation to the regional
masks. These native-space values were then compared to the standard
space values.

To the plotted data, the growth models of Gompertz (1825),
Stannard et al. (1985), Richards (1959), Bleasdale and Nelder (1960),
as well as more generic functions such as the logistic model, and hyper-
bolic tangent were fit. In addition to these, a modified form of the
Gompertz model was also included in the group of growth models.
Although diverse, each of these sigmoidal functions shares similar char-
acteristics: 1) a lag or period of slow growth; 2) a period of rapid expo-
nential growth; and 3) a period of reduced growth-rate (Fig. 1A). From
these functions, biologically relevantmetrics, such as lag period, growth
rate, and maximum size, may be derived (Fig. 1A).

Non-linear regression via a Levenberg–Marquardt non-linear least
squares (Levenberg, 1944) algorithm was used to determine the best
fit for the free-parameters of each sigmoidal function (see Table 2).
Fits of eachmodelwere compared using the Bayesian Information Crite-
rion (BIC, Schwarz, 1978), a parsimony metric that compares the fit
residuals while penalizing for the number of model parameters. The
model that provided the lowest BIC measure consistently across the in-
vestigated brain regions was defined as the most representative.

Construction of a population-averaged MWF atlas

Using the BIC-selected ‘best’ model, voxel-wise fitting using wild-
bootstrap with residual resampling (Efron, 1979) was performed to
generate whole-brain, three-dimensional maps of the mean model
parameters and their associated uncertainty. The resampling was
performed 5000 times to provide accurate estimations of each
parameter's distribution.

With this a priori knowledge of each parameter's mean, representa-
tive whole-brain MWF maps can be constructed for any age. Further,
knowledge of the parameter uncertainty also allows calculation of the
variance in this representative map as

δMWF ageð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXi¼N

i¼0

δMWF
δai

Age

�����
2
δai

�vuut ð1Þ

where δMWF=δai represents the partial derivative of the growth model
with respect to the ith model parameter, δai is the uncertainty of the ith

parameter, and N is the number of free parameters in the model. Indi-
viduals can be directly compared to this population-derived model,
e.g., using Z-statistics, without necessitating age-grouping or requiring
substantive study sizes.

Comparison ofMWF atlas to grouped and individuallymeasuredMWF data

To illustrate the similarity between model-derived and in vivo ac-
quired MWF maps, two main analyses were performed on an indepen-
dent sample of 63 male children. Subjects for these analyses were not
included in the group of 122 participants used in generating the
model andmet the same inclusion/exclusion criteria asmentioned pre-
viously. Table 3 provides supplemental information on these additional
subjects.

First, we examined themodel's ability to examine average group dif-
ferences. In vivo comparison data was broken into 9 different age
groups (Table 3) and compared with age-matched model-derived
mean MWF and δMWF maps. In vivo mean and standard deviation
MWFmaps were generated by calculating themean and standard devi-
ation of the MWF for each age group (Table 3). Paired t-tests were
performed using FSL's Randomise tool (www.fmrib.ox.ac.uk/fsl/) to
compare these in vivo and model-derived data, with significant differ-
ences defined as p b 0.05, uncorrected for multiple comparisons. Per-
mutation testing was restricted to a custom white matter mask for
each group. This custom white matter mask was created using the

http://www.fmrib.ox.ac.uk/fsl/


Fig. 1. (A) Properties of a sigmoid function. Althoughmany functional forms exist, each shares three similar characteristics: 1) an initial lag or period of slow growth, 2) a period of rapid
exponential growth, and 3) a period of reduced growth-rate. These properties and shape of the overall curve are governed by the free parameters of the model. (B) Modified Gompertz
model is described by 4 free parameters, each contributing to the characteristics of the curve. These parameters may be useful for describing biologically relevantmetrics such as a devel-
opmental transitionary period (α), developmental lag, or (β) growth rates (γ, δ).
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mean in vivo MWFmap (for each group) by thresholding voxels with a
MWF value below 0.02.

Next, theutility of usingmodel-derivedMWFmaps to investigate in-
dividual differences was examined. The developed MWF model was
compared to four individuals from which three repeated datasets have
been acquired. Repeatedmeasurements were acquired from these indi-
viduals as part of the longitudinal studyprotocol (Deoni et al., 2012). For
each repeated measurement, age-matched model-derived MWF and
maps were calculated. Individually measuredMWFmaps were normal-
ized into the common study template space as previously described. Z-
statistic analysis was then performed to identify differences between
the acquired and model MWF maps. The Z-statistic was calculated at
each imaging voxel:

Zi ¼ xi−ui=sið Þ ð2Þ

where, xi represents the ith MWF voxel from the in vivo MWF map, ui
and si are corresponding voxels from the model-derived MWF and
Table 2
Fitting functions used to fit themyelination trajectories in children less than 2 years of age.
The fitting routine first estimates the initial values for the free parameters and is then
followed by non-linear regression that iteratively solves for the free parameter values by
minimizing the sum of squares between the predicted and measured values. Free param-
eters are denoted by boldface Greek letters.

Functional form of modes

Model Number of
parameters

Functional form of modes

Gompertz 3 α ∗ exp[−exp(β − γ ∗ x)]
Modified Gompertz 4 α ∗ exp[−exp(β − γ ∗ x) + δ ∗ x]
Bleasdale and Nelder 4 (α + βxδ)−1/γ

Richards 4 α ∗ (1 + β ∗ exp[γ ∗ (δ − x)])−1/δ

Stannard 4 α ∗ (1 + exp[−(β + γ ∗ x)/δ])−δ

Hyperbolic tangent 4 α + β ∗ tanh(γ ∗ x − δ)
Logistic 3 α ∗ [1 + exp(β − γ ∗ x)]−1

General logistic 6 α + (β − γ) ∗ (1 + ζ ∗ exp[−β ∗ (x − δ)])−1/ε
δMWF maps, respectively. Z-statistic analysis was also restricted to a
white matter mask, created by thresholding voxels below with a MWF
value below 0.02 from the individual's MWF map. Areas of significant
deviation (p b 0.05, uncorrected for multiple comparisons) were de-
fined as |Z| b 1.96.

Post-hoc construction of confidence interval for corpus callosum

To further demonstrate that the selected model best characterizes
the underlying growth trajectory of the MWF, 95% confidence intervals
were constructed for the regional trajectories of the genu, body, and
splenium of the corpus callosum. Non-linear fitting using the wild-
bootstrap with residual resampling was performed on these three re-
gions to generate mean and uncertainty measures for the parameters
of the growthmodel from5000 resamples. From thesemean anduncer-
taintymeasures, 95% confidence intervals of the growth trajectory were
constructed. Regional trajectories of the independent sample of 63 addi-
tional subjects previously mentioned (Table 3) were also compared to
these normativemodel fits and confidence intervals. Residuals between
the predicted (meanmodel) and measured (in vivo) MWF values were
then calculated for each region.

Results

Regional MWF trajectories for each investigated brain region are
shown in Fig. 2. All trajectories follow the expected sigmoidal shape,
with a period of lagged growth extending from birth through approx.
90–150 days, depending on the brain region, followed by rapid, expo-
nential growth to approx. 400 days of age. Beyond 400 days, the trajec-
tory begins to appear logarithmic in nature. We found transformed
MWF values to be highly correlated with native-space values, with
Pearson's r correlation coefficient ranging from 0.9225 to 0.9974
(Fig. 3). Thus, the normalization did not result in inhomogeneous
changes to the MWF maps and consequently was found to be reliable
for aligning individual MWF maps.



Table 3
Supplemental information on additional subjects used in comparingmodel-derivedMWFmaps to in vivoMWFmaps. Comparison ofmodel-derivedMWFmaps to group averagedMWF
maps were broken into 9 separate age groups.

Model-derived MWF map comparison to group averaged MWF maps

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9

Number of subjects 4 8 9 7 5 6 6 4 10
Age (range) 106–141 253–309 312–396 410–477 502–583 593–652 712–942 1263–1294 1351–1809
Age (mean) 121.75 280.625 350.89 445.86 536.6 624.83 815.5 1278 1645.3

Model-derived MWF map comparison to individual MWF maps

Subject 1 Subject 2 Subject 3 Subject 4

Scan 1 age (days) 115 200 265 724
Scan 2 age (days) 288 353 449 1083
Scan 3 age (days) 449 578 632 1413
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A representative sample of the best-fit results for eachmodel to data
from the body of the corpus callosum is shown in Fig. 4. A summary of
the entire fitting results, including free parameter estimates and BIC
values, for each region is shown in Table 4. Based on BIC measure com-
parisons, we found that themodified Gompertzmodel consistently pro-
vided the most faithful characterization of the MWF data. Thus, this
function was subsequently used to construct the 4-D developmental
atlas by fitting this function to each individual voxel.

The predictive validity of the model is shown in Figs. 5 and 6. Fig. 5
contains results from the comparison of in vivo group-averaged MWF
maps and model-derived maps at the same ages. Qualitatively, the
in vivo and model-derived MWF maps appear similar. Results from
the paired t-test analysis yielded few statistical differences (p b 0.05
Fig. 2.Derivedmyelination trajectories for the left and right hemisphere frontal, temporal, occip
callosum from 122 healthymale infants under 5 years of age. Right and left hemisphere measu
the standard deviation of themeasurement. These developmental trajectories exhibit the charac
acterize the underlying pattern.
uncorrected for multiple comparisons) between the acquired and
model derived MWF maps for each age group.

We also investigated how well the atlas predicted individual MWF
estimates at variable ages by comparing derived MWF maps with indi-
vidually acquired MWF data. Representative results of these analyses
are shown in Fig. 6, which shows images from the acquired maps,
model-derived images, and the Z-statistic maps. Z-statistic values are
indicated at each image voxel of the representative axial slice. A small
number of regions of significant difference (|Z| b 1.96, corresponding
to p b 0.05) were found between the acquired and model-derived
MWF maps in the examined subjects.

Bootstrap analysis of the regional MWF trajectories for the genu,
body and splenium of the corpus callosum was performed to construct
ital, parietal and cerebellar whitematter, aswell as body, genu, and spleniumof the corpus
rements are denotedwith black squares and gray circles, respectively. Error bars represent
teristic ‘S’-shaped curve of a sigmoid, suggesting this class ofmodelsmight be best to char-

image of Fig.�2


Fig. 3. Plot comparing representative native-space and template-spacemeanMWF values. High correlation between the native-space and template-space illustrate thatMWF values were
not significantly altered through the normalization process.
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95% confidence intervals using the modified Gompertz model. The
mean modified Gompertz fit with the 95% confidence intervals are
shown overlaid on the trajectories of the three regions in Fig. 7. Residual
histograms (Fig. 7) illustrate the distribution of the residuals across the
trajectories of these three regions. As expected, bootstrapping the para-
metric fit of these regional trajectories resulted in approximately 95% of
the individual measurements to be contained within the bounds of the
confidence intervals and the residuals normally distributed (Fig. 7).

Discussion

This work sought to model white matter myelination throughout
the brain across the first five years of life in healthy male infants and
toddlers. Investigating the overall shape of the myelination trajectories
in the investigated regions revealed a non-linear sigmoidal develop-
mental trajectory: with a lag period (0–150 days) preceding exponen-
tial growth (150–400 days) followed by a period of reduced growth
thereafter. This growth trajectory is consistentwith previous studies in-
vestigating this age-range (Deoni et al., 2012, 2013; Hermoye et al.,
2006). Of the sigmoidal models investigated, we found a modified ver-
sion of the Gompertz function to provide the best characterization of
the regional MWF developmental data. This result is also consistent
with a prior study that used the traditional, 3 parameter Gompertz func-
tion to model DT-MRI metrics across a younger age-range (Sadeghi
et al., 2012). However, this study did not investigate alternative func-
tions, used data from only 3 age points and focused on amore restricted
age range (under 2 years of age). Furthermore, while the traditional
Gompertz function may be best to describe the underlying growth
trajectory at an early age, this function approaches an asymptote as
age increases, and thus limiting its ability to account for the continued
myelination that occurs throughout childhood and early adulthood
(Kumar et al., 2011; Lebel and Beaulieu, 2011). The inclusion of an addi-
tional linear term inside the exponent of theGompertz function corrects
for the asymptotic behavior of the Gompertz function, allowing the
model to account for continued growth.

The biological interpretation of the modified Gompertz function's
free parameters may provide important insight into the developmental
process. Fig. 1B illustrates the role that each parameter has on the over-
all shape of this function. The first parameter,α, sets the overall scale of
the function's trajectory and corresponds to the amplitude of themodel
at the transition from rapid, exponential development to reduced, con-
tinued growth. In terms of the current model, this parameter corre-
sponds to the MWF value at which the developmental trajectory
transitions from rapid, exponential growth to slow steady growth. The
second parameter, β, describes the initial lag period of the model that
corresponds to the time before rapid myelination. The third parameter,
γ, describes the growth rate of the rapid exponential developmental
period; while the fourth parameter, δ, corresponds to the growth rate
of the slower, continued myelination observed to take place after
24 months of age. These measures are descriptive of the underlying
maturational process and may be useful for future investigations of in-
trinsic growth patterns ofwhitemattermicrostructure. For example, in-
vestigating the growth rate among brain regions would simply entail
comparing the parameter γ of the interested regions. Furthermore, the

image of Fig.�3


Fig. 4. Representative fitting of the meanmyelination trajectory for the body of corpus callosum. Blue points represent mean MWF values from the 122 male infants, while the red curve
represents the best-fit curve for each investigatedmodel. In total, 8 sigmoidmodelswere examined. BICmetric values indicate that themodifiedGompertz growthmodel provided the best
fit.
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age at which the MWF trajectory transitions from rapid, exponential
growth to slow, continued development (characterized by α) may rep-
resent a pivotal time of the neurodevelopmental process (i.e. transition
from infancy to toddler).

The development of a parametric growth model of myelination
is also important for understanding linkages between evolving
neurodevelopment and malbehavior, as well as clinical-relevance in
premature infants, infants diagnosed with multiple sclerosis, among
other complications. For example, children with autism have been re-
ported to exhibit widespread atypical patterns of early brain growth, in-
cluding accelerated maturation of white matter (Ben Bashat et al.,
2007). MWF growth trajectories of children with autism could be di-
rectly compared to trajectories generated by the developed model in
Table 4
BIC values for investigated ROIs and fitting functions. Values highlighted in bold typeface indic

Region Gompertz Modified Gompertz Bleasdale & Nelder

Body of CC 61.027 51.966 130.787
Genu of CC 70.769 55.949 252.652
Splenium of CC 67.410 54.001 340.922
Right cerebellar WM 49.022 53.036 68.268
Left cerebellar WM 65.687 70.389 87.534
Right frontal WM 35.208 28.558 102.033
Left frontal WM 40.532 29.578 105.180
Right occipital WM 43.941 43.018 101.119
Left occipital WM 43.446 42.028 107.705
Right parietal WM 39.359 36.017 109.783
Left parietal WM 41.062 34.827 114.331
Right temporal WM 35.452 36.739 108.376
Left temporal WM 41.543 40.311 117.204
Right cingulum 65.705 61.837 99.781
Left cingulum 64.300 48.183 107.511
order to see where, when and how the growth trajectory deviates
from the normative population. While additional work is required to
evaluate comparisons with such populations, the robustness of the
method demonstrated here strongly intimates its feasibility.

Although model MWFmaps may be reconstructed after performing
a single whole brain fit of the in vivoMWF data, the resulting fitting pa-
rameters contain no information regarding their uncertainty. To obtain
information about the fitting parameter distribution, we utilized wild
bootstrap resampling of the residuals. Bootstrap resampling is not
new to MR imaging, as it has been used to estimate the uncertainty of
fiber orientations from DT-MRI (Haroon et al., 2009; Jones, 2008; Yuan
et al., 2008) and uncertainty of neural brain activity from functional
MRI (fMRI) (Darki and Oghabian, 2009; Kirson et al., 2008). This non-
ate the model that best fit the data.

Stannard Richards Logistic General logistic Hyperbolic tangent

68.032 68.879 81.048 63.046 53.977
82.122 76.479 88.235 62.128 74.276
74.421 75.885 86.653 68.075 58.786
54.375 52.338 52.119 61.976 52.321
70.371 70.774 65.401 80.390 70.787
42.239 43.058 54.718 41.890 33.543
47.943 44.163 61.924 44.343 35.627
50.556 48.005 60.463 45.040 35.595
49.585 50.898 56.949 52.541 43.130
46.222 48.493 57.173 45.331 36.154
48.321 45.502 62.224 46.280 37.341
42.192 54.712 55.017 44.458 36.346
48.892 57.261 62.864 47.770 39.517
73.378 64.982 84.783 68.782 57.379
71.280 65.806 83.456 67.624 58.438

image of Fig.�4


Fig. 5.Mean, acquired,model-derivedMWFmaps, and differencemaps for 9 separate age groups (Table 3). Comparison of acquired andmodel derivedMWFmapswasdoneusing a paired
t-test for each age group. Few significant differences (p b 0.05, uncorrected) were detected between the in vivo and model-derived maps.
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parametric, model-based resampling method is advantageous because
it does not require redundant data (i.e. multiple image acquisitions) in
order to estimate standard errors and is sufficient to use in cases of ho-
moscedasticity (uniform variance among data) and heteroscedasticity
(non-uniform variance among data) (Chung et al., 2006). One potential
caveat to this approach is that the model of choice (in this context, the
modified Gompertz growthmodel) needs to appropriately characterize
the measured data. However, our initial analysis of comparing a wide
variety of growth functions, using BIC parsimony measures, examined
this issue. We consistently found the modified Gompertz growth
model to provide a better representation of the regional MWF develop-
mental trajectories and therefore concluded that this model best repre-
sents the underling developmental pattern.

MWF imaging has a longhistory in the field of known demyelinating
disorders, such as multiple sclerosis (MacKay et al., 2009), however, its
use in examining structural and functional development is new. Further,
mcDESPOT differs from the conventional and established techniques
that have been verified histologically (Laule et al., 2006; Webb et al.,
2003). Similar verification ofmcDESPOT has been limited to histological
comparisons in the Shaking Pupmodel of dysmyelination (Hurley et al.,
2010) and indirectly through comparison with the known histological
time-course of myelination in human infants (Deoni et al., 2011,
2012), and demyelination studies in MS (Kitzler et al., 2012; Kolind
et al., 2012). Thus, the specificity of mcDESPOT MWF measures as a re-
flection solely of myelin may be questioned. However, animal and in-
vivo results garnered so far give confidence that if not specific tomyelin,
mcDESPOT provides novel information regarding white matter micro-
structure, and offers enhanced sensitivity to myelin changes relative
to T1 and T2 relaxation times, or other measures.

Outliers, caused by intra-scanmotion and other confounds, have the
potential of influencing the calculation of thequantitative imagingmaps
(i.e. MWF maps) and therefore affecting the sum of squares fitting,
which could lead to erroneous results (Chang et al., 2005). Further,
these outliers may unreasonably inflate variability when performing
wild bootstrapping. Motion artifacts were minimized as the scanning
was performed during natural, non-sedated sleep. Images were further
assessed for motion artifacts and none were found to be present. Other
potential imaging-related confounds, such as B0 and B1 inhomogeneity,
are accounted for within the mcDESPOT processing pipeline by map-
ping the B1 field and removing off-resonance effects by phase-cycling
the bSSFP data (Deoni, 2010). A 3 mm full-width-at-half-maximum
3D Gaussian kernel was additionally used to spatially smooth the
MWF maps of each participant. Although spatially smoothing the data
reduces its effective spatial resolution, the kernel size chosen was rea-
sonably conservative relative to comparable MRI studies, preserving
image detail and minimally impacting MWF values. Qualitative inspec-
tion of the regional trajectories in Fig. 2 aswell as the 95% confidence in-
tervals and residual distributions constructed for the genu, body and
splenium of the corpus callosum (Fig. 7) suggests that individual MWF
measurements are well contained. Nonetheless, smoothing filter size
has been shown to augment statistical neuroimaging findings (Jones
et al., 2005) and therefore this parameter has an impact on the findings.

Quantifying the uncertainty of each parameter represents a critical
step in the development of a model that describes MWF maturation.
Mean and standard deviation estimates of each parameter can then be
used to compute representative average and standard deviation MWF
maps, for a given age between 70 and 1809 days, which can then be
used to statistically compare against other typically developing and at-
risk children in this age range. This aspect of the developed model was
investigated using longitudinalmeasurements acquired in four subjects.
The variation of the Z-statistic values observed in Fig. 6 suggests that
there is individual deviation along the overall developmental trajectory.
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Fig. 6.Repeated individual MWF maps at three different time points. Atlas derived MWF maps were derived for each corresponding age and compared to the longitudinal data using
Z-statistics. Few areas of significant differences (|Z| b 1.96) between the repeated data and corresponding model-derived MWF maps were found.
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However, while this individual variation is known to exist (Giedd and
Rapoport, 2010; Zilles and Amunts, 2013) and is therefore expected to
be observed, a small number of these inter-individual deviations were
found to be significant (|Z| b 1.96). In particular, examination of the
first scan of subject 2 (Fig. 6) reveals areas of higherMWF in right hemi-
spheric frontal and bilateral temporal white matter within the in vivo
MWF map than the model-derived map. These results suggest that, at
this point in time, the individual deviates from the normal myelination
trajectory in these regions. The individual Z-statistic results suggest the
developed MWF model to be representative of myelin maturation and
sensitive to individual variation along the typicalmyelination trajectory.
Moreover, although the paired t-test analysis of group averaged in vivo
and model-derived MWF maps yielded few significant differences
(p b 0.05, uncorrected), these differences did not remain significant
after correcting for multiple comparisons using a cluster correction
technique (FSL, cluster threshold of 1.96) in a post-hoc examination of
these statistical results, suggesting the model-derived MWF maps to
be representative of this normative population. This represents a signif-
icant new direction for investigating early neurodevelopment. Impor-
tantly it provides a means to identify where and when myelination
deviates from the typical trajectory.
In this work, we have restricted ourselves to single gender data
across a restricted age range. This was to ensure a homogeneous sample
with which to explore themodeling functions as well as avoid potential
gender-based variations in development. It should be noted, however,
that while the goal of this work was not to identify potential gender dif-
ferences inmyelination, developmental trajectories have been reported
to differ between males and females. For example, Lenroot et al. (2007)
observed males and females to have distinct patterns of brain growth,
specifically noting males to have an accelerated rate of white matter
volume maturation. While volumetric measures, such as white matter
volume, reflect broadmicrostructural composition, the observed gender
differences are likely to be influenced by changes in myelin content.
Hence, we would expect to find similar gender differences in the trajec-
tories of MWF and a future study investigating the role that gender has
on MWF development is of great interest.

Another aspect of the developed model not investigated in this work
is generalizability of themodel to data acquired from other imaging cen-
ters and scanners. Indeed, in order formodel-derivedMWFmaps to have
broad applicability and provide meaningful comparisons across data
from different groups, values should be consistent across imaging cen-
ters and scanners. While the mcDESPOT imaging technique has been
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Fig. 7. Bootstrapped mean Gompertz fit with 95% confidence interval for mean MWF values obtained from the genu, body and splenium of the corpus callosum.
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reported to have high intra- and inter-site reproducibility (Deoni et al.,
2009), none of the data analyzed in this work has been separately ac-
quired at a different imaging facility nor has anyparticipant been imaged
on a different MRI scanner. Scanning individuals at different imaging fa-
cilities aswell as onmultiple scannerswouldnot only be of significant in-
terest but necessary to investigate this aspect of the developed model.

In this work, we have outlined a framework that can be used to
model myelination trajectories that are derived from MWF measure-
ments in children under the age of 5 years. We have shown that a mod-
ifiedGompertz growthmodel provides themost accurate representation
of myelin maturation using the BIC parsimony metric and have devel-
oped the first 4D atlas of myelin maturation in healthy males under
5 years of age. This work demonstrates the ability to accurately model
early myelin maturation trajectories and provides a normative template
of typical myelination in healthy male infants across a large age span
(between the age of 70 and 1809 days) from which atypical myelin
development can be assessed. The resulting model thus provides an im-
portant step for understanding ‘typical’ myelin development as well as
providing the ability to identify when and where white matter abnor-
malities occur in neurodevelopmental disorders.
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