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Revealing links between gut 
microbiome and its fungal 
community in Type 2 Diabetes 
Mellitus among Emirati subjects:  
A pilot study
Mohammad Tahseen Al Bataineh1,2 ✉, Nihar Ranjan Dash1, Pierre Bel Lassen3, 
Bayan Hassan Banimfreg4, Aml Mohamed Nada5,6, Eugeni Belda7 & Karine Clément3 ✉

Type 2 diabetes mellitus (T2DM) drastically affects the population of Middle East countries with an 
ever-increasing number of overweight and obese individuals. The precise links between T2DM and 
gut microbiome composition remain elusive in these populations. Here, we performed 16 S rRNA and 
ITS2- gene based microbial profiling of 50 stool samples from Emirati adults with or without T2DM. 
The four major enterotypes initially described in westernized cohorts were retrieved in this Emirati 
population. T2DM and non-T2DM healthy controls had different microbiome compositions, with an 
enrichment in Prevotella enterotype in non-T2DM controls whereas T2DM individuals had a higher 
proportion of the dysbiotic Bacteroides 2 enterotype. No significant differences in microbial diversity 
were observed in T2DM individuals after controlling for cofounding factors, contrasting with reports 
from westernized cohorts. Interestingly, fungal diversity was significantly decreased in Bacteroides 2 
enterotype. Functional profiling from 16 S rRNA gene data showed marked differences between T2DM 
and non-T2DM controls, with an enrichment in amino acid degradation and LPS-related modules in 
T2DM individuals, whereas non-T2DM controls had increased abundance of carbohydrate degradation 
modules in concordance with enterotype composition. These differences provide an insight into gut 
microbiome composition in Emirati population and its potential role in the development of diabetes 
mellitus.

The gut microbiome is a critical reservoir of microbial species and their genes and genomes present in the human 
gastrointestinal tract. Host genetics, environment, diet, the immune system, and many other lifestyle factors 
interact with the gut microbiome to regulate their composition and function1. Data are bringing convincing 
evidence that gut microbiome plays an important role in human health and diseases2. Studies have indeed linked 
gut microbiome richness and composition with a spectrum of cardiometabolic and neurodegenerative disorders 
including obesity, diabetes, cancer, depression, and schizophrenia amongst others3–5. Especially the pathogenic 
association between gut microbiome and type 2 diabetes is quickly gaining momentum in the world through 
many reports. This is also due to the availability of technological advancements in metagenomics, which enable 
the dissection of the complex relationship between gut microbiome and diabetes.

These reports suggested that T2DM is associated with dysbiosis, a reduction in microbiome richness, 
altered bacterial composition and functional properties6. Among these, were reported a lowered abundance 
of butyrate-producing microbes, an altered firmicutes / bacteroidetes ratio, and an increase in opportunistic 
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pathogens, such as Bacteroides caccae, Clostridium hathewayi, Clostridium ramosum, Clostridium symbiosum, 
Eggerthella lenta and E. coli3,7–10. These changes may induce disturbances in host gut barrier, in metabolic home-
ostasis and low-grade inflammation, in short chain fatty acid synthesis and fat deposition as well as hormonal 
regulation for involving glucagon-like peptide-1 synthesis. These factors contribute to glucose metabolism altera-
tion, insulin resistance and dyslipidemia in patients with diabetes11–14. While the interaction between gut micro-
biome and metabolic health has been studied in several populations, exploring these interactions in Middle East 
countries is of particular interest considering the very high prevalence of diabetes in this region of the world15. 
Researchers have mostly focused on examining the bacterial members of the gut microbiome, but very little is 
known about the fungal communities which are non-negligible components in the gut. Mycobiota have been 
described as members of the normal gut flora in 196716. Fungal populations comprise less than 1% of the total 
gut microbiome. However, recent studies have indicated that these fungi have relevant effects on dampening 
inflammatory responses in the gut, especially in inflammatory bowel diseases despite their small amount17,18. 
Others have reported their impact on bacterial community composition19–21. Fungi may represents a key part of 
the microbial community with significant impact on the gut ecosystem, and possibly the host health21. However, 
the potential role of fungi and their interaction with the host and with other members of the gut community and 
metabolic health needs further understanding.

Research groups have demonstrated a significant impact of T2DM on gut microbial richness and relative 
abundance4,22,23 and underscored significant contribution of gut microbiome in T2DM phenotypes as insulin 
resistance and low-grade inflammation24. However, little is known about the relationships between T2DM on gut 
microbiome in UAE population. Here, we examined bacterial and fungal microbiome composition and possible 
functional consequences in T2DM individuals from an Emirati population. We performed 16 S rRNA gene and 
ITS2-based microbial profiling analysis of 50 stool samples from 25 T2DM and 25 non-T2DM individuals. We 
conducted a phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) func-
tional analyses based on 16 S rRNA gene abundance profiles to gain deeper insight on potential functional impact 
on the host in T2DM from this Emirati population.

Materials and methods
Patient inclusion and ethical statement.  The study was performed after receiving the necessary ethical 
approval from University Hospital Sharjah Ethics Research Committee (UHS-HERC-021-0702). The study was 
performed in accordance with relevant research guidelines and regulations of the committe. We randomly identi-
fied 25 native Emirati subjects with diagnosis of T2DM attending the endocrinology clinic. We also identified 25 
otherwise healthy Emirati individuals and had HbA1c level < 6% as controls. All volonteers were provided with 
information sheet and explanation of study objectives, design, and confidentiality. We obtained written informed 
consents. We provided to all subjects a sterile stool specimen container with integrated collection spoon and 
collection instructions. A total of 50 stool specimens, 2 to 4 grams of freshly passed stool was collected in sterile 
containers. The specimens were stored immediately in liquid nitrogen and transferred to −80°C for storage until 
further analysis. Liquid (diarrheal) stools and use of antibiotics in the last 3 months were the exclusion criteria 
for this study.

DNA extraction.  Faecal samples were subjected to DNA extraction using QIAamp PowerFecal DNA Kit 
(Qiagen Ltd, GmbH, Germany) following the manufacturer’s instruction (Qiagen Ltd). The extracted DNA was 
stored at −80°C for further analysis.

Bacterial and fungal PCR, sequencing, and sequence analysis and Taxonomic composition.  
Bacterial 16 S rRNA genes were amplified using polymerase chain reaction (PCR) targeting the V4 region with 
dual-barcoded, as per procedure as described in25. Next, amplicons sequenced with an Illumina MiSeq using the 
250-bp paired-end kit (v.2). Sequences were denoised, taxonomically classified using Greengenes (v. 13_8) as the 
reference database, and clustered into 97% similarity operational taxonomic units (OTUs) with the mothur soft-
ware package (v. 1.39.5) previously described26, following the recommended procedure (https://www.mothur.org/
wiki/MiSeq_SOP; accessed August 2018). The resulting dataset had 21257 OTUs (including those occurring once 
with a count of 1, or singletons). An average of 18383 quality-filtered reads generated per sample. Sequencing 
quality for R1 and R2 was determined using FastQC 0.11.5.

ITS2 region were sequenced on an Illumina MiSeq (v. 2 chemistry) using the dual barcoding protocol as 
described25. Primers and PCR conditions used for 16 S rRNA gene and ITS2 sequencing were identical to those 
previously described27. Bacterial sequences were processed and clustered into operational taxonomic units 
(OTUs) with the mothur software package (v. 1.39.5)26, following the recommended mothur SOP. Paired-end 
reads were merged and curated to reduce sequencing error as described in28. The resulting dataset had 3171 OTUs 
(including those occurring once with a count of 1, or singletons). An average of 9581 quality-filtered reads were 
generated per sample. Sequencing quality for R1 and R2 was determined using FastQC 0.11.5. Fungal processing 
pipeline was identical as the one used for bacteria, except for the following differences: (1) paired-end reads were 
trimmed at the non-overlapping ends, and (2) high quality reads were classified using UNITE (v. 7.1) as described 
before as the reference database29. A consensus taxonomy for each OTU obtained and the OTU abundances then 
aggregated into genera. OTU table was rarified to 10000 reads per sample to correct for differences in sequencing 
depth with rarefy_even_depth function of phyloseq R package30, and alpha diversity indexes (Observed species, 
Shannon, ACE) were computed from rarified OTU table estimate_richness function of phyloseq R package. The 
R package vegan was used to compute Beta-diversity matrix from rarified OTU table collapsed at genus level 
(vegdist function) and to visualize microbiome similaritires with principle coordinate analysis (PCoA) (cmdscale 
function)31. Enterotype classification was performed from the same genus abundance matrix used for PCoA anal-
yses following two different approaches. First, samples were clustered using Jensen-Shannon divergence (JSD) 
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distance and the Partition Around Medoids (PAM) clustering algorithm as described in Aurumugam et al32. 
Second, samples were clustered from genus abundance data using the Dirichlet Multinomial Mixture (DMM) 
method of Holmes et al33. The DMM approach groups samples if their taxon abundances can be modeled by the 
same Dirichlet-Multinomial (DM) distribution.

Quality control.  The possibility for contamination examined by co-sequencing DNA amplified from samples 
and from four each of template-free controls and extraction kit reagents treated the same way as the samples. Two 
positive controls, consisting of cloned SUP05 DNA, were also added (number of copies = 2*10^6). Operational 
taxonomic units were considered putative contaminants (and were removed) if their mean abundance in controls 
reached or surpassed 25% of their mean abundance in samples as described before34.

Functional profiling from 16 S rRNA gene data.  Gene family abundances from Kegg Orthology (KO) 
functional space were computed from rarified 16 S rRNA gene OTU abundance matrix and GreenGenes taxo-
nomic annotations with PICRUSt-1.1.335. This includes correction of OTU abundances by 16 copy number of 
reference GreenGenes taxons with normalize_by_copy_number.py script, compute KO abundance matrix from 
16 S rRNA gene copy number-corrected 16 S rRNA gene OTU abundance matrix with predict_metagenomes.
py script, and determine OTU contributions to each KO abundance vector with metagenome_contributions.py 
script. Gut Metabolic Modules (GMMs) were quantified from the PICRUSt KO abundance matrix with GOmixer 
R package36.

Statistical analysis.  Linear regression analyses was used to evaluate the impact of different clinical var-
iables (age, BMI, weight, diet and gender) and disease state over alpha diversity distribution. The significance 
of diversity changes after excluding the variability explained by age cofounder was tested with non-parametric 
Wilcoxon test over the residuals of linear regression analyses of alpha diversity (dependent variable) vs. age (inde-
pendent variable). To evaluate beta diversity across samples, we excluded genus occurring in fewer than 10% of 
the samples with a count of less than three and calculated Bray-Curtis indices. Environmental fitting of clinical 
variables (age, BMI, weight, diet and gender) and disease state over Principal coordinates analyses ordination 
from Bray-Curtis inter-sample dissimilarity matrix was computed with envfit and cmdscale functions of vegan R 
package37. Dissimilarity in community structure by disease state was assessed with permutational multivariate 
analyses of variance (PERMANOVA) with non-T2DM v.s T2DM groups as the main fixed factor and using 4,999 
permutations for significance testing with adonis function of vegan R package.

To identify taxonomic and functional features associated to disease state while accounting for cofounding 
effect of age generalized linear models (GLM) with negative binomial distribution were fitted with feature abun-
dance as dependent variable and disease state and age as dependent variables with DESEq. 238 and Phyloseq.30 R 
packages. Functional enrichment analyses of KEGG modules were carried out to identify high-order functional 
features associated to T2DM transition from KO adjusted P-values and log2 fold changes between health controls 
and T2DM as effect sizes using the Reporter Feature algorithm as implemented in the Piano R package39. The 
null distribution was used as significance method and P-values were adjusted for multiple comparisons with the 
Benjamini-Hochberg method40. All analyses were conducted in the R environment.

Results
Gut microbiome profile of T2DM Emirati subjects: compositional differences between non-
T2DM and T2DM subjects.  We evaluated the intra- and inter-individual variability of gut microbiome 
among 25 T2DM and 25 non-T2DM subjects, all from Emirati origin. Their clinical characteristics are shown 
in S1 Table. T2DM subjects were significantly older, had higher BMI and were more sedentary than non-T2DM 
subjects were (P value < 0.05; Table S1). Further, based on short food frequency questionnaire (DFI-FFQ)41, we 
found higher percentage of T2DM individuals with a high fiber diet compared to non-T2DM individuals (P value 
< 0.05; Table S1). All T2DM individuals were under Dipeptidyl peptidase-4 inhibitors (DPP4i) and metformin 
treatment.

S1 Table: Clinical characteristics of the study groups.  Median and quartiles 1 and 3 are shown for con-
tinuous variables. Number and percentage of samples are shown for categorical variables. P values are computed 
from Wilcoxon rank-sum test for continuous variables and chi-squared or exact Fisher test when the expected fre-
quencies is less than 5 in some cell. False discover rate (FDR) were computed with Benjamini-Hochberg method.

Linear regression analyses of individual covariates (age, diet, BMI, weight, and gender) and disease state over 
alpha diversity (observed species) shows that age has an important effect over microbiome diversity (p value < 
0.05; R2 = 0.16), with alpha diversity levels significantly increasing with age (Spearman Rho = 0.4; P value < 
0.05) (Fig. 1A). When we take out the variability explained by age no significant differences in microbial diversity 
were observed between non-T2DM and T2DM individuals (Fig. 1B; Wicoxon rank-sum test on the residuals 
of linear regression analyses of observed species by age; P value = 0.66), with a wider variability in microbiome 
diversity observed in the T2DM group. Similar results were observed with other alpha diversity indexes (ACE, 
Shannon; Supplemental Fig. 1A–D).

We further examined the gut microbiota characteristics in terms of community composition. Sample cluster-
ing based on genus-level 16 S rRNA gene abundance data shows the presence of microbial enterotypes that charac-
terize gut microbiome composition in European, Asian and American cohorts42. PAM clustering of samples from 
JSD beta diversity matrix at k = 3 shows the presence of Bacteroides, Ruminococcus and Prevotella enterotypes 
according to the abundance distribution of these prokaryotic genera (Supplemental Fig. 2A,D–F). DMM clus-
tering with genus abundance matrix splits Bacteroides enterotype into two subgroups (Supplemental Fig. 2B) as 
previously described43 (Bacteroides_1 and Bacteroides_243, after additional re-assignments of Prevotella samples to 
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Ruminococcus (n = 3) and Bacteroides_1 (n = 2) and Ruminococcus samples to Bacteroides_1 enterotype (n = 7)  
(Supplemental Fig. 2C).

Diversity distributions across these enterotypes confirm in this Emirati population with the high diversity pro-
file associated with Ruminococcus enterotype and the low diversity profile associated with Bacteroides 2 enterotype 
(Supplemental Fig. 3). Further, T2D and non-T2D groups show significant differences in microbiome compo-
sition according to different enterotyping methods. PAM clustering over JSD beta diversity matrix shows that 
the non-T2D group is enriched in Prevotella enterotype, whereas the T2D group is enriched in Ruminococcus 
enterotype (Fig. 1C, Fisher’s exact test < 0.05). When enterotyping is carried out with the Dirichlet Multinomial 
Mixture method, we still observe that non-T2D controls are enriched in Prevotella enterotype, whereas an enrich-
ment of the low-diversity Bacteroides2 enterotypes is observed in the T2D group (Fig. 1D, Fisher’s exact test < 
0.05). We also observed that 7 Ruminococcus samples with PAM clustering has been re-assigned to Bacteroides1 
enterotype with the DMM method (Supplemental Fig. 2C), a dysbiotic microbiome composition associated to 
low microbial cell density and enriched in Crohn and IBD43,44. Environmental fitting of disease and other covari-
ates over PCoA ordination space from genus abundance matrix shows a significant impact of disease over micro-
biome composition (R2 = 0.12; P value = 0.001) together with age (R2 = 0.34, P value = 0.001) and BMI (R2 = 
0.13, P value = 0.037) (Fig. 1E,F).

Finally, we search for taxonomic features significantly different between non-T2DM and T2DM groups while 
accounting for cofounding variables detected in environmental fitting analyses by fitting generalized linear mod-
els of genus abundance by disease, age and BMI with negative binomial distribution from raw abundance feature 
counts with DESeq238. Six bacterial genus were significantly associated to disease state (P value < 0.05), four 
of them increased in T2DM group (Phascolarctobacterium, Mogibacterium, Acidaminococcus and Unclassified 

Figure 1.  Prokaryotic profiling of gut microbiome. (A) Effect sizes of clinical covariates and disease state over 
Alpha diversity distribution (observed species) based on linear regression analyses (** = FDR < 0.05; * = P 
value < 0.05, FDR > 0.05) (B) Differences in residuals of linear-regression between alpha diversity (Observed 
species, dependent variable) and age (independent variable) between study groups. (C) Enterotype composition 
in non-T2DM and T2DM individuals by PAM clustering over JSD distance matrix computed from genus 
abundance data. (D) Enterotype composition in non-T2DM and T2DM individuals by DMM approach from 
genus abundance data. (E) Effect sizes of environmental fitting of clinical variables and disease state over PCoA 
ordination (** = P value < 0.05; * = P value < 0.1; permutation test) (F) Principal coordinates analyses of 
inter-individual differences (genus-level Bray-Curtis beta-diversity) with samples colored by disease state (non-
T2DM, T2DM). Arrows represents effect sizes of the significant variables identified by environmental fitting 
analyses of panel E. (G) Barplot of log2 fold changes in taxonomic feature abundances between health controls 
and T2DM (P value < 0.05 in GLM model with negative binomial distribution of feature abundance by disease 
state adjusted by age).
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Victivallaceae; log2 fold change Health vs. T2DM < 0), whereas two of them were decreased in T2DM group 
(Odoribacter and Lactococcus; log2 fold change non-T2DM vs. T2DM > 0) (Fig. 1G). The association with 
Unclassified Victivallaceae is reproduced at higher taxonomic levels (from family to phylum; Fig. 1G). None of 
these features resist P value adjustment by multiple comparisons (FDR > 0.05).

Fungal composition is different between T2DM and non-T2DM subjects.  Fungi comprise a small 
percentage of the gut microbiome16, but reports have indicated that fungi have surprisingly strong effects on 
dampening inflammatory responses in the gut17,18. Others reported fungi impact on bacterial community com-
position19,20. Here, using ITS profiling we observed no significant difference in fungal diversity between T2DM 
and non-T2DM controls (P-value > 0.05 Wilcoxon test, Fig. 2A). In contrast with what we observed with prokar-
yotic diversity, linear regression analyses of individual covariates (age, diet, BMI, weight and gender) shows no 
significant associations of any of them with fungal diversity (P value > 0.05; Supplemental Fig. 4). We found no 
significant association between fungal and prokaryotic diversity (rho = 0.13; p value > 0.05, Fig. 2C). However, 
relating fungal diversity with enterotype composition, we found significant differences in fungal diversity across 
DMM enterotypes (P-value < 0.05 Kruskal-Wallis test; Fig. 2B), with Bacteroides 2 enterotype showing significant 
lower levels of fungal diversity in comparison with Bacteroides 1 and Prevotella groups (Fig. 2B).

Next, we examined the fungal microbiome composition as previously performed for bacterial composition. 
Environmental fitting of disease and other covariates over PCoA ordination space from fungal genus abundance 
matrix shows age (R2 = 0.42, P value = 0.001) and disease (R2 = 0.13, P value = 0.001) as the main variables 
with significant impact over fungal microbiome composition (Fig. 2D–E). In order to find fungal features asso-
ciated to disease state while taking into account the confounding effect of age detected by environmental fitting, 
we follow the same approach as described above for 16 S rRNA gene data (fit generalized linear models of fungal 
feature abundance by disease and age with negative binomial distribution from raw feature counts). We observe 

Figure 2.  Fungal profiling of gut microbiome. (A) Alpha diversity distributions (observed species) between 
non-T2DM and T2DM groups. (B) Fungal diversity distributions (observed species) across DMM enterotypes 
(** = P value < 0.001; * = P value < 0.05; Wilcoxon rank-sum test). (C) Correlation between fungal and 
prokaryotic diversity (observed species). R and p corresponds to Spearman Rho and p-value of Spearman 
correlation test. (D) Effect sizes of environmental fitting of clinical variables and disease state over Principal 
coordinates ordination from panel E (** = P value < 0.05; * = P value < 0.1; permutation test). (E) Principal 
coordinates analyses of inter-individual differences (genus-level Bray-Curtis beta-diversity) with samples 
colored by disease state (non-T2DM, T2DM). Arrows represents effect sizes of the significant variables 
identified by environmental fitting analyses of panel D. (F) Bar plot of log2 fold changes in taxonomic feature 
abundance between non-T2DM controls and T2DM (P value < 0.05 in GLM model with negative binomial 
distribution of feature abundance by disease state adjusted by age).
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a significant association of three fungal genenera with disease state (P value < 0.05), two of them (Malessezia 
firfur and Unclassified Davidiella) increased in the T2DM group (log2 fold change non-T2DM vs. T2DM < 0) 
and one (Unclassified Basidiomycota) decreased in the T2DM group (log2 fold change non-T2DM vs. T2DM > 
0) (Fig. 2F). At higher taxonomic levels, T2DM groups seems to be characterized by an increase of Ascomycota 
lineages and a decrease of unclassified Basidiomycota lineages (Fig. 2D).

Functional profiling of T2DM and non-T2DM groups microbiomes based on 16 S rRNA gene profiles.  
We used the PICRUSt tool to project the functional content of the prokaryotic microbiome in the studied samples 
from 16 S rRNA gene OTU abundance data. In agreement with taxonomy findings, linear regression analyses of 
individual covariates (age, diet, BMI, weight, and gender) and disease state over functional diversity (observed 
KO groups) shows that disease (R2 = 0.16, P value < 0.05) and age (R2 = 0.26, P value < 0.001) have a significant 
impact over functional diversity (Fig. 3A). Functional diversity levels significantly increase with age (Spearman 
Rho = 0.51; P value < 0.001). When we excluded the variability explained by age no significant differences in 
functional diversity were observed between non-T2DM and T2DM individuals (Fig. 3B; P value = 0.94; Wicoxon 
rank-sum test on the residuals of linear regression analyses of observed species by age). Environmental fitting of 
disease and other covariates over PCoA ordination space from KO abundance matrix shows weight (R2 = 0.35, P 
value = 0.002), age (R2 = 0.29, p value = 0.001), BMI (R2 = 0.24, p value = 0.001), disease (R2 = 0.17, p value = 
0.002) and diet (R2 = 0.07, p value = 0.033) as the variables with significant impact over functional prokaryotic 
content of the gut microbiome (Supplemental Fig. 5).

Generalized linear models with negative binomial distribution of KO raw count data by disease state adjusted 
by age (4129 KOs with at least 10 counts in >20% of the samples) showed 210 KO groups significantly associated 
to disease state (FDR < 0.05), 32 decreased in the T2DM group (log2 fold change non-T2DM vs. T2DM group 
> 0) and 178 increased in the T2DM group (log2 fold change non-T2DM vs. T2DM group < 0). In order to find 

Figure 3.  Functional profiling based on PICRUS analyses of 16 S data. (A) Effect sizes of clinical covariates 
and disease state over functional diversity distribution (KEGG orthology (KO) groups identified in PICRUSt 
analyses) based on linear regression analyses (** = FDR < 0.05; * = P value < 0.05, FDR > 0.05). (B) 
Differences in residuals of linear-regression between functional diversity (Observed KOs, dependent 
variable) and age (independent variable) between study groups. (C) KEGG modules significantly enriched in 
differentially abundant KO groups between non-T2DM and T2DM group (** FDR < 0.05, * = P value < 0.05; 
Gene Set Enrichment Analyses). The mean log2 fold changes of module KOs abundances between non-T2DM 
controls and T2DM is represented as indicator of enrichment direction (all modules enriched in the T2DM 
group; mean log2 fold changes non-T2DM controls vs. T2DM < 0). (D) Bar plot of log2 fold changes in Gut 
metabolic modules (GMMs) abundances between health controls and T2DM (P value < 0.05 in GLM model 
with negative binomial distribution of GMM abundance by disease state adjusted by age).
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higher-level functional associations, we used gene set enrichment analyses of KEGG functional modules with 
adjusted p-values from age-adjusted GLM models and log2 fold changes of KO abundances of non-T2DM vs. 
T2DM as indicators of effect size. Four KEGG modules were significantly enriched in differentially abundant KOs 
(p value < 0.05), all of them enriched in KOs significantly increased in T2DM group (mean module KO log2 fold 
changes health vs. T2DM < 0). Among these we found M00064 (ADP-L-glycero-D-manno-heptose biosynthe-
sis), a module representing the biosynthesis of glycero-manno-heptoses found in the lipopolysaccharides (LPS) 
of most Gram-negative bacteria, capsules and O-antigens of some Gram-negatives, and in the S-layer of certain 
Gram-positive bacteria45. Also we observed an enrichment of M00176 (assimilatory sulfate reduction), which was 
previously identified as signature of T2DM9, and an enrichment of pyruvate oxidation module (M00307) repre-
senting the pyruvate dehydrogenase complex, a key enzymatic complex linking glycolysis to TCA cycle in central 
metabolism during aerobic respiration46. Finally, quantification of Gut Metabolic Modules (GMM)47 based on KO 
abundance data shows 14 GMMs associated to disease state (Fig. 3D; FDR < 0.05; GLM models based on neg-
ative binomial distribution of module abundance by disease state adjusted by age). This analyses shows marked 
differences in the functional profile of gut microbiome of T2DM and non-T2DM controls, with non-T2DM 
controls showing significantly increases in different carbohydrate degradation modules (arabinoxylan, pectine 
and melibiose degradation modules, log2 fold change non-T2DM vs. T2DM > 0), whereas T2DM group showing 
significantly increases in several aminoacid degradation modules (isoleucine, proline, valine, cysteine, glutamine 
and aminobutyrate; log2 fold change non-T2DM vs. T2DM < 0), confirming also the increases in pyruvate dehy-
drogenase compex in T2DM group observed in the KEGG module enrichment analyses (Fig. 3C,D).

Discussion
In this study, we characterized for the first time, the prokaryotic and fungal microbiome profiles associated with 
T2DM and non-T2DM controls in an Emirati population where the study population was unmatched for age, 
BMI, and diet. When we evaluated the impact of these covariates together with disease state on microbiome 
diversity and composition, we observed that age had an important effect over microbiome diversity and compo-
sition. However, when we adjusted for age, there were no significant differences in microbial diversity between 
non-T2DM and T2DM controls. Remarkably and in contrasts with results of previous studies in westernized 
populations, where several factors impact gut microbiome composition and can be seen as confounders such as 
dietary habits, lifestyle and age48–53. One explanation can be related to dietary factors that are known to strongly 
impact gut microbiome composition54. For example, an Australian group demonstrated a significant effects of 
nutritional counseling on gut microbiome abundance and diversity among T2DM and obese individuals55. In our 
study, all T2DM individuals were subjected to rigorous dietary counselling as part of their clinical follow-up with 
a nutritionist. Furher, dietary aspects may contribute to some genera enrichment. For example, it is well known 
that fibers impact on Prevotella abundance which aids in polysaccharide breakdown56,57. In our study, we noticed 
an enrichment in Prevotella in the non-T2DM controls despite lower fiber intake based on the DFI-FFQ eval-
uation (Table S1). This observation is consistent with significant increase in carbohydrate degradation modules 
observed in the GMM modules analyses. Further, we detected an increase in aminoacid degradation modules in 
the T2DM group, which is in line with the observed enrichment of Bacteroides 2 enterotype and the proteolytic 
character of Bacteroides group58. Moreover, among the taxonomic features that resist age adjustment, we reported 
an increase of Victivallaceae lineage belonging to Lentisphaera phylum in the T2DM group and was notably iden-
tified from genus to phylum level. This lineage has been associated with gestational diabetes melitus in children59 
and has been described to significantly increase in individuals consuming gluten-free diet60, again suggesting 
a potential association with the dietary counseling among T2DM group. The genus Phascolarctobacterium has 
also been associated both positively61–63 and negatively64 with markers of insulin sensitivity, whereas the genus 
Odoribacter, which includes butyrate producing bacteria that has been described negatively associated with 
hypertension in obese pregnant woman65. This genus also decreases in response to pre-natal metformin exposure 
in mice experiments66. Acidaminococcus genera has been also associated with modestly lower risk of T2DM in 
a mendelian randomization study67. However, the particularities of our study cohort in terms of ethnicity, and 
age and nutritional counseling between groups makes it difficult to extrapolate additional conclusions without 
further experimental evidences. All together, these findings underscores an important contribution of dietary 
counselling in driving these compositional changes68.

Another explanation to the observed difference from previous studies in westernized populations can be 
related to metformin administration among all T2DM subjects. We observed increased releative abundance of 
Escherichia, Akkermansia muciniphila and other unclassified Enterobacteriales lineage in T2DM subjects receiv-
ing metformin treatment. However, these differences do not resist adjustment by age. The increase in Escherichia 
coli and A.muciniphila in T2DM have been repeatedly reported in literature, and often associated with metformin 
intake69,70.

Next, we determined the presence of enterotypes that characterize microbiome composition. Prevotella 
enterotype is enriched in non-T2DM control group and Ruminococcus and Bacteroides 2 enterotypes is enriched 
in T2DM group. The compositional profile of T2DM group was also found to be heterogeneous, with enrichment 
of Ruminococcus enterotype that is usually associated with a more diverse microbiome profile32 and Bacteroides 
2 enterotype, which generally shows an opposite association, being characterized by low microbial diversity and 
microbial loads and enriched in Crohn’s disease and ulcerative colitis patients43. This is also reflected in the wider 
range of prokaryotic diversity observed in the T2DM group in comparison with non-T2DM controls indicating a 
more heterogeneous microbiome profile in T2DM group, that could be attributed again to lifestyle habits as well 
as differences in T2DM severity.

The definition of discrete community types is a challenging task given the complexity in the landscape of 
community composition existing in the gut microbiome and the wide within and between-individual diver-
sity existing in the human’s gut, which makes difficult extrapolation of conclusions based on discrete clusters to 
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individuals in the boundary of different groups71,72. Also, and more importantly, sample clustering is strongly 
dependent of the other samples analyzed at the same time, which makes discretization dependent of the compo-
sitional landscape of the analyzed cohort, difficulty comparisons across studies. However, multiple studies have 
reproduced the presence of enterotypes with similar compositional properties across large datasets from different 
origins42, and the split of Bacteroides groups into two subgroups with the DMM method and the dysbiotic profile 
of the Bacteroides 2 group has been reproduced also in different studies and cohorts43,44,73,74. Thereby, a larger 
cohorts would be necessary to evaluate the strength of these community types across the Emirati population or if 
alternative community types could be defined.

Finally, we explored the gut microbiome functional contribution. Interestingly and in spite of the cofound-
ing effects of age, we still observed signals at the functional level that have been identified in other quantitative 
metagenomic studies of T2DM, suggesting a more inflammatory profile in T2DM individuals53. For example, we 
noted an enrichment of ADP-L-glycero-D-manno-heptose biosynthesis module in T2DM group, a component 
of the bacterial LPS, associated with T2DM individuals and in agreement with other studies69. This molecule cor-
responds to one of the most antigenic part of the LPS, associated with low-grade inflammation that usually take 
place in obesity and T2DM69,75. In addition, it has been recently demonstrated as a potent pathogen-associated 
molecular pattern (PAMP) recognized by ALPK1 receptor and iducing NF-κB activation and cytokine expres-
sion76. Additionally, the formate conversion GMM significantly increased in the T2DM group (Fig. 3D) corre-
sponding to the formate dehydrogenase complex responsible for formate oxidation, a metabolic signature of a 
dysbiosis-induced intestinal inflammation77.

Regarding fungal microbiome effect, we observed no significant differences in fungal diversity between T2DM 
and non-T2DM subjects. However, we detected a significant impact of disease state over fungal microbiome 
composition, even after normalizing the confounding impact of age. Remarkably, we found that Bacteroides 2 
enterotype was associated with decreased levels of fungal diversity, in addition to its known dysbiotic phenotype, 
in terms of microbial diversity and loads in different pathologies like IBD and UC43. This observation extends pre-
vious findings showing that the deleterious B2 enterotype also associates with a decrease in fungal diversity. Thus, 
fungal diversity might been seen as an additional and novel signature of this dysbiotic microbiome composition 
that would need further validation in larger cohorts with fungal metagenomic data. Furthmore, we observed 
a shift from Candida albicans (known opportunistic) to Candida glabrata in the T2DM patients. Presence of 
C. glabrata has been linked to supressing genes involved in mannan biosynthesis, an important component of 
fungal cell wall with known protective benefits to the host78,79. Whether, this compositional shift from known 
commensal fungi to their virulent counterparts and the dissimilarity in mannan biosynthesis, significantly alters 
the intestinal barrier is yet to be explored.

In conclusion, we report a shift in gut microbiome composition and function among individuals affected by 
T2DM as compared to non-T2DM controls in a pilot study of Emirati people. The study population was distinc-
tively unmatched for age, BMI, and diet, thereby providing a unique pattern and more challenging approach. Gut 
microbiome peculiarities have been linked to T2DM across the globe based on variation in diet, medication and 
ethnicity among other factors. Remarkably, our study revealed no significant differences in taxonomic and func-
tional diversity among T2DM group, in contrast to what has been reported elsewhere, but we observed signifi-
cant differences in microbiome composition (enterotypes) and functional content between study groups despite 
the added complexity by the unmatched confounders. We recognize that our results can be influenced by the 
divergence in mean age, diet intervention and highly individualized gut microbiome composition. We attributed 
these differences to dietary counselling provided to T2DM patients. Further, we showed that the enterotype B2 
appears linked to fungal diversity that could be an additional and novel signature of this dysbiotic microbiome. 
We acknowledge potential limitations of this study, including relatively small sample size, detailed information 
regarding lifestyle and more advanced functional analysis. However, despite these limitations, this study provides 
meaningful insight into links between gut microbiome and its fungal community in T2DM subjects in native 
Emirati people. These aspects will be important to understand functional role of gut microbiome and its altera-
tions to support host-homeostasis against metabolic and inflammatory disorders.

Data availability
Sequencing data have been deposited in the European Bioinformatics Institute (EBI) European Nucleotide 
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