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The Extended Koopman’s Theorem (EKT) provides a straightforward way to compute
charged excitations from any level of theory. In this work we make the link with the many-
body effective energy theory (MEET) that we derived to calculate the spectral function,
which is directly related to photoemission spectra. In particular, we show that at its
lowest level of approximation the MEET removal and addition energies correspond to the
so-called diagonal approximation of the EKT. Thanks to this link, the EKT and the MEET
can benefit from mutual insight. In particular, one can readily extend the EKT to calculate
the full spectral function, and choose a more optimal basis set for the MEET by solving
the EKT secular equation. We illustrate these findings with the examples of the Hubbard
dimer and bulk silicon.
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1 INTRODUCTION

The Extended Koopman’s Theorem (EKT) (Morrell et al., 1975; Smith and Day, 1975) has been
derived in quantum chemistry and used within various frameworks, from functional theories based
on reduced quantities, such as reduced-density matrix functional theory (Gilbert, 1975) (e.g., Pernal
and Cioslowski, 2005; Leiva and Piris, 2005; Piris et al., 2012; Piris et al., 2013) and many-body
perturbation theory based on Green’s functions (Hedin, 1965) (e.g., Dahlen and van Leeuwen, 2005;
Stan et al., 2006; Stan et al., 2009), to wavefunction-based methods (e.g., Cioslowski et al., 1997; Kent
et al., 1998; Bozkaya, 2013; Zheng, 2016; Bozkaya and Ünal, 2018; Pavlyukh, 2019; Lee et al., 2021).
The EKT allows one to calculate energies corresponding to charged excitations. Although it can be
formulated both for ionization potentials (IPs) and electron affinities (EAs), it has been widely used
only for the former, whereas for the latter applications have been limited to the calculation of the
lowest EA as the first IP of the (N+1)-electron system (in case of finite systems), withN the number of
electrons in the reference system. There exist hence many benchmarks for the IPs. So far, the method
has been mainly used for finite systems. The EKT is known to be in principle (i.e., using exact
ingredients, namely the one- and two body density matrices, as we shall see) exact for the first
ionization potential (Katriel and Davidson, 1980; Sundholm and Olsen, 1993). In the solid state
instead there are only a few applications which only focus on the band structure. It would be desirable
to have also the spectral function, i.e., the spectrum of electron addition and removal
energies weighted by the Dyson amplitudes, which measure the overlap between the eigenstates
of the (N + 1) − electron ((N − 1) − electron) system and the ground state of the N-electron system
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where an electron has been added (removed). The spectral
function is related to photoemission spectroscopy, which gives
precious information about the electronic structure and
excitations in a system, and, moreover, allows one to study
metal-insulator transitions, of paramount importance in
condensed matter.

A simple way to calculate the spectral functionA(ω) is through
the imaginary part of the one-body Green’s function G(ω), as
A(ω) � 1

π sgn(μ − ω)IG(ω), where μ is the chemical potential. The
one-body Green’s function is the fundamental quantity of many-
body perturbation theory; it can be obtained from the Dyson
equation G � G0 + G0ΣG, in which G0 and G are the
noninteracting and interacting Green’s functions, respectively,
and Σ the so-called self-energy, which contains all the many-body
effects of the system. This latter quantity needs to be
approximated in practical calculations. Commonly used
approximations, such as the well-known GW approximation
(Hedin, 1965), cannot capture the Mott physics (Romaniello
et al., 2009; Romaniello et al., 2012; Di Sabatino et al., 2015;
Di Sabatino et al., 2016; Di Sabatino et al., 2021). Therefore much
effort is devoted to develop better approximations to Σ (Springer
et al., 1998; Zhukov et al., 2004; Shishkin et al., 2007; Kuneš et al.,
2007; Guzzo et al., 2011; Romaniello et al., 2012; Lischner et al.,
2013; Stefanucci et al., 2014) or to develop novel ways to
determine G (Lani et al., 2012; Berger et al., 2014). In this
spirit in these last years we have developed the many-body
effective energy theory (MEET) (Di Sabatino et al., 2016), in
which the spectral function is expressed in terms of density
matrices, or, alternatively, in terms of moments of G, as
reported in Ref. (Di Sabatino et al., 2019). This has allowed us
to describe the band gap in several paramagnetic transition-metal
oxides (Di Sabatino et al., 2016; Di Sabatino et al., 2019; Di
Sabatino et al., 2021), such as NiO, which are considered strongly
correlated materials and which are described as metals by static
mean-field theories, such as DFT, and by GW. This is an
important result. However the band gap is hugely
overestimated by the MEET within the current low-order
approximation in terms of the (approximate) one- and two-
body density matrices. Improvements are needed, either by going
to higher-order density matrices, which, however, is not
guaranteed to converge, or by introducing some sort of
screening in the equations. Recently we have obtained
promising results for the description of the insulator-to-metal
transition of PM FeO under pressure by combining the MEET
and the local-density approximation (LDA) (Di Sabatino et al.,
2021), and we are currently working on introducing electron-hole
screening in the MEET equations. However there is another path
which we can explore, and this comes from the relation between
theMEET and the EKT. As we will show in the following, within a
given basis, the removal and addition energies obtained within
the MEET at the lowest-order approximation are equal to the
EKT removal and addition energies within the diagonal
approximation. In this work we discuss this link and its
impact on both theories.

The paper is organized as follows. In Theory we give the basic
equations of the EKT and the MEET and we make the link
between them. The Hubbard dimer and bulk silicon are used to

illustrate the difference between the EKT and the MEET (removal
and addition) energies in Mutual Insights and Illustration. In
Conclusions and Perspectives we draw our conclusions and
perspectives.

2 THEORY

In this section we briefly review theMEET and EKTmethods, and
wemake the link between the two.We will consider anN-electron
system governed by the following Hamiltonian in second
quantization

Ĥ � ∑
ij

hijâ
†
i âj +

1
2
∑
ijkl

Vijklâ
†
i â

†
j âlâk,

where â and â† are the annihilation and creation operator,
respectively, hij � ∫dxϕ*i (x)h(r)ϕj(x) are the matrix elements of
the one-particle noninteracting Hamiltonian h(r) � − ∇2/2 +
vext(r), with vext an external potential, and Vijkl �∫dxdx′ϕ*i (x)ϕ*j(x′)vc(r, r′)ϕk(x)ϕl(x′) are the matrix elements of
the Coulomb interaction vc. Here x � (r, α) combines space and
spin variables and i, j, . . . denote both space and spin labels (they
will be made explicit only when necessary).

2.1 Key Equations of the MEET
Within the MEET the time-ordered 1-body Green’s function
G(ω) at zero temperature is split into removal (R) and addition
(A) parts as G(ω) � GR(ω) + GA(ω). In the following we
concentrate on the diagonal elements of G, which are related
to photoemission spectra. Within the MEET the diagonal matrix
elements of GR/A(ω) are written in terms of an effective energy
δR/Ai (ω) as (Di Sabatino et al., 2016):

GR
ii(ω) �

cii
ω − δRi (ω) − iη

, (1)

GA
ii (ω) �

1 − cii
ω − δAi (ω) + iη

, (2)

with cii the diagonal matrix element of the one-body density
matrix in a given basis set. We note that a similar effective energy
can be introduced also for the off-diagonal elements of GR/A. The
spectral function is hence expressed as

Aii(ω) � ciiδ(ω − δRi (ω)) + (1 − cii)δ(ω − δAi (ω)), (3)

where the symbol δ on the right-hand side indicates the Dirac
delta function. In our previous works we have chosen the
basis set of natural orbitals, i.e., the orbitals which
diagonalize the one-body reduced density matrix. In this
case cii � ni, i.e., the natural occupation numbers. This
choice has been made based on our results on exactly
solvable Hubbard clusters, where the MEET performs very
well. (Di Sabatino et al., 2016) However this does not
guarantee that it remains the best choice for more realistic
systems. In fact this is not the case as we shall see.

The effective energy δR/Ai (ω) can be written as an expansion in
terms of reduced density matrices. The expression truncated at
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the level of the one- and two-body reduced density matrices (2-
RDM) reads (in the basis of natural orbitals).

δR,(1)i � hii + 1
ni

∑
klm

VimklΓ(2)klmi (4)

δA,(1)i � hii + 1
(1 − ni) ∑k Vikik − Vikki( )nk

− 1
(1 − ni) ∑klm VimklΓ(2)klmi,

(5)

where Γ(2)klmi � 〈ΨN
0 |â†i â†mâlâk|ΨN

0 〉 are the matrix elements of the
two-body reduced density matrix, with ΨN

0 the ground-state
wavefunction of the N-electron system. As discussed in Ref.
(Di Sabatino et al., 2016) the various approximations
δR/A,(n)i (ω) are related to the n-th moments

μR/An,i � ∑kB
k,R/A
ii (ϵR/Ak )n
∑kB

k,R/A
ii

of the GR/A
ii (ω). Here ϵRk � (EN

0 − EN−1
k ) and ϵAk � (EN+1

k − EN
0 )

are removal and addition energies, respectively, and

Bk,R
ii � 〈ΨN

0 |ĉ†i |ΨN−1
k 〉〈ΨN−1

k |ĉi|ΨN
0 〉

Bk,A
ii � 〈ΨN

0 |ĉi|ΨN+1
k 〉〈ΨN+1

k |ĉ†i |ΨN
0 〉,

with EN
0 and ΨN

0 the ground-state energy and wave function of the
N-electron system and EN±1

k and ΨN±1
k the kth state energy and

wave function of the (N ± 1)-electron system. This allows for amore
compact expression of GR/A

ii (ω) as a continued fraction of moments

GR
ii �

ni

ω − μR1,i
ω−μR1,i ...

ω−μR
2,i

μR
1,i

...

, (6)

(and similarly for GA
ii ). More details on the continued fraction

expression for G can be found in Refs (Di Sabatino et al., 2016;
Di Sabatino et al., 2019). At the level of δR/A,(1), the Green’s
function depends only on the first moment, while neglecting all
the higher-order frequency-dependent corrections. As shown in
Ref. (Di Sabatino et al., 2019) this means that each component
GR/A
ii has only one pole which is a weighted average of all the

poles of GR/A
ii . If each component of G has a predominant

quasiparticle peak, this is a good approximation, provided
that the approximation to the first moment is accurate
enough. At the level of δR/A,(2) the Green’s function depends
on the first and second moments; since now the corrections are
frequency-dependent more poles appear (namely, two removal
and two addition poles for each component of G, which are
visible if the corresponding weights are nonzero). This
approximation tends to reproduce the two most dominant
removal/addition peaks for each component of G. Higher-
order moments will produce more poles; however,
approximations become quickly uncontrolled (Di Sabatino,
2016), which can lead to unphysical results.

2.2 Key Equations of the EKT
Within the EKT one starts from the following approximation for
the removal energy ϵRi (Kent et al., 1998)

ϵRi � −〈Ψ
N
0 |Ô

†

i [Ĥ, Ôi]|ΨN
0 〉

〈ΨN
0 |Ô

†

i Ôi|ΨN
0 〉

(7)

withΨN
0 the ground-statemany-bodywave function of theN-electron

system, and Ôi � ∑kC
R
kiâk, Ô

†

i � ∑kC
R *
ki â

†
k, with {CR

ki} a set of
coefficients to be determined. The stationary condition (with
respect to the coefficients CR

ki) for ϵRi leads to the secular equation

(VR − ϵRi SR)CR
i � 0, (8)

with VR
ij � −〈ΨN

0 |â†j[Ĥ, âi]|ΨN
0 〉 and SR the one-body density

matrix SRij � cij � 〈ΨN
0 |â†j âi|ΨN

0 〉. If one defines the matrix ΛR �[SR]−1VR in the basis of natural orbitals, with SRij � niδij and
works out the commutator in VR

ij, one arrives at

ΛR
ij �

1
ni

nihji +∑
klm

VjmklΓ(2)klmi
⎡⎣ ⎤⎦. (9)

The eigenvalues of ΛR are the removal energies. (Morrell et al.,
1975; Pernal and Cioslowski, 2005) By comparing to Eq. 4 it
becomes clear that the diagonal element of ΛR are the removal
energy of the MEET within the low-order approximation. The
diagonal element of ΛR are also referred in literature as the
energies of the EKT within the diagonal approximation (DEKT).

Similar equations hold for the addition energies. One can
indeed define the addition energy ϵAi as

ϵAi � 〈ΨN
0 |[Ĥ, Ôi]Ô†

i |ΨN
0 〉

〈ΨN
0 |ÔiÔ

†

i |ΨN
0 〉

(10)

and in a similar way as for ϵRi we arrive at the eigenvalue equation

(VA − ϵAi SA)CA
i � 0, (11)

with VA
ij � 〈ΨN

0 |âi[Ĥ, â†j]|ΨN
0 〉 and SA related to the one-body

density matrix as SAij � 1 − cij. Similarly to the removal energy
problem, using the basis of natural orbitals, one can work out the
commutator inVA

ij and reformulate the problem in terms of the matrix
ΛA � [SA]−1VA1, which reads

ΛA
ij �

1
(1 − ni)×

(1 − ni)hji +∑
k

Vjkik − Vjkki( )nk −∑
klm

VjmklΓ(2)klmi
⎡⎣ ⎤⎦.

(12)

Again, the diagonal elements of ΛA are the MEET addition
energies within the approximation given in Eq. 5.2

1Since in the basis of natural orbitals the SR (SA)matrix is a diagonalmatrixwith the natural
occupation numbers ni (1-ni) as elements, the invertibility of thismatrix is strictly related to
the non-existence of so-called pinned states, i.e. states with occupation numbers equal to 1
or 0. This is an important question that has several consequences (e.g., Giesbertz and van
Leeuwen, 2013; Baldsiefen et al., 2015). Here we assume that SR (SA) is invertible in a
restricted space (of natural orbitals) in which the corresponding KS orbitals are occupied
(unoccupied). This is a reasonable assumption.
2Note that the standard EKT equations in RDMFT (Morrell et al., 1975) present a
prefactor 1/

����
ninj

√
(1/

������������
(1 − ni)(1 − nj)

√
) instead of 1/ni (1/(1 − ni)) in Eq. 9 (Eq. 12);

these two choices yield the same eigenvalues for the matrix ΛR (ΛA).
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3 MUTUAL INSIGHTS AND ILLUSTRATION

Now that we have established the link between the EKT and
the MEET we will study how these theories can benefit from
mutual insight.

3.1 Hubbard Dimer
We use a modified version of the Hubbard dimer in which the on-
site Coulomb interaction is different for the two sites. Its
Hamiltonian is given by

H � −t ∑
i,j�1,2
i≠j

∑
σ

â†iσ âjσ + U1n̂1↑n̂1↓ + U2n̂2↑n̂2↓, (13)

where i, j run over the sites, n̂iσ � â†iσ âiσ , Ui is the on-
site interaction at site i, − t is the hopping kinetic energy
(the site energy ϵ0 has been set to zero). Contrary to the
standard dimer with a unique on-site interaction, in the case
of two different on-site interactions the ΛR/A are not
diagonal in the basis of natural orbitals. Therefore, this
model allows us to study the effect of the diagonalization
on the removal/addition energies in the
diagonal approximation. The model can represent the
case of a heteronuclear diatomic molecule in a minimal
basis set in which the valence orbitals of the two atoms
are of different nature, such as HCl or NiO, for example. We
note that also using the asymmetric Hubbard dimer with
two different site energies the EKT equations are not
diagonal in the basis of natural orbitals, however the
difference between EKT and DEKT energies is not
significant.

3.1.1 Insights Into the EKT
Making the parallel with the MEET, one can readily define the
EKT spectral function as.

AR
ii(ω) � ciiδ(ω − ϵEKT,R

i ), (14)

AA
ii (ω) � (1 − cii)δ(ω − ϵEKT,A

i ), (15)

with cii and 1 − cii the diagonal matrix element of the
one-body density matrix in the basis which diagonalizes
ΛR
ij and ΛA

ij, respectively (not necessarily the same for ΛR
ij

and ΛA
ij). We notice that the factor cii should refer to a

proper one-body density matrix, i.e., a one-body
density matrix which fulfils the ensemble N-
representability constraints. In our case this is guaranteed
by the total energy minimization (which includes the
constraint 0 ≤ ni ≤ 1) in RDMFT. Moreover, as for the
MEET removal (addition) energies (in its lowest-order
approximation), the removal (addition) EKT energies
can be interpreted in terms of the first moment of GR

ii
(GA

ii ), i.e., as weighted averages of all the poles of GR
ii (G

A
ii )

within the basis that diagonalizes the ΛR (ΛA) matrix.
Indeed, inserting a complete set of eigenstates of the (N −
1)-electron system in Eq. 7, the commutator can be
rewritten as

ϵRi � −∑
k

〈ΨN
0 |Ô

†

i |ΨN−1
k 〉〈ΨN−1

k |[Ĥ, Ôi]|ΨN
0 〉

〈ΨN
0 |Ô

†

i Ôi|ΨN
0 〉

� −∑
k

〈ΨN
0 |Ô

†

i |ΨN−1
k 〉〈ΨN−1

k |Ôi|ΨN
0 〉

〈ΨN
0 |Ô

†

i Ôi|ΨN
0 〉

(EN−1
k − EN

0 )

�
∑
k

Bk,R
ii ϵRk

∑
k

Bk,R
ii

,

(16)

which is a weighted average of the poles of GR
ii . Inserting a

complete set of eigenstates of the (N + 1)-electron system in
Eq. 10 one can show in a similar way that the ϵAi �∑kB

k,A
ii ϵAk /∑kB

k,A
ii within the EKT basis. This means that if

there are not satellites in the EKT basis set, then the EKT
removal/addition energies are exact, provided that one uses
the exact first moment.

We notice that very recently Lee et al. (Lee et al., 2021), have
also proposed an expression for the spectral function from
the EKT.

3.1.2 Insights Into the MEET
Several choices for an optimal basis set for the MEET expressions
are now possible. In previous works we considered the basis of
natural orbitals as optimal basis set for the MEET based on the
following findings (Di Sabatino, 2016): i) theMEET (in this basis of
natural orbitals) gives the exact spectral function at all level of
approximations for the symmetric Hubbard dimer using exact
density matrices; ii) the MEET in its lowest level of approximation
in terms of one- and two-body density matrices gives good results
for the spectral function of the (symmetric) Hubbard model with

FIGURE 1 | Spectral function of the Hubbard dimer with two different
on-site interactions U1 and U2 for site 1 and site 2, respectively: exact solution
(black curves) vs. EKT (black curves, EKT is exact in this case, see text) and
DEKT/MEET in the basis of natural orbitals (red curves).
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more sites using approximate density matrices. Moreover, for
these (symmetric) model systems the ΛR/A matrices of the EKT
are diagonal in the basis of natural orbitals, therefore there is not
another better option. For the asymmetric Hubbard dimer
instead, and in general for realistic systems, the basis of
natural orbitals does not diagonalize the ΛR/A matrices,
therefore the set which diagonalizes these matrices can be a
better option for the MEET. We notice that this choice of the
optimal basis set can be generally applied to other methods
which express G as a continued fraction, such as the Lanczos
method (Balzer et al., 2011), in order to have more accurate
results at a given order of truncation of the series. For example
in Figure 1 we report the spectral function of the Hubbard
dimer governed by the Hamiltonian in Eq. 13 for two different
values of |U1 − U2|. The (D)EKT results are obtained using exact
density matrices. The results show that the basis which
diagonalizes the ΛR/A matrices is a much better choice than
the basis of natural orbitals the more the difference |U1 − U2| is
large. We also observe that the removal part is less affected by
the diagonal approximation than the addition part, and we
observe this trend also in more complex systems. The diagonal
approximation has been addressed in literature also for realistic
systems. (Piris et al., 2013; Kent et al., 1998) In particular in bulk
silicon QMC results show that the DEKT slightly overestimates
the EKT band gaps. Below we will address this system in more
details.

3.2 Realistic Systems: The Example of
Bulk Si
As an example of realistic systems we use bulk silicon, for which
results using the EKT within QMC are reported in Ref. (Kent
et al., 1998). The diagonal approximation to the EKT within
QMC works very well for the valence states and slightly less well
for the conduction states, with a band gap at the Γ point of 4.4 eV
vs. 3.8 eV from the full EKT compared to 3.4 eV in experiment.
(Kent et al., 1998) We note that this discrepency is largely due to
the energy of the conduction band at Γ. However, bulk silicon is a
relatively weakly correlated system, with hence a predominant
quasiparticle-like spectral function for which the EKT is a good
approximation. Larger overestimation of the band gap can be
expected for strongly correlated systems. This can be understood
from the interpretation of the EKT energies as first moments of
the one-body Green’s function. However, an important point to
stress is that even for these systems, which are a challenge for
state-of-the-art ab initio methods, such as GW, the EKT would
open a gap, in accordance with experiment.

As pointed out in Ref. (Kent et al., 1998) the choice of the trial
wave function for QMC calculations is of critical importance.
Indeed, as a result of the fixed-node approximation, QMC
calculations of the matrix elements of the density matrix and
operators VR,A (see EKT Equations 8, 11) are expected to
critically depend on the nodal structure of the trial wave
function employed. For the weakly correlated bulk silicon the
accurate QMC value of 3.8 eV reported above has been obtained
by (Kent et al., 1998) using a standard Slater-Jastrow trial wave
function whose nodes are those of a single determinant consisting

of LDA orbitals. For more strongly correlated systems the wave
function acquires a significant multi-determinant character and
getting physically meaningful nodes becomes much more
difficult. It is thus useful to use the EKT within alternative
approaches.

In our previous works (Di Sabatino et al., 2016, 2019, 2021) we
used reduced-density matrix functional theory (RDMFT)
(Gilbert, 1975) to find approximations to the one- and two-
body density matrices which are needed in the MEET equations.
More specifically the two-body density matrix in the MEET
equations is approximated using the Power functional, which
is given by Γ(2)ijkl � ninjδilδjk − nαi n

α
jδikδjl (α � 0.65). (Sharma et al.,

2013) The optimal natural orbitals {ϕi} and occupation numbers
{ni} are obtained by minimizing the total energy which is
expressed in terms of c and Γ(2), with Γ(2) as functional of c.
The Power functional is used also to approximate Γ(2)[c] in the
energy functional. In this work we use the same protocol for the
EKT equations. We implemented the EKT equations in a
modified version of the full-potential linearized augmented
plane wave (FP-LAPW) code ELK (Elk, 2004), with practical
details of the calculations following the scheme described in Ref.
(Sharma et al., 2008). For bulk Si we used a lattice constant of
5.43 Å and a Γ-centered 8 × 8 × 8 k-point sampling of the
Brillouin zone. In Figure 2 we report the DEKT spectral function
of bulk silicon: the direct band gap at Γ is 12.9 eV, while the
fundamental band gap is 8.18 eV, which is larger than the
experimental one of 1.12 eV (Sze, 1969). We also observe a
spurious peak in the band gap due to the fact that the Power
functional produces occupation numbers which strongly deviate
from 1 and 0 (as one would expect for this weakly correlated
system) close to the Fermi energy (see bottom panel of Figure 2).
This is in contrast with the QMC results. Note that we observe

FIGURE 2 | Spectral function of bulk Si within DEKT (violet solid line). The
experimental photoemission spectrum (small triangles) is taken from Ref.
(Chelikowsky et al., 1989). The color map illustrates the occupation numbers
ni that play a role into the spectrum for the reported energy range.
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similar deviations from 1 and 0 also for other weakly correlated
systems, such as diamond, which points to a problem of the
Power functional for the description of occupation numbers of
weakly correlated systems. Moreover, the full EKT does not
show any improvement over the DEKT, as one can see from
Figure 3, in which the EKT and DEKT energies are reported:
the fundamental band gap is reduced by only 0.06 eV. This is
again in contrast with the QMC results in which, although
small, there is a significant difference. We attribute this
different trend to the use of the Power functional, which
contracts the four-point 2-RDM to two points only, and
hence probably mitigating the impact of the diagonalization
of the ΛR/A matrices. These results on bulk Si indicate that,
although the EKT/DEKT are expected to overestimate the band
gap (even using very accurate density matrices, as for example
shown in the case of the Hubbard model (Di Sabatino et al.,
2016)), this overestimation can be much amplified by using
approximations such as the Power functional. More advanced
approximations to Γ(2) are hence needed, which give, in
particular, more accurate natural occupation numbers. We
notice that varying α would change the band gap width. In
particular α � 1 would give the HF band gap, which still
overestimates the experimental one, whereas decreasing α
would increase the overestimation of the band gap.

4 CONCLUSIONS AND PERSPECTIVES

We linked our recently derived Many-Body Effective Energy
Theory (MEET) for the calculation of photoemission spectra
to the Extended Koopman’s Theorem (EKT). Within the
lowest level of approximation in terms of one- and two-
body density matrices, the MEET equations correspond to
the so-called diagonal approximation to the EKT (DEKT)
equations. This allowed us to readily extend the EKT to the

calculation of an approximate spectral function as well as to
give an alternative interpretation of the EKT in terms of
moments of the one-body Green’s function. Using the test
case of the Hubbard dimer with two different on-site
interactions U1 and U2 for site 1 and site 2 we showed the
effect of the basis set on the MEET (removal and addition)
energies: in particular HOMO-LUMO gap in the basis sets
which solve the EKT secular equations (one basis set for the
valence part and one for the conduction part) is smaller than
the HOMO-LUMO gap obtained using the natural orbital
basis set. These results are in line with the EKT results
reported in literature for bulk Si using QMC. We have
implemented the EKT within reduced-density matrix
functional theory (RDMFT), which offers a convenient
computationally affordable framework to treat extended
systems. However one has to rely on approximate one- and
two-body density matrices. We showed that using the
currently available approximations the DEKT band gap of
Si largely deviates from the DEKT value obtained using QMC
(12.9 eV vs 4.4 eV at the Γ point) and, moreover, there is no
effect of the basis set (EKT vs DEKT) on the DEKT energies,
contrary to what is observed within QMC, where, although
small, there is a significant difference. These results on bulk Si
indicate that, although the EKT/DEKT are expected to
overestimate the band gap (even using very accurate density
matrices), this overestimation can be much amplified by
commonly used approximations in RDMFT. This also
explains the huge overestimation of the band gap obtained
by the MEET within RDMFT in strongly correlated systems
such as paramagnetic NiO. We are currently working on
improving approximations to correlation in RDMFT by
introducing some form of screening (for example the
screening due to electron-hole excitations as in GW), which
is of particular importance in solids.
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