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Abstract 
Cyanobacterial harmful algal blooms, particularly those dominated by Microcystis, pose significant ecological and health 
risks worldwide. This review provides an overview of the latest advances in biotechnological approaches for mitigating 
Microcystis blooms, focusing on cyanobactericidal bacteria, fungi, eukaryotic microalgae, zooplankton, aquatic plants, and 
cyanophages. Recently, promising results have been obtained using cyanobactericidal bacteria: not through the inoculation 
of cultured bacteria, but rather by nurturing those already present in the periphyton or biofilms of aquatic plants. Fungi and 
eukaryotic microalgae also exhibit algicidal properties; however, their practical applications still face challenges. Zooplankton 
grazing on Microcystis can improve water quality, but hurdles exist because of the colonial form and toxin production of 
Microcystis. Aquatic plants control blooms through allelopathy and nutrient absorption. Although cyanophages hold promise 
for Microcystis control, their strain-specificity hinders widespread use. Despite successful laboratory validation, field applica-
tions of biological methods are limited. Future research should leverage advanced molecular and bioinformatic techniques to 
understand microbial interactions during blooms and offer insights into innovative control strategies. Despite progress, the 
efficacy of biological methods under field conditions requires further verification, emphasizing the importance of integrating 
advanced multi-meta-omics techniques with practical applications to address the challenges posed by Microcystis blooms.

Key points
• A diverse range of biotechnological methods is presented for suppressing Microcystis blooms.
• Efficacy in laboratory experiments needs to be proved further in field applications.
• Multi-meta-omics techniques offer novel insights into Microcystis dynamics and interactions.
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Introduction

Cyanobacterial harmful algal blooms (cyanoHABs) refer 
to the rapid proliferation of cyanobacteria in water sys-
tems that cause disturbances in ecosystems. Some cyano-
bacteria produce diverse toxins that pose threats to aquatic 
animals, livestock, and even humans (Shahmohamadloo 

et al. 2023, 2020; Zeng et al. 2021a). Among the globally 
prevalent cyanoHABs, Microcystis is the most dominant 
in Asia, North America, South America, and Europe (Arif 
et al. 2023; Den Uyl et al. 2021; Huo et al. 2021; Mânica 
and Lima 2023; Park et al. 2021; Schweitzer-Natan et al. 
2023). For instance, Lake Taihu, China, has been famous 
worldwide for Microcystis blooms since the shutdown of the 
water-supply system in Wuxi in 2007, prompting intensive 
research (Chen et al. 2024; Huang et al. 2024). Microcystis 
blooms are also prevalent in freshwater systems in Korea, 
such as the Nakdong River and Daechung Reservoir (Chun 
et al. 2019, 2020; Le et al. 2023a), particularly after the com-
pletion of the Four Major Rivers Restoration Project (Park 
2012). In Lake Erie, a significant cyanoHAB in 2014 led to 
the suspension of the water supply for more than 500,000 
residents in Toledo, Ohio (Steffen et al. 2017).
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The intensification of cyanoHABs has been attributed to 
the combined effects of eutrophication and climate change 
(Burford et al. 2020; Geletu 2023; Thomalla et al. 2023). In 
particular, cyanobacteria are adapting better to elevated tem-
peratures caused by global warming (Guo et al. 2023; Wang 
et al. 2023; Yang et al. 2023). In addition, cyanoHABs pro-
mote the production of methane, a greenhouse gas (Li et al. 
2021; Wang et al. 2022b). Increased methane oxidation by 
Methylomonas during the post-bloom period can facilitate 
the recovery of water quality in eutrophicated reservoirs (Yu 
et al. 2023), but cyanoHABs still stimulate methylotrophic 
methanogenesis and accelerate global warming (Zhu et al. 
2022). Therefore, increased methanogenesis by cyanobac-
teria coupled with rising temperatures synergistically exac-
erbate cyanoHABs.

Various approaches, including physical, chemical, and 
biological methods, have been proposed to suppress Micro-
cystis blooms and improve water quality (Lusty and Gobler 
2020; Zang et al. 2020; Zhang et al. 2023c). However, physi-
cal methods for Microcystis removal are generally costly, 
and chemical methods can leave persistent substances that 
pose toxicity risks to water quality, aquaculture facilities, 
and drinking-water sources (Buley et al. 2021; Santos et al. 
2021). In contrast, biological methods are regarded as more 

favorable owing to their nontoxic nature and highly spe-
cific effects on the target cyanobacteria. Furthermore, the 
recent integration of high-throughput sequencing and bio-
informatic/ecoinformatic techniques has created an oppor-
tunity to obtain novel insights and enhance the reliability 
and effectiveness of biological methods. This review focuses 
on analyzing biotechnological approaches for suppressing 
Microcystis blooms, assessing their field applicability, and 
prospecting innovative techniques based on genomics and 
multi-meta-omics.

Biotechnological approaches for Microcystis 
suppression using diverse biotic agents

Biotechnological methods for suppressing Microcystis can 
be categorized into microorganism- and macroorganism-
based methods. Microorganisms comprise bacteria, fungi, 
eukaryotic microalgae, zooplankton, and viruses, whereas 
macroorganisms include aquatic plants. Each organism 
either directly attacks Microcystis or indirectly influences 
it by releasing allelopathic compounds. This review focuses 
on biotic agents that have been isolated and used to suppress 
Microcystis (Fig. 1).

Fig. 1   Overview of diverse biotechnological approaches for suppressing Microcystis 



Applied Microbiology and Biotechnology         (2024) 108:466 	 Page 3 of 13    466 

Cyanophages

Cyanobactericidal bacteria are considered to be crucial 
biological facilitators for Microcystis suppression. These 
bacteria exploit both direct and indirect modes of action 
against Microcystis. Direct activity involves physical con-
tact between cyanobactericidal bacteria and Microcystis, 
whereas indirect activity involves the secretion of secondary 

metabolites (Table 1). Streptomyces globisporus G9 and 
Stenotrophomonas sp. KT48 kill Microcystis aeruginosa 
by direct cell-to-cell attack (Lyu et al. 2022; Zeng et al. 
2021b). However, direct cyanobactericidal bacteria have 
been scarcely reported when compared with indirect ones. 
The multifaceted effects of indirect activity, mediated by 
allelopathic compounds, often surpass those of direct activ-
ity. Indirect mechanisms involve the degradation of cell 

Table 1   Summary of control mechanisms for Microcystis bloom using cyanobactericidal bacteria

Mechanism Mode of action Species Effective concen-
tration

Initial cell den-
sity of Micro-
cystis

Growth inhibi-
tion

Duration Reference

Direct Cell-to-cell con-
tact and lysis

Aeromonas 
bestiarum 
HYD0802-
MK36

1 × 107 cells/mL 5 × 104 cells/mL 91.0% 2 days Park et al. (2022)

Cell-to-cell con-
tact and lysis

Streptomyces glo-
bisporus G9

5% (v/v) 1 × 106 cells/mL 96.7% 6 days Zeng et al. (2021b)

Lysis Stenotropho-
monas sp. 
KT48

10% (v/v) 5.2 × 106 cells/
mL

95.2% 10 days Lyu et al. (2022)

Indirect Secretion of 
algicidal 
compounds in 
filtrate

Bacillus sp. YZ1 
and Brevibacil-
lus sp. CBS

10% (v/v) 1 × 107 cells/mL 95.0% 5 days Liu et al. (2022)

Bacillus altitudi-
nis G3

5% (v/v) 4.0 × 106 cells/
mL

99.8% 72 h Hou et al. (2023)

Brevibacillus sp. 3‰ (v/v) 7 × 107 cells/mL 100.0% 96 h Liu et al. (2023)
Secretion of 

seven algicidal 
compounds 
in cell-free 
supernatant 
(cyclo (leu-pro), 
cyclo (phe-pro), 
norharman, 
trans-3-indolea-
crylic acid, 
hypoxanthine, 
kanosamine, 
and betaine)

Bacillus sp. AK3 5% (v/v) 2.59 × 106 cells/
mL

82.6% 3 days Boonbangkeng 
et al. (2022)

Secretion of 
algicidal 
compounds in 
filtrate

Morganella 
morganii

10% (v/v)
5.65 × 107 cells/

mL

1.07 × 107 cells/
mL

98.5% 6 days Mankiewicz-Boc-
zek et al. (2022)

Secretion of 
pyoluteorin

Pseudomonas sp. 
Go58

3.1 × 108 cells/
mL

1.83 × 105 cells/
mL

 > 95.0% 2 days Chen et al. (2023)

Flocculation 
and lysis by 
algicidal com-
pounds

Paenibacillus 
sp. A9

6% (v/v) - 80.9% 96 h Jia et al. (2023)

Secretion of 
algicidal 
compounds in 
filtrate

Streptomyces sp. 
HY

5% (v/v) 5 × 106 cells/mL 93.0% 2 days Zhang et al. 
(2023a)

Direct/indirect Secretion of 
paucibactin A 
and direct lysis

Paucibacter 
aquatile DH15

2.1 × 104 CFU/
mL

2 × 106 cells/mL 94.9% 36 h (Le et al. 2022a, 
2023b)



	 Applied Microbiology and Biotechnology         (2024) 108:466   466   Page 4 of 13

wall components, modulation of gene expression, and dis-
ruption of antioxidants or photosynthetic systems (Zhang 
et al. 2022b). For example, Bacillus altitudinis G3 secretes 
both thermolabile and thermostable algicidal substances that 
affect photosynthetic activity and reactive oxygen species 
production, selectively killing M. aeruginosa (Hou et al. 
2023). The filtrate of Bacillus sp. YZ1 and Brevibacillus sp. 
CBS, when applied at a density of 1 × 107 cells/mL, caused 
more than 95% lysis of M. aeruginosa cells within 5 days 
(Liu et al. 2022). Similarly, the filtrate of a novel Brevibacil-
lus sp. caused complete cell lysis within 4 days at a concen-
tration of 2.1 × 105 cells/mL (Liu et al. 2023). Paenibacillus 
sp. A9 uses a “flocculation-lysis-degradation” mechanism, 
where it initially secretes polysaccharides containing car-
boxyl groups to flocculate Microcystis, followed by lysing 
it with algicidal active compounds (Jia et al. 2023). In con-
trast, Bacillus sp. AK3 secretes seven antimicrobial com-
pounds into the cell-free supernatant (Boonbangkeng et al. 
2022). This supernatant, when inoculated into Microcystis 
bloom water, strongly inhibited the growth of Microcystis 
and Pseudanabaena and promoted the growth of Chlorella, 
indicating a specific inhibitory effect. Recently, Paucibacter 
has emerged as a dual-acting bacterium against Microcystis, 
exerting both direct and indirect effects with a high cyano-
bactericidal effect of 94.9% within 36 h (Le et al. 2022a). 
Through indirect action, Paucibacter secretes paucibactin 
A, which exhibits an algicidal effect of 81.6% within 24 h. 
Moreover, paucibactin A undergoes 87.4% photolysis within 
24 h, rendering it an environment-friendly substance without 
a persistent impact on aquatic ecosystems (Le et al. 2023b). 
Additionally, various bacteria such as Paucibacter aquatile 
DH15, Paenibacillus sp. A9, and Stenotrophomonas genicu-
lata can degrade microcystin, a toxin produced by Microcys-
tis (Jia et al. 2023; Le et al. 2022a; Xie et al. 2023).

Cyanobactericidal bacteria are more abundant during 
bloom-declining periods, but they are often successfully 
isolated during bloom periods (Le et al. 2022a; Mankie-
wicz-Boczek et al. 2022; Zhang et al. 2019). Therefore, 
periphyton, which consists of diverse attached eukaryotic 
microalgae and bacteria, has been suggested as a promis-
ing strategy to reduce cyanobacterial blooms owing to its 
ability to stimulate the growth of cyanobactericidal bacteria 
(Le et al. 2023c). Biofilms on aquatic plants may serve as 
reservoirs of algicidal bacteria in the natural environment 
(Miyashita et al. 2019). These approaches can enhance the 
control of Microcystis blooms by fostering the growth of 
only periphyton or aquatic plants, without the inoculation 
of cultured bacteria or allelopathic compounds and. Because 
such methods promote already existing cyanobactericidal 
bacteria and organic matter-degrading bacteria in the water 
column, they can achieve eco-friendly bloom control at a 
lower cost.

Fungi

The process of eliminating cyanobacterial cells and their 
degradation by fungal strains remain largely unknown. 
Currently, only a few species with the ability to inhibit 
and lyse cyanobacterial cells have been identified. Direct 
and indirect attacks are the modes of fungal action used to 
lyse Microcystis species. For example, Trichaptum abieti-
num and Lopharia spadicea degrade M. aeruginosa and 
M. flos-aquae, and the lysis mechanism involves mucus 
secretion by fungal mycelia upon direct contact with cyano-
bacterial cells (Jia et al. 2010; Wang et al. 2010). Irpex 
lacteus, Trametes versicolor, and Bjerkandera adusta also 
successfully eliminate Microcystis cells by direct attack 
(Han et al. 2011). In addition, algicidal fungi can indi-
rectly attack cyanobacteria by releasing algicidal com-
pounds that inhibit growth or by secreting lytic enzymes 
that damage the cell wall and plasma membrane. T. versi-
color also inhibits M. aeruginosa by producing decompos-
ing enzymes such as cellulase, β-glucanase, and protease 
(Dai et al. 2018). Trichoderma citrinoviride culture filtrate 
inhibits the growth of M. aeruginosa, indicating algicidal 
activity through fungal secretions rather than a direct attack 
(Mohamed et al. 2014). Aureobasidium pullulans produces 
β-N-acetylglucosaminidase, an enzyme capable of breaking 
down bacterial peptidoglycan, a major component of the 
cyanobacterial cell wall (Mohamed et al. 2020). Recent 
studies have shown that certain fungal species can degrade 
microcystins. Phanerochaete chrysosporium, a white-rot 
fungus, not only destroys algal cells but also reduces the 
expression of microcystin genes (Zeng et al. 2020). Penicil-
lium chrysogenum inhibits the growth and antioxidant sys-
tem of M. aeruginosa by secreting extracellular substances, 
specifically penicillin V and G (Han et al. 2021b). This 
interaction leads to the altered expression of genes involved 
in microcystin synthesis and photosynthesis in M. aerugi-
nosa. Moreover, Penicillium sp. GF3 effectively degrades 
microcystin-LR (Kuzikova et al. 2023). Algicidal fungi are 
expected to be an environment-friendly control method 
because they can decompose toxins and cells simultane-
ously (Mohamed et al. 2014; Kuzikova et al. 2023). How-
ever, there are numerous challenges in directly using them 
for onsite treatment, so the use of fungal extracts is now 
regarded as a more practical method.

Eukaryotic microalgae

Microcystis and eukaryotic microalgae compete under 
different environmental conditions, such as temperature, 
nutrients, and light (Hu et al. 2021). The colonial Micro-
cystis exhibits more resistance to light stress and chemical 
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materials than eukaryotic algae (Fang et al. 2018; Zhang 
and Benoit 2019), and Microcystis and its exudates have 
allelopathic effects on Scenedesmus quadricauda and 
Chlorella pyrenoidosa (Wang et  al. 2017). However, 
recent studies indicate a decline in the competitive ability 
of colonial M. aeruginosa against Scenedesmus obliquus 
with respect to the macro-nutrient phosphorus (P) (Wang 
et al. 2022d). Furthermore, S. obliquus exhibits greater 
resistance and outcompetes M. aeruginosa in freshwater 
salinization caused by climate change, agriculture, and use 
of deicing salts (Gao et al. 2023). At different temperatures 
and P concentrations, M. aeruginosa and C. pyrenoidosa 
showed different patterns of competition (Ren et al. 2021). 
Although C. pyrenoidosa predominated at low tempera-
tures and high P concentrations, M. aeruginosa suppressed 
C. pyrenoidosa at higher temperatures through more effi-
cient P-uptake systems and allelopathic effects.

Microcystis can be inhibited by the allelopathic effects 
of eukaryotic microalgae. Oocystis borgei competes with 
M. aeruginosa for nutrients and hinders its growth through 
allelopathic effects, thereby disrupting the membrane system 
and esterase activity (Wang et al. 2022c). Scenedesmus sp. 
FACHB-1229 produces allelochemicals 1,2-benzenedicar-
boxylic acid and bis(2-methoxyethyl) ester that suppress M. 
aeruginosa FACHB-3550 and FACHB-905, respectively 
(Song et al. 2022). However, Microcystis also has allelo-
pathic effects on eukaryotic algae such as S. quadricauda, 
C. pyrenoidosa, and Cyclotella meneghiniana (Wang et al. 
2017). Furthermore, the allelopathic effects vary depend-
ing on the growth phase of M. aeruginosa and species of 
microalgae, which complicates the practical applications of 
eukaryotic microalgae in inhibiting Microcystis in the field 
(Wang et al. 2022c).

Zooplankton

Zooplankton and Microcystis have miscellaneous interac-
tions, involving not only the grazing of Microcystis but also 
defense against zooplankton (Davis and Gobler 2010; Ger 
et al. 2014). Daphnia pulex, Hyalella azteca (Davis and 
Gobler 2010), Notodiaptomus iheringi (Leitao et al. 2018), 
cyclopoid copepods (Urrutia‐Cordero et al. 2015), Eud-
iaptomus gracilis, and Daphnia magna (Ger et al. 2018a) 
are known to graze on Microcystis. According to Mohamed 
et al. (2018), M. aeruginosa is completely consumed by 
Cyclops vicinus. The highest grazing rate of C. vicinus was 
observed when the cell density of M. aeruginosa peaked. 
In a hypereutrophic pond, Daphnia pulicaria reduced the 
biomass of Microcystis by up to 19.7 times when compared 
with that of the control (Chislock et al. 2013). However, 
many zooplankton species cannot graze on Microcystis 
because of three main reasons: (1) As Microcystis does not 

provide key nutrients (particularly essential fatty acids) to 
zooplankton, Cladocera and Copepoda prefer nutrient-rich 
eukaryotic microalgae over Microcystis (Ger et al. 2018a). 
(2) Zooplankton have difficulty ingesting Microcystis cells 
because of its colonial forms (Geng et al. 2013; Xiao et al. 
2018). Pseudodiaptomus hessei, Moina micrura, Cerio-
daphnia cornuta, Brachionus angularis, Brachionus falca-
tus, and Keratella sp. can digest filamentous cyanobacteria 
but not the colonial forms (Kâ et al. 2012). (3) Microcystis 
produces various secondary metabolites as a defense mecha-
nism against zooplankton (Harke et al. 2016). For example, 
trypsin and chymotrypsin derived from M. aeruginosa PCC 
7806 suppress the activity of digestive proteases in Daphnia 
magna (Agrawal et al. 2005). Xu et al. (2023) observed that 
Microcystis exudates damaged the mitochondrial membrane 
potential of Daphnia, causing impaired mitochondrial func-
tion. Microcystin, a notorious cyanobacterial toxin, is also 
lethal to Daphnia (Bownik 2016).

Zooplankton contribute to improved water quality by 
directly grazing on Microcystis, but Microcystis coloniza-
tion presents a significant challenge to this grazing activity 
(Chislock et al. 2013; Xiao et al. 2018). Under continuous 
disturbances, Microcystis cells form small colonies that are 
easy to ingest, whereas intermittent disturbances cause them 
to form larger colonies that are difficult for zooplankton to 
consume (Yang et al. 2020). Thus, successful control neces-
sitates the simultaneous optimization of numerous environ-
mental conditions (Ger et al. 2018b).

Aquatic plants

Aquatic plants are fundamental primary producers that play 
a key role in maintaining water clearance in aquatic eco-
systems. Macrophytes are regarded as prospective tools for 
controlling cyanobacterial blooms because they produce 
chemical compounds that can suppress bloom-forming 
cyanobacteria (Maredova et  al. 2021; Nezbrytska et  al. 
2022; Wang and Liu 2023). However, the detailed mecha-
nisms underlying the cyanobactericidal effects have not yet 
been fully identified. Submerged macrophytes possess dis-
tinct allelopathic properties, along with effective nutrient 
absorption (Maredova et al. 2021; Nezbrytska et al. 2022; 
Wang and Liu 2023). The various aquatic plants recognized 
for their ability to inhibit the growth of M. aeruginosa are 
listed in Table 2.

Among emergent macrophytes, Typha angustifolia exhib-
its more pronounced inhibitory effects on M. aeruginosa 
than Acorus calamus and Phragmites australis (Kang et al. 
2020; Maredova et al. 2021). Pistia stratiotes, a free-float-
ing macrophyte, demonstrates substantial growth inhibi-
tion with both aqueous and ethanolic extracts (Lourenção 
et al. 2021). However, the study conducted by Maredova 
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Table 2   Summary of Microcystis bloom control using aquatic plants

a H, inhibition rate of > 50%; M, inhibition rate < 50%; P, promoting

Habitat Species Types used in experi-
ments

Effective concentra-
tion

Initial cell density of 
Microcystis

Growth inhibitiona Duration Reference

Emergent Acorus calamus Ethanolic extracts 1% (200 μL) 1.2 × 106 cells/mL M 72 h Maredova et al. (2021)

Phragmites australis Extracts at different 
decomposition 
stages (fresh and 
dead)

Various levels of 
EC50 (mg C/L)

H 0.2, 10, 30, 50, 
100 days

Kang et al. (2020)

Typha angustifolia Extracts at different 
decomposition 
stages (fresh and 
dead)

Various levels of 
EC50 (mg C/L)

H 0.2, 10, 30, 50, 
100 days

Kang et al. (2020)

Free-floating Pistia stratiotes Ethanolic extracts 25 mg/L 2.3 × 105 cells/mL H 6 days Lourenção et al. 
(2021)

Aqueous extracts 3% (200 μL) 1.2 × 106 cells/mL M 72 h Maredova et al. (2021)

Rooted floating Nymphoides peltata Aqueous extracts 10% (200 μL) 1.2 × 106 cells/mL M 72 h Maredova et al. (2021)

Submerged and 
floating-leaves

Potamogeton natans Aqueous extracts 1% (200 μL) 1.2 × 106 cells/mL M 72 h Maredova et al. (2021)

Stratiotes aloides Ethanolic extracts 3% (200 μL) 1.2 × 106 cells/mL M 72 h

Submerged Ceratophyllum Ultrasonic cellulose 
extraction

5 g/L Around 50 μg 
Chl-a/L

H 120 h Li et al. (2023)

Ceratophyllum 
demersum

Aqueous extracts 
(anaerobic soak-
ing)

3 g/L 1–2 × 106 cells/mL H 15 days Han et al. (2021a)

Ceratophyllum 
submersum

Ethanolic extracts 1% (200 μL) 1.2 × 106 cells/mL M 72 h Maredova et al. (2021)

Chara globularis Aqueous extracts 0.1% (200 μL) 1.2 × 106 cells/mL H 72 h Maredova et al. (2021)

Chara tomentosa Aqueous extracts 10% (200 μL) 1.2 × 106 cells/mL M 72 h Maredova et al. (2021)

Egeria densa Organic extracts 0.5, 1, 3, 6 g/L 105 cells/mL H, M, P, P 10 days Wijesinghe et al. 
(2023)

Elodea canadensis Aqueous extracts 10% (200 μL) 1.2 × 106 cells/mL M 72 h Maredova et al. (2021)

Elodea nuttallii Aqueous extracts 10% (200 μL) 1.2 × 106 cells/mL M 72 h Maredova et al. (2021)

Hydrilla verticillata Ethanolic extracts 10% (200 μL) 1.2 × 106 cells/mL M 72 h Maredova et al. (2021)

Hydrocleys nym-
phoides

Aqueous extracts 10% (200 μL) 1.2 × 106 cells/mL M 72 h Maredova et al. (2021)

Myriophyllum 
alterniflorum

Aqueous extracts 1% (200 μL) 1.2 × 106 cells/mL M 72 h Maredova et al. (2021)

Myriophyllum hetero-
phyllum

Aqueous extracts 10% (200 μL) 1.2 × 106 cells/mL M 72 h Maredova et al. (2021)

Myriophyllum 
spicatum

Extracts 100 mg/L 106 cells/mL H 9 days Kitamura et al. (2023)

Ultrasonic cellulose 
extraction

5 g/L Around 50 μg 
Chl-a/L

H 120 h Li et al. (2023)

Ethanolic extracts 100% (200 μL) 1.2 × 106 cells/mL H 72 h Maredova et al. (2021)

Plant 5 cm apical shoot 
(0.42 g dw/L)

471 μg Chl-a/L H 7 days Jeong et al. (2021)

Plant 5 g fw/L 1 × 106 cells/mL H 3 days Zhu et al. (2010)

Plant 1 g fw/L 1 × 106 cells/mL H 7 days He et al. (2016)

Plant 12 cm apical shoot 
(2 g fw/L)

4.5 × 106 cells/mL H 12 days Gao et al. (2022)

Potamogeton crispus Aqueous extracts 10% (200 μL) 1.2 × 106 cells/mL M 72 h Maredova et al. (2021)

Potamogeton prae-
longus

Aqueous extracts 10% (200 μL) 1.2 × 106 cells/mL M 72 h Maredova et al. (2021)

Potamogeton pusillus Aqueous extracts 10% (200 μL) 1.2 × 106 cells/mL M 72 h Maredova et al. (2021)

Vallisneria sp. Ultrasonic cellulose 
extraction

5 g/L Around 50 μg 
Chl-a/L

H 120 h Li et al. (2023)

Ultrasonic cellulase 
extraction

5 g/L Around 50 μg 
Chl-a/L

H 5 days Wang et al. (2022a)

Vallisneria ameri-
cana

Aqueous extracts 0.3% (200 μL) 1.2 × 106 cells/mL M 72 h Maredova et al. (2021)

Vallisneria natans Aqueous extracts 
(anaerobic soak-
ing)

3 g/L 100–200 × 104 cells/
mL

H 15 days Han et al. (2021a)
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et al. (2021) indicated that P. stratiotes, Nymphoides pel-
tata, and Stratiotes aloides have only stimulatory effects 
on cyanobacteria. Ceratophyllum and Chara, which are 
submerged macrophytes, exhibit high allelopathic abilities, 
except Chara tomentosa, which has a stimulatory effect (Han 
et al. 2021a; Li et al. 2023; Maredova et al. 2021). Egeria, 
Elodea, and Hydrocleys do not hinder the growth of M. 
aeruginosa, whereas Elodea nuttallii and Hydrilla verticil-
lata have algicidal abilities against Aphanizomenon grac-
ile (Maredova et al. 2021; Wijesinghe et al. 2023). Within 
the genus Myriophyllum, M. spicatum has strong algicidal 
effects, whereas M. alterniflorum has a stimulatory effect 
on Microcystis (Gao et al. 2022; He et al. 2016; Jeong et al. 
2021; Kitamura et al. 2023; Li et al. 2023; Maredova et al. 
2021; Zhu et al. 2010). Of the studies on M. spicatum, Gao 
et al. (2022), He et al. (2016), Jeong et al. (2021), and Zhu 
et al. (2010) directly treated the plant itself. Moreover, M. 
spicatum selectively inhibits the growth of M. aeruginosa, 
exerting a robust effect especially on unicellular cyano-
bacterial strains, including various M. aeruginosa strains 
and Synechocystis sp. (Jeong et al. 2021). Potamogeton 
praelongus is the only species with inhibitory effects in its 
genus, whereas three other species, including P. natans with 
floating leaves, exhibit stimulatory effects (Maredova et al. 
2021). Vallisneria demonstrates high growth inhibition of M. 
aeruginosa, except for V. americana, which has a stimula-
tory effect on Microcystis but an algicidal effect on Aphani-
zomenon (Han et al. 2021a; Li et al. 2023; Maredova et al. 
2021; Wang et al. 2022a).

Most studies have verified the algicidal effects of allelo-
pathic substances extracted from aquatic plants. Whole 
plants were also effective in controlling blooms in some 
experiments. To obtain more consistent results for com-
parison, it is necessary to establish standardized criteria 
in experimental settings, such as substance concentration, 
mesocosm volume, and treatment duration. Several recent 
studies have reported algicidal bacteria isolated from the 
symbiotic microbiota of aquatic plants (Chen et al. 2023; 
Imai et al. 2021; Jiang et al. 2019; Miyashita et al. 2019). 
Further research should consider both the allelopathic effects 
of the plant and the effects of algicidal bacteria originating 
from plant biofilms.

Cyanophages

Cyanophages are viruses with a specific affinity for cyano-
bacteria. Since the identification of SM-1 in 1969, more than 
10 cyanophages that infect Microcystis have been identified 
to date (Aranda et al. 2023; Safferman et al. 1969). These 
cyanophages are categorized into three families: Myoviri-
dae, Siphoviridae, and Podoviridae (Aranda et al. 2023; 

Zhu et al. 2023). Previously identified cyanophages such 
as Ma-LMM01, MaMV-DC, and MaCV-L exhibit highly 
strain-specific lysis of Microcystis (Li et al. 2013; Ou et al. 
2013; Yoshida et al. 2006). However, new findings indicate 
that MaMV-DC infects not only Microcystis aeruginosa 
FACHB-524 but also M. flos-aquae TF09 and M. wesen-
bergii DW09 (Wang et al. 2019). Me-ZS1, MinS1, and Mae-
Yong924-1 also infect various Microcystis species via lysis 
(Lin et al. 2020; Qian et al. 2022; Zhang et al. 2022a). Mori-
moto et al. (2023) reported that M. aeruginosa interacts with 
both broad and narrow host-range cyanophages. Broad host-
range cyanophages increase with Microcystis abundance, 
whereas narrow host-range cyanophages are less abundant 
and fluctuate less. Because Microcystis blooms typically 
consist of multiple Microcystis strains, strain-specific cyano-
phages could reveal this issue in field applications. However, 
the potential of cyanophages for bloom control is increasing, 
considering the recent isolation of novel broad host-range 
cyanophages and their observed increase even during the 
bloom period.

Field applications and limitations 
of biotechnological approaches

Several biotechnological approaches for inhibiting Micro-
cystis have been extensively validated in the laboratory. 
However, it is crucial to apply these results in the field 
under varying environmental conditions to determine their 
efficacy against natural Microcystis blooms. Nevertheless, 
biological methods have fewer field application reports and 
less impact on controlling natural Microcystis blooms than 
chemical methods. Among the few field applications, Pauci-
bacter aquatile DH15, a cyanobactericidal bacterium, suc-
cessfully removed 90.7% natural Microcystis blooms in a 
1000-L-scale mesocosm within 2 days, with the microbial 
and eukaryotic communities monitored during this process 
(Le et al. 2022b). Notably, an increase in eukaryotic algae 
was observed following Microcystis decline, contributing 
to the long-term inhibition of Microcystis and maintaining 
a healthy ecosystem by preserving primary production. In 
addition, periphyton, a mixture of heterotrophic and pho-
toautotrophic microorganisms, effectively reduced Micro-
cystis blooms in a field experiment (Le et al. 2023c). This 
study demonstrated the effectiveness of periphyton not 
only against Microcystis but also against Dolichospermum 
blooms, offering a wide-range potential for various cyano-
bacterial blooms. Biological algicides derived from cyano-
bactericidal bacteria are also being used to control Micro-
cystis in the field. For example, using biological algicides 
derived from Bacillus sp. T4 as an adsorbent, Park et al. 
(2024) confirmed the removal of Microcystis aeruginosa in 
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50-L and 10-ton reactors. Paucibactin A produced by Pauci-
bacter aquatile DH15 was 91.6% efficient in removing natu-
ral Microcystis in a 12-L microcosm (Le et al. 2023b).

Field applications to control Microcystis blooms using 
other organisms are less common. Ger et al. (2018b) proved 
that Pseudodiaptomus forbesi ingests Microcystis by identi-
fying the microcystin synthase E (mcyE) gene in the gut of 
P. forbesi from the upper San Francisco Estuary. Addition-
ally, the Microcystis mcyE gene has been detected in the 
guts of various zooplankton species (Bosmina spp., Daphnia 
spp., Bythotrephes longimanus, and Eudiaptomus gracilis) 
in the eutrophic Lake Peipsi, Estonia (Agasild et al. 2019). 
These findings suggest the possibility of using zooplank-
ton to control Microcystis in the field. Amorim and Moura 
(2020) conducted 100-L-scale mesocosms in the Tapacurá 
reservoir in Brazil, manipulating submerged macrophytes 
(Ceratophyllum demersum), large herbivorous zooplankton, 
and nutrients. They discovered that the presence of mac-
rophytes, both alone and in combination with zooplank-
ton, significantly reduced cyanobacterial biomass by up to 
84.8%. In Chagan Lake, China, the combined restoration of 
filter-feeding bivalves and submerged macrophyte (Hydrilla 
verticillate) effectively reduced nutrient concentrations and 
cyanobacterial biomass, thereby alleviating eutrophication 
(Du et al. 2023).

Through a meta-analysis of field experiments utilizing 
chemical, bacterial, physical, and/or plant-based treatments, 
Anantapantula and Wilson (2023) evaluated their effective-
ness on the water quality, including parameters such as phy-
toplankton pigment, cell density, cyanobacterial toxins, and 
taste/odor compounds. They concluded that only four chemi-
cals, namely, copper sulfate, hydrogen peroxide, peracetic 
acid, and simazine, were significantly effective in control-
ling natural blooms and improving water quality. None of 
the bacterial, physical, or plant treatments alone showed a 
statistically significant effect. However, the authors empha-
sized that field data are still limited for drawing firm con-
clusions. This indicates that sufficient data from large-scale 
field experiments have not yet been accumulated enough. 
Therefore, more field experiments are needed to understand 
the current limitations of each method and to search for bet-
ter alternatives.

Future directions with genome sequencing 
and multi‑meta‑omics

Various biological methods have been introduced, yet their 
application and success rates in the field remain limited when 
compared with those of chemical and physical methods. 
Nevertheless, advances in biotechnological techniques are 
paving the way for novel approaches to suppress Microcystis 

from a unique perspective. For instance, Roseomonas and 
Rhodobacter, which exhibit a phylosymbiotic pattern with 
Microcystis genotypes, can enrich the metabolic potential of 
Microcystis (Perez-Carrascal et al. 2021). Controlling these 
symbiotic bacteria could indirectly contribute to reducing 
Microcystis blooms. Furthermore, genome sequencing of 
Microcystis allows for the identification of genetic diversity 
by examining variations in gene repertoires among different 
strains, thereby elucidating functional differentiation along 
the evolutionary route (Zhang et al. 2023b). Moreover, it 
facilitates the identification of algicidal substances and their 
mechanisms. For example, lysine is toxic to Microcystis, as 
it blocks peptidoglycan biosynthesis (Kim et al. 2023). Cai 
et al. (2024) analyzed the gene composition in metagenome-
assembled genomes of bloom microbiome in comparison 
with complete Microcystis genomes. They reported that the 
microbiome and Microcystis had complementary biochemi-
cal pathways involved in C, N, S, and P cycling.

Research on the periodic succession in microbial com-
munities during Microcystis blooms has increased in recent 
years (Chen et al. 2024; Le et al. 2023a; Smith et al. 2021). 
These findings offer new insights into the interactions within 
cyanobacteria-associated bacterial communities, including 
the specific bacterial communities associated with Microcys-
tis genotypes and the diverse responses of successive free-
living and particle-attached bacterial communities during 
different stages of bloom development (Chun et al. 2020; 
Liu et al. 2019). Network and indicator analyses permit 
the straightforward identification of bacterial species that 
interact closely with Microcystis and have a high potential 
for bloom control. This approach is expected to provide 
innovative strategies for combating blooms effectively. 
For example, Vampirovibrionales, a non-photosynthetic 
obligate-parasitic cyanobacterium, was first proposed as a 
bloom terminator on the basis of a network analysis (Chun 
et al. 2020).

Multi-meta-omics techniques, along with microbial 
community analyses, allow us to understand the detailed 
mechanisms underlying cyanobacterial bloom formation and 
extinction (Wang et al. 2021; Yan et al. 2022). Proteomic 
and metabolomic studies have identified the metabolic pro-
cesses of Microcystis under various environmental condi-
tions (Huang et al. 2024). Transcriptomics has revealed that 
allelopathic chemicals derived from plants notably down-
regulate essential genes related to biosynthetic pathways for 
carbohydrate assembly during the carbon fixation cycle and 
peptidoglycan construction in M. aeruginosa (Gil and Eom 
2023). In addition, the transcriptomic study by Wang et al. 
(2024) discovered that Microcystis exposed to β-cyclocitral 
exhibit reduced photosynthetic activity and upregulation of 
stress-related genes, leading to cell death pathways. These 
results provide insight into the potential role of biological 
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metabolites in inducing programmed cell death Microcystis 
to control blooms. Using a multi-meta-omics approach is 
expected to enhance our understanding of how M. aerugi-
nosa responds to different environmental conditions, dis-
tinct microbial communities, and coexisting aquatic plants, 
thereby contributing to breakthroughs in cyanobacterial 
bloom control.

Concluding remarks

CyanoHABs pose a significant threat to freshwater eco-
systems by adversely affecting drinking water quality and 
agricultural activities. Microcystis is responsible for most 
cyanoHABs globally. This review presents recent findings 
in biotechnological research on Microcystis control, weighs 
the advantages and disadvantages of each method, and sug-
gests future directions. The biotic agents examined in this 
review include cyanobactericidal bacteria, fungi, eukaryotic 
microalgae, zooplankton, aquatic plants, and cyanophages. 
Among these agents, cyanobactericidal bacteria use both 
direct lysis of cells and secretion of algicidal compounds 
to indirectly kill bacteria. Furthermore, newly reported bac-
teria that use both methods enable the highly efficient con-
trol of Microcystis. Although numerous biological methods 
have demonstrated success, their control efficiencies in field 
applications are generally lower than those of chemical and 
physical methods. Therefore, a future approach to control 
Microcystis was proposed: a comprehensive understand-
ing of microbial interactions during Microcystis blooms by 
using advanced molecular and bioinformatic/ecoinformatic 
tools, such as high-throughput sequencing and multi-meta-
omics. It is imperative to adopt the latest techniques and 
apply them more frequently in the field to achieve tangi-
ble advancements. Ultimately, we anticipate new insights 
into the unknown mechanisms surrounding Microcystis 
outbreaks.
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