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Psoriasis is a chronic inflammatory skin disease that features localized or

widespread erythema, papules, and scaling. It is common worldwide and

may be distributed throughout the whole body. The pathogenesis of

psoriasis is quite complex and the result of the interplay of genetic,

environmental and immune factors. Ferroptosis is an iron-dependent

programmed death that is different from cell senescence, apoptosis,

pyroptosis and other forms of cell death. Ferroptosis involves three core

metabolites, iron, lipids, and reactive oxygen species (ROS), and it is primarily

driven by lipid peroxidation. Ferrostatin-1 (Fer-1) is an effective inhibitor of lipid

peroxidation that inhibited the changes related to ferroptosis in erastin-treated

keratinocytes and blocked inflammatory responses. Therefore, it has a certain

effect on the treatment of psoriatic lesions. Although ferroptosis is closely

associated with a variety of human diseases, such as inflammatory diseases, no

review has focused on ferroptosis in psoriasis. This mini review primarily

focused on the pathogenesis of psoriasis, the mechanisms of ferroptosis, the

connection between ferroptosis and psoriasis and ferroptosis inhibitors in

psoriasis treatment. We discussed recent research advances and

perspectives on the relationship between ferroptosis and psoriasis.
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Introduction

Psoriasis (PsO) is a chronic, recurrent, and autoimmune skin disorder caused by

multiple risk factors, including genetic and environmental factors (Pezzolo and Naldi,

2019; Kanda et al., 2020; Madden et al., 2020; Reid and Griffiths, 2020). The incidence of

psoriasis varies greatly worldwide, with a global prevalence of approximately 2%–4%
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(Liang et al., 2021) or approximately 125 million people

(Armstrong and Read, 2020). According to the clinical

features, PsO is divided into four types: vulgaris,

arthrogryposis, pustular, and erythroderma (Navarini et al.,

2017; Carrasquillo et al., 2020; Lo et al., 2020; Nast et al.,

2020). Psoriatic lesions initially appear as red papules. With

the development of the disease, the red plaques exhibit various

morphologies, such as dot-like, map-like, or covered with thick,

silvery-white scales (Raychaudhuri et al., 2014). Keratinocytes

play an essential role in psoriasis, and their death amplifies the

inflammatory effect. A recent study showed that keratinocytes in

psoriatic lesions exhibited lipid peroxidation, which is related to a

novel type of cell death, ferroptosis (Wen et al., 2019; Shou et al.,

2021).

The Brent Stockwell Laboratory formally defined ferroptosis

for the first time in 2012, and it is caused by lipid peroxidation

due to the accumulation of reactive oxygen species (ROS) (Dixon

et al., 2012). Lipids are organic substances that play critical roles

in human tissues. Lipids form the cell membrane and participate

in a variety of processes, including cell proliferation and

apoptosis, inflammatory conditions, and immune responses

(van Meer et al., 2008; Nowowiejska et al., 2021). Iron, lipids

and ROS play important roles in cell survival. However, these

factors lead to fatal damage when metabolic disorders occur (Liu

and Gu, 2022). Ferroptosis is closely related to a variety of human

diseases (Jiang et al., 2021), including tumors, septicemia,

bacterial, and viral diseases, some neurodegenerative diseases

and autoimmune diseases, such as systemic lupus erythematosus,

inflammatory bowel diseases, and PsO, which we will discuss

briefly in this review (Gunther et al., 2013; Li et al., 2021; Shou

et al., 2021).

Pathogenesis of psoriasis

The pathogenesis of psoriasis is extremely complicated and is

currently believed that the development of the disease is caused

by the joint action of genetic and environmental factors, which

together result in inflammatory cell infiltration, keratinocyte

proliferation, and T cell differentiation, etc. (Ogawa and

Okada, 2020; Solmaz et al., 2020). The heritability of psoriasis

is approximately 66%–90%, which is one of the highest

heritability rates of multifactorial genetic diseases (Traks et al.,

2019). Environmental factors, such as infection, obesity, nicotine

dependence, etc., also induce and aggravate the progression of

psoriasis (Madden et al., 2020; Karpinska-Mirecka et al., 2021;

Reolid et al., 2021). For example, drip psoriasis is closely related

to acute streptococcal infection, which indicates a link between

psoriasis and bacterial infection (Madden et al., 2020; Zhou and

Yao, 2022). Although the pathogenic etiology of psoriasis is not

clear, psoriasis susceptibility genes are associated with immune

mechanisms (Vicic et al., 2021; van de Kerkhof, 2022). The innate

and adaptive immune systems play crucial roles (Xu and Zhang,

2017), especially CD4 and CD8 cells and the interleukin-23/T

helper 17 pathway (Girolomoni et al., 2017; Ly et al., 2019;

Iznardo and Puig, 2021). The abnormal activation and migration

of specific T cells to the skin leads to the gradual accumulation of

inflammatory cells (Xu and Zhang, 2017). Inflammatory

cytokines produced by Th1 and Th22 cells, such as tumor

necrosis factor (TNF), interleukin (IL)-17, and IL-22, all

contribute to the inflammation. With the induction of IL-23,

Th17 cells differentiate, proliferate and secrete IL-17, which

disrupts the integrity of the skin barrier and induces

keratinocyte hyperproliferation (Rendon and Schakel, 2019).

Mechanisms of ferroptosis

As a new form of programmed cell death (Dixon et al., 2012),

ferroptosis differs from other forms of cell death, such as

pyroptosis, apoptosis or cellular senescence, and results in

membrane damage and cell lysis (Riegman et al., 2020; Ding

et al., 2021). Iron, lipids, and ROS maintain a steady state for cell

survival (Liu and Gu, 2022). The accumulation of ROS causes

lipid peroxidation and further induces ferroptosis (Stockwell,

2022). The detailed mechanisms of ferroptosis are illustrated

below and shown in Figure 1.

Lipid metabolism

Lipid metabolism is closely related to ferroptosis. As one of

the basic elements, long-chain polyunsaturated fatty acids

(PUFAs) participate in ferroptosis and are quite sensitive to

lipid peroxidation (Li et al., 2020). Free PUFAs are esterified and

form film phospholipids that transmit ferroptosis signals after

oxidation. PUFAs are linked to coenzyme A (CoA) via the

catalysis of acyl-CoA synthetase long-chain family member 4

(ACSL4) (Das, 2019). Lysophosphatidylcholine acetyltransferase

3 (LPCAT3) re-esterifies these products into phospholipids and

integrates them into membrane phospholipids (Forcina and

Dixon, 2019; Li and Li, 2020; Chen et al., 2021b; Liang et al.,

2022). Lipid peroxidation leads to the destruction of the lipid

layer, which causes cell damage and ferroptosis. Arachidonic acid

(AA) is a key phospholipid that induces ferroptosis. ACSL4 and

LPCAT3 are involved in the biosynthesis of

phosphatidylethanolamine (PE) of adrenaline, a derivative of

arachidonic acid, which activates PUFAs and acts as key

phospholipids to induce ferroptosis (Stockwell, 2022).

ACSL4 and LPCAT3 are also involved in the activation of

PUFAs and the binding of them to local membrane lipids,

which shows the necessity of PUFAs in the membrane

binding environment to have fatal effects on peroxidation (Li

et al., 2020; Stockwell, 2022). Because specific carbon atoms in

lipids are susceptible to peroxidation, lipid peroxidation depends

on the strength of its hydrocarbon bond (Li et al., 2020).
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FIGURE 1
Mechanisms of ferroptosis. The three pathways represent lipid metabolism, antioxidant metabolism, and iron metabolism in ferroptosis,
respectively. In lipid metabolism, LDs are degraded via lipophagy to release free fatty acids, including PUFAs. Accumulated PUFAs are catalyzed by
ACSL4 to generate the key substrate PUFA-CoA, which is finally esterified into PUFA-PLs by LPCAT3. PUFA-PLs can be peroxidized to PUFA-PL-OOH
through enzymatic and non-enzymatic lipid peroxidation reactions in the presence of bioactive iron. PLOOH can generate lipid hydroxyl
radicals and lipid peroxyl radicals, sensitizing the cell to ferroptosis. MUFAs, likely through MUFA-PLs from MUFA-CoA, can inhibit PUFA-PLs by
replacing PUFA from phosphatidylethanolamine, thus reducing the available substrate for lipid peroxidation. In antioxidant metabolism, the two
subunits SLC3A2 and SLC7A11 constitute the system Xc-, which is an amino acid antiporter that mediates the exchange of extracellular cystine and
intracellular glutamate across the plasma membrane. After entering the cells, cystine is reduced to cysteine and participates in the synthesis of GSH,
which serves the substrate of GPX4. GPX4 reduces cytotoxic lipid peroxide (L-OOH) to the corresponding alcohol (L-OH), thus inhibiting the
formation of lipid peroxide and ferroptosis. GPX4 can also transform GSH into GSSG, and GSSG can be reduced to GSH under the action of GSR.
FSP1-CoQ10 or GCH1-BH4 pathway inhibits ferroptosis independently of GSH. In iron metabolism, ferric iron (Fe3+) is bound to transferrin (TF) to
form TF-Fe3+, which is then taken up by the TF receptor (TFR1). In endosomes, STEAP3 reduces Fe3+ to Fe2+, which is then released to cytoplasm
through DMT1, and stored in LIP or ferritin. Fe2+ mediates the Fenton reaction, thereby promoting lipid peroxidation and ferroptosis. Excess Fe2+ is
oxidized to Fe3+ by FPN. In addition, NCOA4-mediated ferritinophagy can increase LIP, thereby sensitizing the cell to ferroptosis through Fenton
reaction. The target of ferroptosis inducers and inhibitors are also indicated. P53 and erastin can interfer with the synthesis of GSH by inhibiting
system Xc-. FIN56 and cisplatin promote the degradation of GPX4. Siramesine increases the expression of transferrin in iron metabolism and
increases the level of intracellular ferric iron. Baicalein inhibits GSH depletion, GPX4 degradation and lipid peroxidation. 5-LOX inhibitor inhibits the
production of ROS. Ferrostatin-1, Liproxstatin-1, and α-Tocopherol scavenge ROS and inhibit lipid peroxidation. Red arrows indicate promoting
effects. Short lines with vertical end indicate inhibitory effect. The pink ball represents Fe3+. Blue balls represent Fe2+. Green triangles represent
cystine. Yellow triangles represent glutamate. Light green triangles represent cysteine. Green boxes indicate ferroptosis inhibitors. Yellow boxes
represent ferroptosis inducers. Abbreviations: ACSL3, acyl-CoA synthetase long chain family member 3; ACSL4, acyl-CoA synthetase long chain
family member 4; ALOX, arachidonate lipoxygenase; BH4, tetrahydrobiopterin; CoA, coenzyme A; CoQ10, coenzyme Q10; DMT1, divalent metal
transporter 1; FPN, ferroportin; FSP1, ferroptosis suppressor protein 1; GCH1, GTP cyclohydrolase 1; GPX4, glutathione peroxidase 4; GSH,
glutathione; GSR, glutathione reductase; GSSG, oxidized glutathione; GTP, guanosine triphosphate; LDs, lipid droplets; LPCAT3,

(Continued )
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Peroxidation of specific membrane lipids could induce

ferroptosis. The latest research shows that cytochrome

P450 oxidoreductase is the driver of lipid peroxidation in

ferroptosis (Stockwell et al., 2020). Once the production of

lipid peroxides far exceeds the antioxidant scavenging

capacity, the accumulated lipid peroxides attack the adjacent

PUFAs to form new lipid peroxides, which leads to the

enhancement of lipid peroxides (Chen et al., 2021a; Stockwell,

2022). Continuous peroxidation of PUFAs leads to changes in the

physiological state of cell membranes, such as destruction of the

stability and integrity of cell membranes, and ion homeostasis

inside and outside of cells (Stockwell, 2022). The decomposition

products of lipid peroxide further react with and destroy essential

proteins of the human body (Li et al., 2020), which ultimately

leads to ferroptosis.

Iron metabolism

Iron ions are critical factors in the production of ROS via

enzymatic or non-enzymatic reactions, and it participates in the

process of lipid peroxidation and plays a crucial role in

ferroptosis (Masaldan et al., 2019; Angelova et al., 2020; Jiang

et al., 2021). The abnormal accumulation of free iron in the body

often affects normal physiological processes and is a key signal of

ferroptosis. Fe2+ is acquired from the intestinal absorption or red

blood cells degradation. Under the action of ceruloplasmin, Fe2+

is oxidized to Fe3+, which combines with transferrin (TF) on the

cell membrane to form TF-Fe3+ complex via the membrane

protein TF receptor 1 (TFR1) (Frazer and Anderson, 2014).

The six-transmembrane epithelial antigen of prostate 3

(STEAP3) reduces Fe3+ to Fe2+, and Fe2+ is normally stored in

the labile iron pool (LIP) and ferritin, which is mediated by

divalent metal transporter 1 (DMT1) or Zinc-Iron regulatory

protein family 8/14 (ZIP8/14) (Li et al., 2020). Excess Fe2+ is

oxidized to Fe3+ by ferroportin (FPN) (Li et al., 2020). LIP is the

source of iron ions in the Fenton reaction (He et al., 2020; Lin

et al., 2020). Excessive free iron in the cell mediates the Fenton

reaction to produce a large amount of ROS, which further causes

a cascade reaction, intensifies the lipid oxidation of the cell

membrane, and induces ferroptosis (Shen et al., 2018).

Ferrous iron may act as a cofactor of some enzymes that

mediate lipid peroxidation and participate in the process of

ferroptosis. Therefore, the physiological process of iron ions

has an impact on the sensitivity of ferroptosis (Xia et al., 2021).

Silencing the TFR1 gene inhibited erastin-induced

ferroptosis (Gao et al., 2015). It was also found that heat

shock protein β-1 (HSPB1) inhibited ferroptosis by inhibiting

TFR1 expression and reducing the intracellular iron

concentration (Sun et al., 2015). In contrast, heme oxygenase-

1 (HO-1) supplementation with iron accelerated erastin-induced

ferroptosis (Kwon et al., 2015).

Antioxidant metabolism

The antioxidant system is the critical determining factor of

the occurrence of iron-induced cell death, and it inhibits the lipid

peroxidation chain reaction by reducing lipid peroxides (Seibt

et al., 2019). Under physiological conditions, antioxidant

enzymes, including glutathione peroxidase 4 (GPX4), inhibit

the production of oxidized lipids (Hong et al., 2022). GPX4,

which is a glutathione (GSH)- and selenium-dependent

glutathione peroxidase, could detoxify lipid hydroperoxides

(Miao et al., 2022). GSH is a cysteine-containing tripeptide

that exists as an intracellular antioxidant and primarily

depends on system Xc-mediated cystine uptake and the

concomitant reduction of cystine to cysteine (Ursini and

Maiorino, 2020). System Xc- is an amino acid antiporter that

is widely distributed in the phospholipid bilayer, and it is a

heterodimer composed of two subunits, SLC7A11 and SLC3A2

(Ursini and Maiorino, 2020; Stockwell, 2022). Cysteine and

glutamate enter and exit the cell via system Xc-. The absorbed

cysteine participates in the synthesis of GSH via a reduction

reaction. With the help of GSH as a cofactor, GPX4 converts

GSH to oxidized glutathione disulfide (GSSG) and reduces

cytotoxic lipid peroxide (L-OOH) to the corresponding

alcohols (L-OH), thereby detoxifying peroxide products and

preventing the accumulation of lipid ROS, making it an

important inhibitor of ferroptosis (Friedmann Angeli et al.,

2019; Stockwell, 2019; Li et al., 2020; Ursini and Maiorino,

2020; Miao et al., 2022; Stockwell, 2022).

The NADPH-FSP1 (ferroptosis suppressor protein 1)-CoQ10

and GCH1 (guanosine triphosphate cyclohydrolase 1)-BH4

(tetrahydrobiopterin) pathways are also reported to be

involved in inhibiting ferroptosis, with specific roles needed to

be further elucidated (Zheng and Conrad, 2020). RAS-selective

lethal 3 (RSL3) and the compounds DPI7 and DPI10 may be used

as ferroptosis inducers by directly inhibiting the activity of GPX4,

thus reduceing the antioxidant capacity of cells and causing the

FIGURE 1 (Continued)
lysophosphatidylcholine acyltransferase 3; LIP, labile iron pool; LOX, lipoxygenase; MUFA, monounsaturated fatty acid; NADP, nicotinamide-
adenine-dinucleotide phosphate; NADPH, reduced nicotinamide adenine dinucleotide phosphate; NCOA4, nuclear receptor coactivator 4; OOH,
hydroperoxides; PUFA, polyunsaturated fatty acid; PL, phospholipid; ROS, reactive oxygen species; SCD, stearoyl CoA desaturase; SFA, saturated
fatty acids; SLC3A2, solute carrier family 3 member 2; SLC7A11, solute carrier family 7 member 11; STEAP3, the six-transmembrane epithelial
antigen of prostate 3; TF, transferrin; TFR, transferrin receptor protein.
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accumulation of ROS to exert ferroptosis (Yang et al., 2014;

Magtanong et al., 2019). P53 downregulates the expression of

SLC7A11 and inhibits the uptake of cystine by system Xc-, which

may also lead to ferroptosis (Jiang et al., 2015; Liu et al., 2019; Liu

and Gu, 2021; Liu and Gu, 2022).

Ferroptosis in psoriasis

There is an intricate relationship between ferroptosis and

inflammation in psoriatic lesions. Abnormal lipid expression and

metabolism are frequently observed in patients with psoriasis,

especially in keratinocytes from the psoriatic lesions (Benhadou

et al., 2019; Shou et al., 2021). At the single-cell level, the lipid

oxidation pathway was significantly upregulated in keratinocyte

groups of psoriasis, and lipid peroxidation was enhanced during

psoriasis (Shou et al., 2021). Compared to other cells, such as

fibroblasts, macrophages, dendritic cells, endothelial cells, and

T cells, the lipid oxidation activity in keratinocytes highly

correlated with the Th22/Th17 pathway and had a time- and

concentration-dependent effect on the stimulation of erastin-

dependent ferroptosis (Orsmond et al., 2021; Shou et al., 2021).

Cell death related to ferroptosis was also reported to be

activated in psoriatic lesions. For example, GPX4 was highly

expressed in all layers of the epidermis in normal samples while

under-expressed in psoriatic skin, and ACSL4 was highly

expressed in the basal layer of the epidermis in psoriasis

compared to the normal skin (Shou et al., 2021). The

expression of prostaglandin-endoperoxide synthase 2 (PTGS2)

and transferrin receptor (TFRC) also increased significantly in

psoriatic samples, while the expression of ferritin heavy chain 1

(FTH1) and ferritin light chain (FTL) decreased (Shou et al.,

2021). PTGS2 is a potential biomarker for cells undergoing

ferroptosis (Wu et al., 2022), and FTH1 and FTL is involved

in the storage, entry and homeostasis of ion (Park and Chung,

2019). As a derivative of lipid peroxidation, 4-hydroxynonenol

(4-HNE) is also increased in psoriatic lesions and enhances

ferroptosis (Liu et al., 2020; Shou et al., 2021). GPX4 is a

selenoprotein (Proneth and Conrad, 2019; Zhang et al.,

2021b), and the exact reason for its reduced expression in

psoriatic lesions is unknown. It is observed that selenium was

decreased and related to the severity of psoriasis in patients with

long disease duration, and selenium deficiency affects the

biosynthesis of GPX4, which might explain the decreased

antioxidant activity and susceptibility towards ferroptosis in

psoriatic patients (Serwin et al., 2003; Ingold et al., 2018).

Ferroptosis not only promotes cell death, but also triggers

inflammation in psoriatic keratinocytes. Several studies showed

that ferroptosis triggers and amplifies a variety of inflammatory

responses (Tsurusaki et al., 2019; Bebber et al., 2020; Ren et al.,

2020). It enhances inflammatory responses via the release of

damage-associated molecular patterns (DAMPs) and alarmins

(Chen et al., 2021a), which could further activate the immune

cells and significantly stimulate the expression of inflammatory

cytokines, making a complex link between the inflammatory

response and ferroptosis in psoriatic lesions.

TABLE 1 The use of ferroptosis inducers and inhibitors in diseases.

Classification Representatives Mechanisms Indications References

Regulating oxidative
stress

Inducers Erastin Produce ROS to damage mitochondria or affect GSH
synthesis by inhibiting System Xc-

Diffuse large B cell
lymphoma

(Kose et al. (2019),
Zhao et al. (2020)

FIN56 Produce ROS and induce ferroptosis by inhibiting
GPX4

Glioblastoma Zhang et al. (2021a)

Inhibitors Ferrostatin-1 Inhibit oxidative stress, reduce ROS and lipid
peroxidation, and regulate oxidation related proteins
such as up regulating GPX4 expression

Psoriasis Zilka et al. (2017)

Liproxstatin-1 Reduce mitochondrial ROS production, restore
GPX4 level and inhibit lipid peroxidation

Myocardialischaemia/
reperfusion

Zilka et al. (2017)

α-Tocopherol Damage the chain reaction of automatic oxidation,
so as to resist oxidation

Myocardialischaemia/
reperfusion

Zilka et al. (2017)

5-LOX inhibitor Inhibit glutamate toxicity and ferroptosis by
inhibiting the production of ROS in the cytoplasm

Asthma Yuan et al. (2016)

Iron metabolism Inducers Siramesine Increase the expression of transferrin in iron
metabolism and increase the level of intracellular
ferric iron

Breast cancer Ma et al. (2016)

Inhibitors Deferoxamine and other
iron chelator

Bind free iron ions to inhibit ferroptosis Thalassemia Major Guerrero-Hue et al.
(2019)

Others Inducers Cisplatin Increase the level of intracellular ROS Lung cancer Guo et al. (2018)

Inhibitors Baicalein Inhibit GSH depletion, GPX4 degradation and lipid
peroxidation

Pancreatic cancer Xie et al. (2016)

Abbreviations: GPX4, glutathione peroxidase 4; GSH, glutathione; LOX, lipoxygenase; ROS, reactive oxygen species; System Xc, sodium-independent, anionic amino acid transport system.
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Ferroptosis inhibitors in psoriasis
treatment

Ferroptosis is involved in several pathophysiological

processes and the development of miscellaneous conditions,

including iron overload disease and myocardial diseases (Yang

et al., 2020; Liu and Gu, 2021; Weber et al., 2021; Lai et al., 2022;

Liu and Gu, 2022). Reasonable induction or inhibition of

ferroptosis contributes to the treatment of these diseases. For

example, the ferroptosis inducer erastin selectively kills tumor

cells by regulating oxidative stress (Kose et al., 2019; Zhao et al.,

2020). FIN56, siramesine, cisplatin and other inducers also

improve the treatment of some diseases (Table 1) (Ma et al.,

2016; Guo et al., 2018; Zhao et al., 2020; Zhang et al., 2021a).

However, ferroptosis inhibitors play an essential role,

especially in psoriasis. There are many inhibitors, such as

ferrostatin-1 (fer-1), liproxstatin-1 (lip-1) and α-Tocopherol
(α-TOH) (Xie et al., 2016; Yuan et al., 2016; Zilka et al., 2017;

Guerrero-Hue et al., 2019). Fer-1 and lip-1 are more effective

compared toα-TOH, which is a relatively weak ferroptosis

inhibitor (Stockwell et al., 2017; Shah et al., 2018; Yao et al.,

2019; Miotto et al., 2020).

Fer-1 was obtained from the high-throughput screening of a

small molecule library. As an aromatic amine antioxidant, Fer-1

prevented erastin-induced lipid ROS production and inhibited

ferroptosis in HT-1080 cells, but it did not inhibit the cell death

induced by other lethal oxidative compounds, such as H2O2 or

apoptosis inducers (Armstrong and Read, 2020). Fer-1 reduces

lipid peroxidation by inhibiting oxidative stress through

downregulating prostaglandin endoperoxide synthase 2 and

upregulating GPX4 and Nuclear factor E2 related factor 2

(NRF2) (Asano et al., 2017). In psoriatic keratinocytes, Fer-1

blocks the inflammatory responses and alleviates the skin lesions

by inhibiting the lipid peroxidation (Kajarabille and Latunde-

Dada, 2019; Miotto et al., 2020). Fer-1 was also demonstrated to

eliminate erastin-induced death in keratinocytes and alleviate

imiquimod-induced psoriasiform dermatitis in mice (Shou et al.,

2021). The complex effect of Fer-1 against psoriasis-like

inflammatory responses suggests that lipid peroxidation in

psoriatic lesions also amplifies inflammatory responses, and

the two act together to contribute to ferroptosis (Gong et al.,

2019). Further studies need to identify key pathogenic mediators

of this process and provide more specific and accurate

therapeutic targets.

The level of mammalian targets of rapamycin (mTOR)

signaling protein and the expression of mTOR complex 1

(mTORC1) was elevated in psoriatic skin (Raychaudhuri and

Raychaudhuri, 2014). Through activating mTORC1, cystine and

cysteine promotes the biosynthesis of not only GSH, but also

GPX4, while inhibition of mTORC1 sensitizes cells to ferroptosis

by decreasing the synthesis of GPX4, demonstrating a link

between mTORC1 and ferroptosis (Zhang et al., 2021b;

Conlon et al., 2021).

Conclusion and perspective

Ferroptosis primarily consists of three components: 1)

oxidation of PUFAs, 2) excess active iron, and 3) inactivation

of GPX4 (Battaglia et al., 2020). Studies have shown that

ferroptosis is closely associated with the development of

several human diseases, including autoimmune diseases,

tumors, infectious diseases, and neurodegenerative diseases,

such as Alzheimer’s disease (AD), Parkinson’s disease (PD),

and Huntington’s disease (Qiu et al., 2020; Reichert et al.,

2020; Lai et al., 2022). The current mini review focused on

the mechanisms and treatment of psoriasis associated with

ferroptosis and the therapeutic advances that contribute to the

effective improvement of psoriatic skin manifestations, including

skin thickness and scales, in the role of the inhibition of

ferroptosis. Although studies on the role of ferroptosis in

psoriasis are scarce, the limited available literature shows that

ferroptosis inhibitors have good effects in the treatment of this

disease.

However, as a novel cell death mechanism, many issues

must be solved urgently. Current research results of

ferroptosis in psoriasis are limited, and the specific role of

ferroptosis in the occurrence and development of psoriasis is

not known. The medical field faces challenges in psoriasis

treatment, such as the side effects and adherence of

medications. To promote the quality of life of psoriatic

patients, we need more effective treatment strategies.

Determining the specific connection of ferroptosis and PsO

will facilitate targeted therapies and personalized treatment

for psoriasis, provide guidance for precision medicine and

achieve better therapeutic effects.

Taken together, ferroptosis has a close connection with

psoriasis, and there should be more experimental data to

support further investigations. Psoriasis treatment strategies

based on ferroptosis research will provide great advances in

the future and benefit psoriatic patients.
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