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Abstract: Background: Dopamine, a key neurotransmitter in the autonomic nervous system partici-
pating in the homeostatic balance between sympathetic and parasympathetic divisions, is involved in
food intake regulation. Objective: We investigated whether dopamine is altered by acute fasting or
overfeeding diets with varying macronutrient content. Design: Ninety-nine healthy subjects under-
went 24-h dietary interventions including eucaloric feeding, fasting, and five different overfeeding
diets in a crossover design. Overfeeding diets (200% of eucaloric requirements) included one diet
with 3%-protein (low-protein high-fat overfeeding—LPF: 46%-fat), three diets with 20%-protein, and
a diet with 30%-protein (44%-fat). Urine was collected for 24 h and urinary dopamine concentration
was quantified by high-performance liquid chromatography. Plasma pancreatic polypeptide (PP)
concentration, an indirect marker of parasympathetic activity, was measured prior to and after each
diet after an overnight fast. Results: During 24-h of fasting, dopamine decreased on average by
~14% compared to eucaloric conditions, whereas PP increased by two-fold (both p < 0.001). Lower
dopamine during 24-h fasting correlated with increased PP (r = −0.40, p < 0.001). Similarly, on
average urinary dopamine decreased during LPF by 14% (p < 0.001) and lower dopamine correlated
with increased PP (r = −0.31, p = 0.01). No changes in dopamine and PP concentrations were observed
during other overfeeding diets (all p > 0.05). Conclusions: Dopamine concentrations decrease during
short-term fasting and overfeeding with a low-protein diet. As both dietary conditions have in com-
mon protein deficit, the correlation between dopamine and PP suggests a compensatory mechanism
underlying the shift from sympathetic to parasympathetic drive during dietary protein deprivation.

Keywords: dopamine; fasting; overfeeding; low-protein diet; pancreatic polypeptide

1. Introduction

A chronic imbalance between energy intake and expenditure is responsible for the
world-wide increased prevalence of obesity and its related comorbidities over the past
decades. Beyond environmental and genetic factors, several neurotransmitters including
dopamine and neuropeptides such as pancreatic polypeptide, neuropeptide Y, and peptide
YY are involved in the central regulation of food intake and in the reward effects of feed-
ing [1], and thus may influence daily energy balance. Dopamine is a key neurotransmitter
in the autonomic nervous system [2], which is divided into parasympathetic and sympa-
thetic components. Urinary dopamine has been considered a marker of overall dopamine
neurotransmitter status in the central and peripheral nervous systems [3] where it is known
to have an anticholinergic function [2]. Importantly, dopamine plays a role in the regulation

Nutrients 2021, 13, 1234. https://doi.org/10.3390/nu13041234 https://www.mdpi.com/journal/nutrients

https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0001-6888-7080
https://orcid.org/0000-0003-2774-9161
https://doi.org/10.3390/nu13041234
https://doi.org/10.3390/nu13041234
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nu13041234
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu13041234?type=check_update&version=2


Nutrients 2021, 13, 1234 2 of 14

of food intake by modulating food reward via the meso-limbic circuitry of the brain [4].
In our previous study [5], we found a positive association between urinary dopamine
concentrations during eucaloric conditions and ad libitum food intake. However, whether
dietary interventions that affect daily energy balance such as fasting and overfeeding alter
urinary dopamine concentrations has not been evaluated in humans.

In animal models, chronic food restriction strongly influences both the activity of
dopamine circuits of motor control, motivation, arousal, reinforcement, and reward, and
multiple feeding behaviors controlled by dopamine [6,7]. In rats, chronic food restriction
leads to decreased dopamine concentrations [8,9] while dopamine transporter levels de-
crease in the striatum of mice following three weeks of food deprivation [10]. Further,
short-term fasting (24–36 h) leads to a decrease in dopamine reuptake transporter in the
ventral tegmental area/substantia nigra pars compacta in mice [11]. Less is known about
the effect of overeating on dopamine and dopamine receptor activity. Mice fed low-protein
diets decrease the density of D2 receptor in the mesolimbic and striatum regions, sug-
gesting that low-protein diet may be a determinant of central dopaminergic function [12].
In vivo, after infusion of L-Dopa, the precursor of dopamine, striatal dopamine levels in-
creased following a high-protein diet indicating a role for dietary protein in brain dopamine
production [13].

Following-up our recent human study showing an association between dopamine
and ad libitum food intake, in the current clinical study we evaluated whether urinary
dopamine concentrations were altered by 24 h of fasting and five different overfeeding
diets with varying macronutrient content to elucidate the physiologic mechanisms induced
by acute changes in energy intake and daily energy balance.

2. Methods
2.1. Study Volunteers

This analysis was performed using data from an ongoing clinical trial (clinicaltrials.gov
identifier: NCT00523627) aimed to characterize the short-term metabolic responses to
24-h fasting and different overfeeding diets. From 2008 to 2015, ninety-nine healthy
individuals aged 18–45 y completed the study and had available measurements of urinary
dopamine concentrations during 24-h eucaloric conditions (baseline) (Supplemental Figure
S1). Participants were weight stable for 6 months prior the admission (<10% variation
in body weight) and they were free of medical diseases based on physical examination,
medical history, and blood tests. All subjects provided written informed consent prior to
beginning the study. The study was approved by the Institutional Review Board of the
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK).

Upon admission to the clinical research unit, a weight-maintaining diet (WMD; 50%
carbohydrate, 30% fat, and 20% protein) was provided daily to the participants and its
caloric intake was calculated using unit-specific equations based on gender and weight.
Body weight was recorded daily in the morning after an overnight fast and was maintained
within 1% of the admission weight by adjusting the WMD by ±200 kcal/day if needed. On
the second day of admission, dual-energy X-ray absorptiometry (DXA) (DPX-1 or DPX-L;
Lunar Radiation, Madison, WI) was performed to assess body composition with fat mass
(FM) and fat free mass (FFM) calculated from percentage body fat (%fat). An internally
validated regression equation was used to make DXA measurements comparable between
different DXA machines.

A 3-h OGTT was performed after three days on the WMD and only subjects with
normal glucose regulation based on ADA criteria continued the study. Plasma insulin
and glucose concentrations were obtained by an automated immunoenzymometric assay
(Tosoh Bioscience Inc., Tessenderlo, Belgium) and the glucose oxidase method (Glucose
analyzer GM9, Analox Instruments; Lunenbertg, MA, USA), respectively.

Twenty-four-hour energy expenditure (EE) and respiratory quotient (RQ, an index of
substrate oxidation) were assessed in a large, open-circuit, whole-room indirect calorimeter
(respiratory chamber) as previously described [14,15]. Briefly, volunteers entered the
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respiratory chamber after an overnight fast and following breakfast at 7 a.m. Three meals
were then provided to volunteers inside the chamber via an airlock at 11 a.m., 4 p.m.,
and 7 p.m. All unconsumed food was returned and weighed in the metabolic kitchen to
determine the actual energy intake during each 24-h session inside the chamber. While
residing in the respiratory chamber participants were instructed to remain sedentary and
not to exercise. Volunteers resided in the calorimeter for 23 and 1

4 h, during which both CO2
production and O2 consumption were recorded every minute, averaged, and extrapolated
to 24 h. The 24-h RQ was calculated as the ratio of 24-h CO2 production to 24-h O2
consumption, and 24-h EE was calculated using the Lusk’s equation [16].

2.2. Dietary Interventions

The experimental protocol for dietary interventions is shown on Supplemental Figure
S2 and previously described in detail [14,17,18]. Briefly, to best achieve 24-h energy balance
inside the respiratory chamber, all subjects underwent two 24-h sessions inside the whole-
room calorimeter. During the first 24-h session, the caloric intake of WMD was reduced
by 20% to account for the reduction in physical activity inside the metabolic chamber.
Following this first session, the second 24-h session was performed two days later when
the energy intake was set to the 24-h EE value from the first session. The 24-h EE value
from the second session was considered the baseline (eucaloric) EE measurement [16].

Subsequently, subjects underwent six dietary assessments (fasting and five different
overfeeding diets) given for 24 h in the whole-room indirect calorimeter with three-day
period on the WMD between each intervention when subjects resided on the ward. The
order of diets was randomized for each participant to reduce the sequence effects in the
repeated-measures analysis of dopamine concentrations.

The energy intake of each overfeeding diets was equal to twice the baseline 24-h EE
value (200% of energy requirements). The overfeeding diets included: three overfeeding
diets with normal protein content (20%): standard (standard overfeeding—SOF: 50% car-
bohydrate, 30% fat), high-carbohydrate (high-carbohydrate normal-protein overfeeding—
CNP: 75% carbohydrate, 5% fat), and high-fat (high-fat-normal-protein—FNP: 60% fat,
20% carbohydrate) overfeeding diet; one overfeeding diet with a high protein content (30%,
high-protein, high fact overfeeding (HPF): 44% fat, 26% carbohydrate); one overfeeding diet
with low protein content (3%, low-protein-high-fat-overfeeding (LPF): 51% carbohydrate,
46% fat). Only sessions when subjects consumed ≥95% of total energy intake provided
with the overfeeding diet were included in the data analysis. During 24-h fasting, only
water was provided, and subjects were instructed to keep hydrated. Because of logistical
difficulties or significant return of interventional diets (<95% of total energy content), not
all the 99 subjects had valid dopamine measurements for all the dietary interventions. The
HPF diet was added to the study protocol after the first 20 individuals completed their
baseline admission, therefore the sample size of this diet was smaller compared to the other
overfeeding diets.

2.3. Laboratory Measurements

Urine was collected inside the calorimeter during each 24-h session and then stored at
−70◦C for subsequent measurements. Urinary dopamine concentrations were measured
by Mayo Clinic Laboratories (Rochester, MN, USA) via high-performance liquid chro-
matography, a reliable measurement technique [19]. The urinary dopamine excretion rate
over 24 h was derived by multiplying the total urinary volume (L) by the actual dopamine
concentration (mcg/L) and extrapolating urine collection time to 24 h. Throughout the
manuscript, the term “dopamine” refers to its 24-h urinary excretion rate. A comparative
analysis of 24-h urinary dopamine excretion rate and serum concentration of L-DOPA (a
precursor to dopamine) during energy balance conditions indicated a positive association
between the concentrations obtained from these measurements (r = 0.66, p = 0.01, Supple-
mental Figure S3). Based on Mayo Clinic laboratory reference ranges for catecholamines
(https://neurology.testcatalog.org/show/CATU accessed on 15 July 2020), the normal
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range for urinary dopamine is 65–400 mcg/24 h. Twelve subjects showed measurements
above the normal range but sensitivity analyses excluding those subjects yielded similar
results (data not shown).

Blood samples collected after an overnight fast both prior to and after each dietary
intervention were used for the measurements of plasma pancreatic polypeptide (PP),
an indirect marker of parasympathetic activity [20], and insulin concentrations. Plasma
PP concentrations were measured using the Human PP ELISA kit from EMD Millipore
(Catalog number: EZHPYYT66K, intra-assay CV = 4.5%, inter-assay CV = 7.6%). Insulin
concentrations were measured by an automated immunoenzymometric assay (Tosoh
Bioscience Inc., Tessenderlo, Belgium).

2.4. Statistical Analysis

Data are presented as mean with standard deviation (Gaussian variables) or as geo-
metric mean with its 95% confidence interval (CI, skewed variables such as PP and insulin
concentrations) as indicated. The total area under the curve (AUC) of glucose and insulin
concentrations during the OGTT was calculated using the trapezoidal rule. The Spear-
man’s correlation was used to assess the effect of storage time on dopamine measurements.
Differences in dopamine concentration among ethnicities were assessed via ANOVA with
post-hoc adjustments (Tukey method) while the unpaired Student t-test was used to evalu-
ate differences according to gender. The Pearson correlation coefficient was used to quantify
the associations between dopamine and anthropometric and demographic parameters.
The intraclass correlation coefficient (ICC) was calculated for dopamine measurements
during all dietary conditions via a linear mixed model analysis accounting for diet (fixed
effect) and repeated measurements (using a compound symmetry covariance structure)
to quantify within-subject consistency. Differences in dopamine concentration during
24-h fasting and overfeeding diets from eucaloric conditions were evaluated by Dunnett’s
post-hoc test to correct for multiple comparisons. A sensitivity analysis was performed by
including only participants with valid dopamine data for all dietary interventions, which
led to similar results (Supplementary Table S1). To test the potential carryover effect arising
from the crossover design, a mixed model analysis of dopamine concentrations including
both sequence and period effects was performed using a modification of the Grizzle’s
model [21].

Values of PP and insulin were log10 transformed before analyses to meet the assump-
tions of parametric tests (i.e., homoscedasticity and normal distribution). The individual
changes in PP and insulin concentration after each dietary condition were calculated as the
difference between the post-diet value minus the pre-diet value and analyzed by Student’s
t-test. Statistical analysis was performed using the SAS statistical software package (SAS
Enterprise Guide Version 7.15; SAS Institute, Cary, NC, USA).

3. Results

Clinical characteristics of study cohort are reported in Table 1. Urinary dopamine was
not affected by storage time (p = 0.6).

3.1. Determinants of Urinary Dopamine Concentrations

Urinary dopamine differed by ethnicity (global p = 0.009) and was on average higher
in Blacks compared to Whites (mean difference = 85.1 mcg/24 h, CI: 20–151, adj. p = 0.005,
Figure 1A) with no difference according to gender (p = 0.5). Urinary dopamine was
positively correlated with BMI (r = 0.23, p = 0.02, Figure 1B) and negatively correlated with
age (r = −0.23, p = 0.04). In a multivariable regression model, both BMI (β = +5.0 mcg/24 h
per kg/m2, p = 0.03) and ethnicity (p = 0.02), but not gender or age (both p > 0.08), were
independent determinants of urinary dopamine concentrations (total R2 = 0.22).
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Table 1. Clinical characteristics of the study group.

All Subjects (n = 99) Men (n = 80) Women (n = 19)

Age (y) 37.2 ± 10.3 (18, 55) 38.0 ± 10.6 (18, 55) 33.4 ± 9.6 (20, 47)

Ethnicity 23 BLK, 31 WHT, 15 HIS, 30 NAM 18 BLK, 24 WHT, 12 HIS, 26 NAM 5 BLK, 7 WHT, 3 HIS, 4 NAM

Height (cm) 172.4 ± 7.9 (156.5, 196.4) 174.8 ± 6.7 (156.5, 196.4) 164.1 ± 4.6 (156.8, 170.0)

Body weight (kg) 79.2 ± 14.4 (47.5, 127.1) 81.1 ± 12.6 (52.8, 127.1) 72.4 ± 16.8 (47.5, 107.8)

BMI (kg/m2) 26.6 ± 4.5 (17.8, 44.0) 26.5 ± 3.9 (18, 44) 26.8 ± 5.6 (17.7, 39.2)

Body fat (%) 28.5 ± 9.9 (6.9, 53.8) 25.8 ± 7.9 (6.9, 42.6) * 39.5 ± 8.4 (24.2, 53.8)

FM (kg) 23.1 ± 10.7 (4.9, 56.9) 21.6 ± 9.1 (4.9, 54.1) * 29.7 ± 12.9 (13.6, 56.9)

FFM (kg) 56.1 ± 10.1 (31.9, 79.4) 59.5 ± 7.1 (43.4, 79.4) * 42.7 ± 5.3 (31.9, 53.2)

24-h EE (kcal/day) 2005.8 ± 312.5 (1383, 2810) 2083.4 ± 284.4 (1573, 2810) * 1729.9 ± 249.7 (1383, 2290)

24-h energy intake (kcal/day) 2042.6 ± 310.2 (1461, 2921) 2126.3 ± 273.3 (1622.0, 2921) * 1744.8 ± 247.8 (1461, 2249.0)

Fasting glucose (mg/dL) 91.6 ± 5.0 (80, 100) 91.8 ± 5.4 (80, 100) 90.7 ± 3.3 (87, 97)

Fasting insulin (µIU/mL) 7.8 ± 4.2 (2, 19) 7.2 ± 4.3 (2, 19) 9.0 ± 3.3 (5, 17)

2-h OGTT glucose (mg/dL) 103.6 ± 20.2 (65, 138) 103.4 ± 20.9 (65, 138) 103.9 ± 17.2 (80, 130)

2-h OGTT insulin (µIU/mL) 15.5 ± 19.2 (2, 82) 15.1 ± 20.5 (2, 82) 18.0 ± 12.9 (2, 46)

Urinary dopamine (mcg/24 h) 1 279.5 ± 95.1 (81.5, 521.7) 278.3 ± 91.8 (81.5, 521.7) 284.4 ± 110.6 (114.5, 484.7)

Data presented as mean ± standard deviation (minimum, maximum). *: p < 0.05 vs. women by Student’s unpaired t-test or χ2 test.
Abbreviations: BLK, Black, WHT, White; HIS, Hispanic; NAM, Native American; BMI, body mass index; FM, fat mass; FFM, fat free mass;
EE, energy expenditure; OGTT, oral glucose tolerance test. 1: Urinary dopamine excretion rate was measured over a 24-h period inside a
whole-room indirect calorimeter during energy balance conditions.
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relation coefficient (r) is reported along with its significance (p). Abbreviations: BLK, Black, WHT, white; HIS, Hispanic; 
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shown in Figure 2. The ICC value was 0.57 (p < 0.001), indicating within-subject con-
sistency of dopamine measurements across diets. There was no period effect (p = 0.67) on 
dopamine concentrations, indicating no carryover effects across dietary interventions. 

The changes in urinary dopamine from eucaloric condition during each dietary in-
tervention are reported in Table 2. Compared to eucaloric conditions (Figure 3), on aver-
age urinary dopamine decreased both during 24-h fasting and during 24-h low-protein 
overfeeding (both p < 0.001), whereas no overall changes were observed during any nor-
mal-protein overfeeding diet (all p > 0.05). Based on these results for dopamine, our sub-
sequent analyses focused on 24-h fasting and 24-h low-protein overfeeding diet. 

Figure 1. Urinary dopamine during eucaloric conditions by ethnicity and its relationship with BMI. Panel (A) shows urinary
dopamine excretion rates during 24-h eucaloric conditions across ethnicities. The average difference (∆) in urinary dopamine
concentrations between Blacks and Whites was calculated and tested via ANOVA with Tukey adjustment of the least square
means for multiple comparisons. Error bars represent mean with 95% CI. Panel (B) shows the positive association between
BMI and 24-h urinary dopamine excretion rate during 24-h eucaloric conditions. The Pearson’s correlation coefficient (r) is
reported along with its significance (p). Abbreviations: BLK, Black, WHT, white; HIS, Hispanic; NAM, Native American.

Urinary dopamine was also positively associated with insulin AUC during the OGTT
(r = 0.42, p = 0.001, Supplemental Figure S4) and this was still true after adjustment for
percentage body fat, age, gender, and ethnicity (partial r = 0.17, p = 0.001). No associations
were observed between dopamine and fasting glucose, 2-h OGTT glucose, glucose AUC
during OGTT, fasting insulin, and 2-h OGTT insulin (all p > 0.1).

3.2. Changes in Urinary Dopamine Concentrations after Acute Dietary Interventions

The individual urinary dopamine concentrations during each dietary condition are
shown in Figure 2. The ICC value was 0.57 (p < 0.001), indicating within-subject consistency
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of dopamine measurements across diets. There was no period effect (p = 0.67) on dopamine
concentrations, indicating no carryover effects across dietary interventions.
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Figure 2. Urinary dopamine excretion rate during each 24-h dietary intervention. Error bars represent
mean ± SD. The dotted lines represent the normal range for urinary dopamine (65–400 mcg/24 h)
based on Mayo Clinic laboratory reference ranges for catecholamines (https://neurology.testcatalog.
org/show/CATU accessed on 15 March 2021).

The changes in urinary dopamine from eucaloric condition during each dietary inter-
vention are reported in Table 2. Compared to eucaloric conditions (Figure 3), on average
urinary dopamine decreased both during 24-h fasting and during 24-h low-protein over-
feeding (both p < 0.001), whereas no overall changes were observed during any normal-
protein overfeeding diet (all p > 0.05). Based on these results for dopamine, our subsequent
analyses focused on 24-h fasting and 24-h low-protein overfeeding diet.

Table 2. Urinary dopamine excretion rates during 24-h fasting and different overfeeding diets.

Dietary Condition
(mean ± SD)

Energy Balance
(mean ± SD) N Absolute Change

(95% CI)
Percentage Change

(95% CI)
p-

Value

24-h fasting (FST) 235.4 ± 75.4 274.8 ± 93.6 93 −39.5 (−57.0, −21.9) −14.1 (−20.4, −7.8) <0.001

Low-protein high-fat
overfeeding (LPF) 239.6 ± 76.2 278.3 ± 94.8 78 −38.8 (−57.8, −19.7) −13.9 (−20.7, −7.1) <0.001

Standard overfeeding (SOF) 263.4 ± 99.7 255.6 ± 95.0 54 +7.7 (−14.9, 30.4) 2.8 (−5.3, 10.9) 0.50

High-carbohydrate
normal-protein overfeeding

(CNP)
248.1 ± 97.6 253.5 ± 94.0 56 −5.4 (−27.0, 16.1) −1.9 (−9.7, 5.8) 0.61

High-fat normal-protein
overfeeding (FNP) 235.4 ± 90.8 256.5 ± 94.6 54 −21.2 (−48.4, 6.0) −7.6 (−17.3, 2.1) 0.12

High-protein, high-fat
overfeeding (HPF) 251.5 ± 74.5 260.0 ± 72.1 31 −8.5 (−27.2, 10.1) −3.1 (−9.7, 3.6) 0.36

Absolute changes in 24-h urinary dopamine excretion rates were calculated as difference from 24-h energy balance conditions. Percentage
changes were calculated as the absolute changes divided the average value during 24-h energy balance conditions. p-values were calculated
by Student’s paired t-test analysis of dopamine values with Gaussian distribution as confirmed by the Shapiro–Wilk test.
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diets as compared to 24-h energy balance conditions. Error bars represent 95% CI of the mean difference.

3.2.1. Short-Term Fasting

During 24-h fasting, urinary dopamine decreased on average by 14% or −39.4 mcg/24 h
(CI: −57.0 to −21.9, p < 0.001, Figure 3). Following 24-h fasting, plasma PP concentrations
increased on average by approximately two-fold (fold change = 2.1, CI: 1.7 to 2.7, p < 0.001,
Figure 4A and Table 3). Urinary dopamine during 24-h fasting was negatively associated
with plasma PP concentration after 24-h fasting, such that a lower urinary dopamine
concentration during 24-h fasting correlated with increased PP concentration (r = −0.40,
p < 0.001, Figure 5A). Similar results were obtained when considering the change in urinary
dopamine concentrations during 24-h fasting from energy balance condition, such that
a larger decrease in urinary dopamine during 24-h fasting correlated with increased PP
concentration (r = −0.26, p = 0.03). These inverse associations were observed also after
adjustment for %fat (partial r = −0.41, p < 0.001 and partial r = −0.33, p = 0.007, respectively).
Similar results were observed in a sensitivity analysis including only men (data not shown).
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Table 3. Plasma pancreatic polypeptide and insulin concentrations before and after each dietary intervention.

Pre-Diet Post-Diet N Fold Change p-Value

24-h fasting (FST)

Pancreatic polypeptide (pg/mL) 277.7 ± 517.5 371.4 ± 556.3 72 2.1 (1.7, 2.7) <0.001

Insulin (µIU/mL) 7.9 ± 3.4 4.3 ± 2.5 53 0.51 (0.44, 0.58) <0.001

Low-protein high-fat
overfeeding (LPF)

Pancreatic polypeptide (pg/mL) 275.4 ± 509.8 271.6 ± 493.6 61 1.1 (0.9, 1.4) 0.27

Insulin (µIU/mL) 7.8 ± 3.0 8.6 ± 3.9 44 1.1 (1.0, 1.2) 0.17

Standard overfeeding (SOF)

Pancreatic polypeptide (pg/mL) 301.5 ± 538.6 313.0 ± 545.2 63 1.1 (1.0, 1.3) 0.10

Insulin (µIU/mL) 8.2 ± 3.8 11.2 ± 6.0 46 1.3 (1.2, 1.5) <0.001

High-carbohydrate normal-protein overfeeding (CNP)

Pancreatic polypeptide (pg/mL) 280.1 ± 505.9 290.1 ± 516.6 64 1.1 (0.9, 1.3) 0.73

Insulin (µIU/mL) 7.2 ± 2.4 10.7 ± 5.2 51 1.4 (1.3, 1.6) <0.001

High-fat normal-protein overfeeding (FNP)

Pancreatic polypeptide (pg/mL) 286.5 ± 526.3 291.9 ± 519.3 60 1.2 (1.0, 1.5) 0.09

Insulin (µIU/mL) 8.1 ± 3.4 8.4 ± 3.3 46 1.1 (0.9, 1.2) 0.36

High-protein, high-fat overfeeding (HPF)

Pancreatic polypeptide (pg/mL) 290.7 ± 458.5 307.6 ± 453.4 47 1.2 (1.0, 1.6) 0.07

Insulin (µIU/mL) 7.9 ± 3.7 9.2 ± 4.9 43 1.1 (1.0, 1.3) 0.11

Data are reported as mean with standard deviation (SD). Fold changes are reported with 95% CI (in brackets) and were calculated as the
exponentiated difference of logarithmic values (post-diet minus pre-diet) due to the skewed distribution of hormonal values. p-values were
calculated by Student’s paired t-test analysis of logarithmic values.
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Figure 5. Inverse relationships between urinary dopamine excretion rate and plasma pancreatic polypeptide concentration
during 24-h fasting and during 24-h low-protein overfeeding. The graphs show the inverse relationship between 24-h
urinary dopamine excretion rate and plasma pancreatic polypeptide concentration after 24-h fasting (Panel (A)) and after
24-h low-protein overfeeding (Panel (B)). In each panel, the Pearson’s correlation coefficient (r) is reported along with its
significance (p). The sample size refers to volunteers who had available measurement for both dopamine and pancreatic
polypeptide concentrations.

Following 24-h fasting, plasma insulin concentrations decreased on average by ~50%
(fold change = 0.51, CI: 0.44 to 0.58, p < 0.001, Figure 4B and Table 3). There were no
correlations between fasting-induced changes in insulin and dopamine (p = 0.27) or PP
(p = 0.18) concentrations.

3.2.2. Low-Protein Overfeeding

During 24-h low-protein overfeeding, urinary dopamine decreased on average by
~14% (∆ = −38.8 mcg/24 h, CI: −57.8 to −19.7, p < 0.001, Figure 3) while no overall changes
in plasma insulin or PP concentration were observed (all p > 0.2). Urinary dopamine during
24-h low-protein overfeeding was negatively associated with plasma PP concentration,
such that a lower urinary dopamine concentration during 24-h low-protein overfeeding
correlated with increased PP concentration (r = −0.31, p = 0.01, Figure 5B). Similar results
were observed in a sensitivity analysis including only men (data not shown).

No associations were found between insulin concentration and urinary dopamine
or PP concentrations (all p > 0.1). Similar results were observed after adjustment for
percentage body fat, age, gender, and ethnicity (all p > 0.2). There were no significant
associations between 24-h urinary dopamine excretion rate and plasma PP concentration
during energy balance and during normal/high-protein overfeeding diets (all p > 0.09).

4. Discussion

In the present study including healthy subjects with normal glucose regulation, we
aimed to evaluate whether urinary dopamine concentrations were altered by acute dietary
interventions including 24-h fasting and overfeeding diets with different macronutrient
proportion and accounting for twice energy requirements. Compared to eucaloric condi-
tions, overall urinary dopamine excretion rate decreased to the same extent (~14%) both
during 24-h fasting and low-protein overfeeding, but not during overfeeding diets with
normal or high protein content. Interestingly, we observed a two-fold increase in plasma
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pancreatic polypeptide (PP) concentrations following 24 h of fasting and this increase was
inversely associated with the urinary dopamine concentration during the intervening 24-h
fasting period; similarly, urinary dopamine excretion during low-protein overfeeding was
also inversely related to the change in PP following this diet.

4.1. Effect of Short-Term Fasting on Dopamine

During 24-h fasting, urinary dopamine decreased from eucaloric conditions by ~14%.
Dopamine is implicated in the regulation of food intake and plays a role in feeding be-
havior [7]. However, few studies have evaluated the effect of acute fasting on urinary
dopamine concentrations in humans. In mice, short-term fasting (24 h) leads to a reduction
of dopamine reuptake transporters (DAT) levels in the ventral tegmental area/substantia
nigra pars compacta [11] with reduction of dopamine uptake in the striatum [11], sug-
gesting that striatal DAT function can be affected by fasting. A longer period of food
restriction (three weeks) reduces the concentrations of DAT in the striatum in mice [10]. In
rats, twenty-one days of chronic food restriction leads to a reduction in basal extracellular
dopamine concentrations [8]. In fasted mice, a microdialysis study has shown a reduction
in basal extracellular dopamine concentrations in the nucleus accumbens [9] and short-term
fasting leads to a decrease in extracellular striatal dopamine in mice [22].

In humans, no significant changes in fasting plasma dopamine concentrations were
observed at the 14th and 29th day during long-term intermittent fasting conditions (Ra-
madan period) [23]. Conversely, in the current study we observe a small but consistent
decrease in urinary dopamine concentrations compared to energy balance conditions. We
might speculate that the reduction in urinary dopamine concentrations might be due to
the decreased accumulation of DOPA during fasting [24], with consequent decrease in
dopamine synthesis [8], possibly due to the reduction in dopamine transporter function [10]
as shown in rodents studies [8,10]. Alternatively, it can be speculated that short-term fast-
ing may lead to a suppression of centrally mediated sympathetic activity with consequent
reduction in dopamine excretion rate [25]. Supportive of this hypothesis, in mice it has
been hypothesized that fasting might lead to a stimulation of the ventromedial nucleus
of the hypothalamus, which seems to play a role in reducing sympathetic activity [26].
Collectively, our current results indicate that 24-h fasting leads to a reduction in urinary
dopamine excretion rate, possibly by reduced dopamine production and/or suppressed
sympathetic nervous system activity aimed to conserve energy in acute conditions of
energy deficit.

The regulation of feeding might be affected by pancreatic signals, which convey in-
formation regarding food ingestion to brain regions [27]. Pancreatic polypeptide (PP) is
a 36-amino acid peptide produced by PP cells of pancreatic islets of Langerhans, whose
secretion is stimulated postprandially in proportion to caloric load [28], mediated by cholin-
ergic stimuli [29], and modulated by adrenergic mechanisms [30]. In healthy volunteers
without obesity, plasma PP increases by ~120 pg/mL (~196% or ~2 fold-change similar to
what observed in our current study) after 24 h of fasting and remains at higher levels for
84 h (the duration of this experiment) [31], suggesting an augmented vagal tone response
reflected by increased PP secretion [30]. Our findings for PP after 24-h fasting support the
hypothesis that short-term caloric restriction leads to a vagal parasympathetic response to
conserve energy which, in turn, activates the cholinergic system to stimulate PP secretion
from the pancreas. Another hypothesis is that a concomitant reduction of glycemia during
short-term fasting led to the marked increase in plasma PP concentration, since a small
reduction in glycemic levels appears to induce PP secretion [32].

Direct stimulation of the gastrointestinal tract after nutrient ingestion stimulates the
release of dopamine in brain circuits controlling food intake [33], including the dorsal
striatum via the descending vagal efferent system [34]. Moreover, the specific effects
of dopamine include the stimulation of pancreatic exocrine secretion [35]. Further, non-
dopaminergic brain regions via their projection to the hindbrain circuits containing cate-
cholaminergic cell groups might regulate cellular nutrient sensing to dopamine efflux [36].
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Interestingly, lower urinary dopamine concentration during fasting conditions correlated
with increased PP concentration following 24-h fasting. Although the mechanisms by
which dopamine and pancreatic polypeptide are linked remain to be established, Zhang
et al. have shown that human pancreatic islet cells express dopamine receptors (D1, D2, D4,
and D5) [37]. Further, in healthy individuals postprandial PP concentrations were blunted
by continuous infusion of dopamine, suggesting that this suppression was mediated by
dopaminergic receptors in the pancreas by opposing the activity of cholinergic system
responsible for PP secretion [38]. As the sympathetic and parasympathetic systems are
in constant homeostasis [39], we might speculate that the reduction in urinary dopamine
concentrations during 24-h fasting may be a marker of decreased sympathetic drive counter-
balanced by the increase in plasma PP concentration as a compensatory mechanism driven
by the parasympathetic activation during acute food deprivation. A possible explanation
could be that, in the prolonged fasting state, decreased dopamine concentrations might
result in increased PP secretion via a dopamine-related acetylcholine effect in the pancreas.

4.2. Effect of 24-h Low-Protein Overfeeding Diet on Dopamine

After 24 h of low-protein high-fat overfeeding diet, urinary dopamine excretion rate
decreased from eucaloric condition to the same extent observed during 24-h fasting (−14%).
Very few studies have evaluated the dopamine response to overfeeding diets with different
protein content. Following L-dopa administration, rats fed a high vs. low protein diet have
an attenuated increase in striatal dopamine concentrations [13], suggesting that alteration of
dietary protein strongly affects dopamine production from exogenous L-dopa in the brain.
Rats with extended access to high-fat meals have lower density of dopamine D2 receptors in
the striatum [40]. In a microdialysis study, mice fed a low-fat diet for 16 weeks showed an
increase in extracellular dopamine in the striatum as an adaptive mechanism to dopamine
D2 receptors downregulation [41]. In this latter study, it was also shown that gut lipid
messenger depletion, caused by saturated fat intake, led to a reduced intestinal sensitivity
to fat intake, blunting vagal afferent signals and reducing dopamine secretion/release [41].

In humans, a small cross-over study including six men fed a single high-protein meal
(60 g of protein) showed increased urinary dopamine excretion after 5 h compared to no-
protein meal [42]. In humans, tyrosine, a large neutral amino acid precursor of dopamine,
can act to modulate brain neurotransmitters [43] as tyrosine administration leads to en-
hanced neuronal activity, thereby increasing synthesis of dopamine [44]. Yet, inconsistent
results exist with regard to tyrosine and dietary protein. One small study showed that a
breakfast rich in protein decreased the tyrosine/LNAAs ratio by 30% after 240 min of meal
ingestion [45] whereas another small study showed that food rich in protein increased
plasma tyrosine concentration [46]. In rats, intraperitoneal administration of phenylalanine,
the other amino acid precursor of dopamine [47], increased basal dopamine release by
59%, suggesting that changes in brain phenylalanine levels may play a role in dopamine
molecules production in the rat’s corpus striatum [48]. Similarly, subjects fed with diet rich
in protein had a decreases in the ratio of plasma phenylalanine levels/LNAA [46].

As we observed a reduction in urinary dopamine concentrations during 24 h of low-
protein high-fat overfeeding diet that contained approximately 1/3 protein compared to
the eucaloric diet [49], we might speculate that: (1) the reduction in dietary protein intake
might have led to a reduction in phenylalanine and tyrosine concentrations which, in turn,
resulted in decreased dopamine synthesis and/or (2) the increase in fat content might
have led to a reduced availability of dopamine receptors, causing a reduction in dopamine
synthesis. Our findings might suggest that both protein and fat content in concert might
be involved in our observed dopamine response to acute, short-term overfeeding with
a low-protein/high-fat content diet. Importantly, as during 24-h fasting, lower urinary
dopamine concentration correlated with increased PP concentration following low-protein
high-fat overfeeding diet, suggesting that the physiological mechanisms underlying the link
between dopamine and PP secretion in a setting of dietary protein deficit are independent
from the level of energy balance (negative-fasting and positive-overfeeding).
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5. Limitations

Our study has several limitations. First, the female subgroup was small; however,
the main results were confirmed in sensitivity analyses including only men. We did not
perform brain neuroimaging to assess the neural mechanisms involved in dopamine func-
tion [6], which would have been helpful to assess the availability of dopamine receptors
as determinants of the changes in urinary dopamine concentrations during different di-
etary interventions. In addition, we did not measure dopamine concentration in plasma,
which would have been important to confirm the results obtained using urinary dopamine
excretion. Further, although the urinary dopamine excretion rate over 24 h has been de-
scribed as a good marker of the peripheral and nervous system neurotransmitter functional
status [3,50] and showed a positive correlation with serum L-DOPA concentration in our
comparative analysis (Supplemental Figure S3), urinary dopamine concentrations might
not exactly reflect dopamine concentrations in the central nervous system.

6. Conclusions

Acute, short-term (24 h) dietary interventions with low-protein content (fasting and
low-protein overfeeding diet), but not normal/high-protein overfeeding diets, decreased
urinary dopamine excretion rate which, in turn, was associated with increased plasma PP
concentration. The interaction between dopamine and PP may underlie a compensatory
mechanism to acute dietary protein deficit in the autonomic nervous system, reflecting a
fasting-induced increased parasympathetic drive with a concomitant reduction in sympa-
thetic activity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu13041234/s1, Figure S1: Study flow chart, Figure S2: Study design, Figure S3: Positive
relationship between 24-h urinary dopamine excretion rate during 24-h energy balance conditions
and serum L-DOPA concentration the morning after 24-h energy balance conditions, Figure S4:
Relationship between urinary dopamine and insulin total AUC during the OGTT, Table S1: Results of
the mixed model analysis including only the 27 participants with valid dopamine data for all dietary
interventions.
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Abbreviations

CNP high-carbohydrate normal-protein overfeeding diet
EE energy expenditure
ENBAL 24-h energy balance
FFM fat free mass
FM fat mass
FST 24-h fasting
FNP high-fat normal-protein overfeeding diet
HPF high-protein high-fat overfeeding diet
LPF low-protein high-fat overfeeding diet
OGTT oral glucose tolerance test
PP pancreatic polypeptide
RQ respiratory quotient
SOF standard overfeeding diet
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