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ABSTRACT
Background: Sweet sorghum bagasse (SSB), comprising both a dermal layer and
pith, is a solid waste generated by agricultural activities. Open burning was previously
used to treat agricultural solid waste but is harmful to the environment and
human health. Recent reports showed that certain techniques can convert this
agricultural waste into valuable products. While SSB has been considered an
attractive raw material for sugar extraction and the production of value-added
products, the pith root in the SSB can be difficult to process. Therefore, it is necessary
to pretreat bagasse before conventional hydrolysis.
Methods: A thorough analysis and comparison of various pretreatment methods
were conducted based on physicochemical and microscopic approaches.
The responses of agricultural SSB stem pith with different particle sizes to
pretreatment temperature, acid and alkali concentration and enzyme dosage were
investigated to determine the optimal pretreatment. The integrated methods
are beneficial to the utilization of carbohydrate-based and unknown compounds
in agricultural solid waste.
Results: Acid (1.5-4.5%, v/v) and alkali (5-8%, w/v) reagents were used to collect
cellulose from different meshes of pith at 25–100 �C. The results showed that the
use of 100 mesh pith soaked in 8% (w/v) NaOH solution at 100 �C resulted in
32.47% ± 0.01% solid recovery. Follow-up fermentation with 3% (v/v) acid and
6.5% (w/v) alkali at 50 �C for enzymolysis was performed with the optimal enzyme
ratio. An analysis of the surface topography and porosity before and after
pretreatment showed that both the pore size of the pith and the amount of exposed
cellulose increased as the mesh size increased. Interestingly, various compounds,
including 42 compounds previously known to be present and 13 compounds not
previously known to be present, were detected in the pretreatment liquid, while
10 types of monosaccharides, including D-glucose, D-xylose and D-arabinose, were
found in the enzymatic solution. The total monosaccharide content of the pith
was 149.48 ± 0.3 mg/g dry matter.
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Discussion: An integrated technique for obtaining value-added products from
sweet sorghum pith is presented in this work. Based on this technique, lignin and
hemicellulose were effectively broken down, amorphous cellulose was obtained
and all sugars in the sweet sorghum pith were hydrolysed into monosaccharides.
A total of 42 compounds previously found in these materials, including alcohol, ester,
acid, alkene, aldehyde ketone, alkene, phenolic and benzene ring compounds,
were detected in the pretreatment pith. In addition, several compounds that had not
been previously observed in these materials were found in the pretreatment solution.
These findings will improve the transformation of lignocellulosic biomass into
sugar to create a high-value-added coproduct during the integrated process and to
maximize the potential utilization of agricultural waste in current biorefinery
processing.

Subjects Agricultural Science, Food Science and Technology, Plant Science, Food, Water and
Energy Nexus, Green Chemistry
Keywords Pith, Particle size, Integrated process, Enzymatic hydrolysis, Monosaccharide,
Unknown compound

INTRODUCTION
The definition of waste is an unusable or unwanted substance, including material in solid,
liquid or gaseous form (Sasikumar & Krishna, 2009). Straw is a type of solid waste that
arises from agricultural activities and was commonly treated by open burning
(Danutawat & Nguyen, 2007). However, previous studies have reported that straw
burning destroys soil structure and causes farmland quality to decline (Hamer, 2003).
The microorganisms on the surface are killed by straw incineration, the humus and
organic matter are mineralized, the balance of the biomass system is destroyed, the
physical properties of the soil are changed and soil compaction is aggravated, which affects
crop growth (Johansson et al., 2014). Furthermore, the incineration of straw increases
atmospheric pollutants, including sulphur dioxide, nitrogen dioxide and respirable
particulate matter (PM), which is not conducive to human health (Ryan et al., 2017).
When the concentration of inhalable particles reaches a certain level, the mucous
membranes in the human eye, nose and throat are irritated, and a light cough, chest
tightness and tearing develop (Lopez-Ponnada et al., 2017). If the smoke emitted by straw
burning is combined with other pollutants, the resulting pollution can increase the
fine PM 2.5 concentration and create smoggy weather, which may increase the number of
sick elderly adults and children (Sabbas et al., 2003).

In the 20th century, research on the treatment and utilization of solid waste progressed,
and engineering techniques employed biochemical conversion to manufacture
high-value-added agricultural products from agricultural waste. The ultimate aim of
biochemical conversion was to use value-added products to recycle resources (Li et al.,
2010). All parts of sweet sorghum are considered an economical cereal crop for agricultural
development (Reis et al., 2016; Mishra et al., 2017a). The solid waste root in sweet
sorghum stalks, which is crushed to remove juice, is called sweet sorghum bagasse (SSB)
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and consists of a dermal layer and pith (Maureen, Isabel & Renee, 2017). Due to its
high biomass content, SSB is considered a renewable fuel source and can be further
biochemically converted to ethanol or butanol without reducing the fuel value
(Umagiliyage et al., 2015; Cheng et al., 2008). In comparison with other crop bagasse, SSB
has a favourable fuel value due to its high carbon content (Ragauskas et al., 2014;Maureen
et al., 2018). Previous articles have reported using SSB for the release of structural
sugars (Li et al., 2013; Wen et al., 2018). However, bagasse contains approximately
35% pith, which has a depithing efficiency of 60% (Lu et al., 2013). The pith roots in SSB
have a storage function during the growth of sweet sorghum. However, after separation,
SSB still contains biomass that can be converted into valuable products via effective
technologies that enhance resource utilization for economic development and
environmental sustainability (Shen et al., 2013). Unexpectedly, the pith roots in bagasse are
primarily composed of cellulose, hemicellulose and lignin, similar to other lignocellulosic
materials (Pronyk, Mazza & Tamaki, 2011). Thus, fractionation of these three
primary components is necessary to release the sugar to become biofuels or coproducts
(Del Río et al., 2012; Wen et al., 2013).

In recent studies, this pretreatment technology has been combined with physical and
chemical processes to obtain the three primary components (Jorgensen, Haglind &
Clausen, 2014; Nadeem, Dinesh & Arun, 2017; Paulien et al., 2010; Hu & Wen, 2008).
Pretreatment with physical methods does not cause changes in the lignocellulosic
components, but it can destroy the structure of the lignocellulosic materials, thereby
increasing the efficiency of subsequent enzymatic treatment (Ballesteros et al., 2002; Baugh
&McCarty, 1988; Jia et al., 2013). Pretreatment with chemical methods primarily degrades
or removes lignocellulosic components, including lignin and hemicellulose, to enhance
enzymatic hydrolysis (Wu et al., 2011; Arosha et al., 2015). Therefore, the combination of
physical and chemical processes is conducive to the disintegration of lignocellulosic
materials and improvement of the hydrolysis efficiency. Singh et al. (2017) studied the
effectiveness of hydrothermal and microwave-assisted alkali pretreatment for the
fractionation of areca nut husk. These researchers observed that the optimal conditions
released 69.7% of the lignin, 83.5% of the hemicellulose and 69.2% of the cellulose.
Recently, Wang et al. (2015) showed that thermochemical pretreatment and microbial
fermentation hydrolysis of corn straw degraded less than 52.01% of the lignin and 45.7% of
the hemicellulose. Furthermore, the cellulose content was increased to 59.92%. Akhtar
et al. (2016) reported the effectiveness of microwave-alkali-acid pretreatment of rice straw,
with degradation of 50.66% of the lignin and 39.21% of the hemicellulose and an increase
of 60.07% for cellulose. Mishra et al. (2017b) reported the fungal pretreatment of SSB for
lignin degradation by using synergistic CuSO4-syringic acid supplements, and they
obtained a maximum lignin degradation of 35.9% ± 1.3%. Heredia-Olea, Pérez-Carrillo &
Serna-Saldívar (2012) showed using response surface methodology that different acid
hydrolyses affected the conversion of SSB into C5 and C6 sugars and yeast inhibitors, and
they liberated 56–57% of the total sugars in SSB.

Huang, Kuan & Chang (2018) reported that particle size has an effect on the microwave
pyrolysis of corn stover, but no studies have investigated the effect of particle size on
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the hydrolysis of sweet sorghum pith. However, these types of studies on the hydrolysis of
SSB have been reported (Sipos et al., 2009; Zhang et al., 2011). A combination of chemical
and physical processes was used to hydrolyse the resistant structure of the pith in this
study. The effects of particle size, alkali and acid concentrations, temperature and enzyme
dose on the production of sugar and unknown products were investigated in the integrated
process. The objective of this study was to thoroughly analyse and compare the effects
of particle size on the value-added products of pith under various hydrolysis conditions
from a physicochemical and microscopic perspective. Thus, we hope to provide data
to support the reasonable use of natural resources, which may be beneficial to solving
increasingly serious environmental problems and promote environmental protection and
the recycling of other compounds.

MATERIALS AND METHODS
Materials
Sweet sorghum bagasse was dried at a constant temperature in a drying oven at 60 �C for
24 h, and the pith was then separated from the SSB. The dried pith was crushed into
small pieces using a three-roller mill (Ampro Sugar Cane Mill), and different particle sizes
of pith were collected. The particle sizes are referred to as 10–20, 50 and 100 mesh in
this study.

Alkali and acid pretreatment
Unpretreated pith was utilized as starting material for fractionation. First, 0.2 g of pith of
different meshes (10–20, 50 and 100 mesh) was treated with different concentrations
of NaOH (5%, 6.5% and 8%, w/v) and HCl (1.5%, 3% and 4.5%, v/v) in aqueous solution
at different temperatures (25, 50, 75 and 100 �C) for 2 h at a solid to liquid ratio of
1:20 (g/mL). To increase the contact between the pretreatment solution and the samples,
200 mL of 1% (v/v) Tween-80 was added. Subsequently, each mixed solution was
centrifuged at 6,000 rpm for 15 min, and the supernatant was analysed using gas
chromatography-quadrupole mass spectrometry (GC-MS). The collected solid fractions
were neutralized to pH 6.5-7.5 with deionized water and further filtered with a vacuum
pump. The filtered solid biomass was then dried in a drying oven at 60 �C until its
weight was constant, and the weight was then recorded.

Enzymatic hydrolysis
Pith (0.1 g) pretreated under different conditions was then treated with commercial
cellulase� (activity 3,000 IU/g) and β-glucosidase� (activity 100 IU/g) in 50 mL flasks
provided by Solarbio (Beijing, China). Pretreated pith samples were added to 0.05M
sodium citrate buffer (pH 4.8) to a concentration of 10 g/L, and the resulting mixture was
then mixed with 10 mL of deionized water. To these flasks, five different concentrations of
enzymes were added (cellulase and β-glucosidase at concentrations of 10 and 20, 15
and 25, 20 and 30, 25 and 35, and 30 and 40 IU/(g dry biomass), respectively).
Each concentration was tested in triplicate. Hydrolysis was performed for 72 h (Li et al.,
2013) in a shaking incubator at 50 �C and 150 rpm (Wu et al., 2011; Zheng et al., 2018).
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Afterwards, the hydrolysates were centrifuged (10,000 rpm, 10 min) (Singh et al., 2017;
Li et al., 2016), and the liquid fraction was collected for further experiments
(Yan et al., 2015).

Analysis procedures
Solid recovery
The recovery rate of the pith was estimated using Eq. (1):

Recovery %ð Þ ¼ M1=M0ð Þ � 100% (1)

where M1 is the mass of the pretreated dry solid (g) and M0 is the mass of the raw
materials (g).

Emission scanning electron microscopy analysis
The morphological characteristics of the untreated and pretreated pith were observed
using cold field emission scanning electron microscopy (SEM) (Model: JSM-6701F,
Hitachi Electronics Co., Ltd., Tokyo, Japan). Prior to drying, the pith was placed on
conductive tape and plated separately. The images were obtained with SEM at
magnifications of 500–2,000 by using an accelerating voltage of 0.5–30 kV. Porosity
was determined using the Barrett–Joyner–Halenda (BJH)/Dollimore–Heal (DH) method.
Outgas temp: 120.0 �C, analysis gas: nitrogen (Yan et al., 2015).

Total sugar detection
The total sugar content was determined using the phenol-sulphuric acid method, where
glucose is the standard solution used to develop a standard curve and the corresponding
regression equation. Hydrolysates were mixed with one mL of phenol solution and
five mL of concentrated sulphuric acid. The absorbance was determined at 490 nm with
the zero tube as the reference at room temperature for 30 min. Then, a regression equation
was used to calculate the total sugar concentration.

Monosaccharide analysis of the pretreatment solution
The associated monosaccharides in the hydrolysate were analysed using high-performance
liquid chromatography (HPLC) (Agilent 1200 Infinity; Agilent Technologies, Santa Clara,
CA, USA). D-Arabinose, L-fucose, D-galactose, D-galacturonic acid, D-glucose,
D-gluconic acid, D-mannose, D-ribose, L-rhamnose and D-xylose were used as sugar
standards for the HPLC analysis. The hydrolysates were derivatized with the reagent
1-phenyl-3-methyl-pyrazolone and then determined using a Thermo C18 (4.6 � 250 mm,
5 mm) column at 25 �C with an eluent (0.1 mol/L, pH 7.0, phosphate-buffered solution:
acetonitrile = 82:18 (v/v)) at a flow rate of 1.0 mL/min.

Linear retention index calculation and data analysis
The linear retention index (LRI) was calculated according to Eq. (3) by using a
homologous reference series of alkanes and saturated fatty acid methyl esters consisting of
standards ranging from C8 to C35 that were purchased from Millipore Sigma (Burlington,
MA, USA). A standard mixture of the compounds was prepared at a concentration of
1,000 mg/L. The LRI database was built by using CromatoPlus Spectra software
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(Chromaleont, Messina, Italy), which was also able to extrapolate LRI values for TGs
eluted earlier than C8. Then, analyses were performed by using CromatoPlus Spectra
software, which directly matched the LRI automatically calculated for each peak with the
previously created LRI database.

Dool & Kratz (1963) extended the applicability of retention indices to
temperature-programmed gas chromatography analyses, utilizing retention times
instead of their logarithm and thus defining the LRI as shown in Eq. (2):

LRI ¼ 100 z þ tRi � tRz
tR Zþ1ð Þ � tRz

� �
(2)

Within this context, a generalized form for the LRI is shown in Eq. (3):

LRI ¼ 100 � nð Þ þ 100 � m� nð Þ � tri � trn
trm � trn

(3)

where

� LRI = Linear retention index of ‘i’

� i = Unknown compounds in the pretreatment solution that is being analysed

� n = Carbon number of the alkane that elutes before ‘i’

� m = Carbon number of the alkane that elutes after ‘i’

� tri = Retention time of ‘i’

� trn = Retention time of the alkane that elutes before ‘i’

� trm = Retention time of the alkane that elutes after ‘i’

Analysis of the unknown compounds in the pretreatment solution
A GC-MS (Agilent 6890-78; Agilent Technologies, Santa Clara, CA, USA) equipped with a
DB-5 MS column (30 m � 0.25 mm � 0.25 mm) and flame ionization detector was
used to analyse the obtained compounds. The ion source temperature and quadrupole
temperature were 230 and 150 �C, respectively. High-purity He gas was injected into the
chromatograph as the carrier gas at a flow rate of 1.0 mL/min. For the experiment, two mL
samples were injected into the chromatograph by the pulseless split injection mode at
a flow rate of 50 mL/min, pulse pressure of 50 psi, and split time of 0.75 min (scanning
unit: 50–500 (Da), scan time: 0.3 s). The temperature was first set to 150 �C for 1 min, then
increased to 230 �C at 10 �C/min, and finally increased to 300 �C at 40 �C/min and
maintained for 2 min. The analysis time was 20 min.

Statistical analysis
All data represent the results of three independent samples (flasks). The error bars indicate
the standard deviation from the mean of experiments performed in triplicate. The data
were analysed using one-way analysis of variance followed by the Student–Newman–Keuls
test. A two-tailed P-value < 0.05 was considered to indicate statistically significant
differences. SPSS 18.0 software for Windows was used for the statistical analyses
(SPSS Inc., Chicago, IL, USA).
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RESULTS
Surface topography and porosity of pith, untreated or pretreated with
acid or alkali
The pore size of pith pretreated with different concentrations of acid and alkali agents was
studied using the BJH/DH method. The effects of pretreatment acid and alkali
concentrations on the pore size of the pith are shown in Table 1. The pore size of the pith
increased with increasing mesh size before and after pretreatment, and the pore size of
the pretreated pith was much higher than that of the untreated pith. The structure of
the pith was thus loosened both before and after pretreatment, and the degree of
structural looseness increased with increasing mechanical cutting strength (Fig. 1).
Figure 1 shows a microscopic analysis of the untreated and pretreated pith roots in SSB
under mechanical smashing and chemical catalysis. The structural porosity was positively
correlated with the cutting strength before pretreatment. The size of the surface pores
of the untreated pith was only 3.20 ± 0.03 nm at 10–20 mesh, while the size of the pores
at 50 mesh and 100 mesh was 7.19 ± 0.01 nm and 9.50 ± 0.05 nm, respectively.

As shown in Fig. 1, there are more pores in the pith treated with the 100 mesh than in
that treated with the 10–20 and 50 meshes. Furthermore, the pore size in the pith
fragments treated with the 100 mesh was larger than that in the fragments treated with
the 10–20 and 50 meshes. This difference is correlated with an increase in cutting
intensity. As seen in Table 1, the pore size of the pith increased as the acid and alkali
concentrations increased. The pore sizes of 10–20, 50 and 100 mesh pith pretreated with
3% (v/v) acid were 11.99 ± 0.05 nm, 12.22 ± 0.03 nm and 12.35 ± 0.02 nm, respectively,
which were approximately 57.8%, 24.95% and 13.72% greater than that of pith
pretreated with 1.5% (v/v) acid. The pore sizes of 10–20, 50 and 100 mesh pith pretreated
with 4.5% (v/v) acid were approximately 1.08%, 1.01% and 0.89% greater than that of pith
pretreated with 3% (v/v) acid, respectively. The pore sizes of 10–20, 50 and 100 mesh
pith pretreated with 6.5% (w/v) alkali were 12.92 ± 0.01 nm, 23.22 ± 0.03 nm and
23.98 ± 0.05 nm, respectively, which was approximately 8.4%, 20.7% and 12.7% greater
than that of pith pretreated with 5% (w/v) alkali (Table 1). However, the pore size of 10–20,
50 and 100 mesh pith pretreated with 8% (w/v) alkali was approximately 1.5%, 1.5%
and 0.3% greater than that of pith pretreated with 6.5% (w/v) alkali. There was only a slight
difference between the pore sizes of pith pretreated with 3% (v/v) acid and 4.5% (v/v) acid,
similar to the difference observed between 6.5% (w/v) alkali and 8% (w/v) alkali.
This result suggested that 3% (v/v) acid and 6.5% (w/v) alkali may be more appropriate
than 4.5% (v/v) acid and 8% (w/v) alkali for treating pith due to environmental protection
and economic savings.

Solid recovery of pith with different pretreatment conditions
The effects of temperature (25, 50, 75 and 100 �C), acid (1.5%, 3% and 4.5%, v/v) and alkali
(5%, 6.5% and 8%, w/v) treatments for 2 h on the solid recovery of 10–20, 50 and 100 mesh
pith are shown in Table 2. After 1.5% (v/v) acid pretreatment, the yields of the
residues varied from 88.05% ± 0.03% to 39.88% ± 0.03% with increasing pretreatment
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temperature (from 25 to 100 �C) and mesh size (10–20 to 100 mesh). After the pith was
further treated with 4.5% (v/v) acid, the yields of the remaining residues were dramatically
reduced to 83.22% ± 0.04%–38.11% ± 0.02%. After 5% (w/v) alkali pretreatment,
the yields of the residues varied from 65.70% ± 0.03% to 36.89% ± 0.02% with increasing
pretreatment temperature (from 25 to 100 �C) and mesh size (10–20 to 100). After the pith
was further treated with 8% (w/v) alkali, the yields of the remaining residues notably
decreased to 60.35% ± 0.05%–32.47% ± 0.01%. Analysis of the pretreated pith residues
showed that the alkali treatment is better than the acid treatment. There is no great
difference in the solid recoveries of the pith with 3% (v/v) acid and 4.5% (v/v) acid, similar
to the difference between 6.5% (w/v) alkali and 8% (w/v) alkali. This finding again showed
that 3% (v/v) acid and 6.5% (w/v) alkali were more suitable than 4.5% acid (v/v) and
8% (w/v) alkali for this process. A box plot (Fig. 2) of the solid recovery rate was
generated using R and C+ to more clearly present the solid recovery at different
concentrations and temperatures by highlighting the quartile, minimum and maximum
values. Solid recovery gradually decreased as the temperature and the acid and alkali
concentrations increased. When the temperature was below 50 �C, the normal value

Figure 1 Microscopic performance of mechanical smashing and chemical catalysis of untreated and
pretreated pith root in SSB. (A–C) Untreated 10–20, 50 and 100 mesh pith at the microscopic level.
(D–F) Pretreated 10–20, 50 and 100 mesh pith with the best microscopic examples in this study.

Full-size DOI: 10.7717/peerj.6186/fig-1

Table 1 Effect of differing concentrations of acid or alkali pretreatment on the pore size.

Pore diameter Dv (d) (nm)

Parameter Untreated 1.5% acid 3% acid 4.5% acid 5% alkali 6.5% alkali 8% alkali

10–20 mesh 3.20 ± 0.03 7.60 ± 0.02 11.99 ± 0.05 12.12 ± 0.02 11.92 ± 0.01 12.92 ± 0.01 13.11 ± 0.03

50 mesh 7.19 ± 0.01 9.78 ± 0.04 12.22 ± 0.03 12.34 ± 0.01 19.23 ± 0.04 23.22 ± 0.03 23.59 ± 0.01

100 mesh 9.50 ± 0.05 10.86 ± 0.01 12.35 ± 0.02 12.46 ± 0.05 21.27 ± 0.03 23.98 ± 0.05 24.05 ± 0.04
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distribution was narrower than when the temperature was greater than 50 �C. The solid
recovery of 3% (v/v) acid-pretreated pith in Fig. 2A was approximately 59–68%,
while the solid recoveries of 3% (v/v) acid-pretreated pith in Figs. 2B–2D were
approximately 53–68%, 34–44% and 36–47%, respectively. The solid recovery of 6.5%
(w/v) alkali-pretreated pith in Fig. 2A was approximately 51–63%, while the solid
recoveries of 6.5% (w/v) alkali-pretreated pith in Figs. 2B–2D were approximately 43–56%,
32–44% and 25–33%, respectively. Some unusual points emerged regarding the 8% (w/v)
alkali treatment at every temperature. For example, when the temperature was 25 or
100 �C, these unusual points were more extreme than those at 50 or 75 �C. This result
showed that excessive temperature and acid/alkali concentration may be detrimental to
the degradation of lignocellulosic biomass.

Total sugar release of pith for different enzyme ratios
As mentioned previously, the enzyme dose was optimized to maximize sugar release at
50 �C, 6.5% (w/v) alkali, and 3% (v/v) acid. The saccharification of the pith was

Table 2 Solid recovery of different particle sizes of pith for various pretreatment conditions.

Concentration Temperature (�C) Solid recovery (%)

10–20 mesh 50 mesh 100 mesh

1.5% acid 25 88.05 ± 0.03 82.25 ± 0.02 74.43 ± 0.04

50 86.1 ± 0.01 73.05 ± 0.05 59.1 ± 0.05

75 67.52 ± 0.03 55.43 ± 0.02 49.38 ± 0.02

100 60.31 ± 0.04 46.85 ± 0.03 39.88 ± 0.03

3% acid 25 84.31 ± 0.03 72.78 ± 0.04 58.77 ± 0.06

50 82.71 ± 0.02 70.13 ± 0.04 56.11 ± 0.03

75 66.15 ± 0.05 52.34 ± 0.06 47.23 ± 0.01

100 59.30 ± 0.03 46.25 ± 0.01 38.47 ± 0.05

4.5% acid 25 83.22 ± 0.04 71.44 ± 0.05 57.12 ± 0.02

50 80.67 ± 0.06 68.55 ± 0.03 54.33 ± 0.03

75 63.45 ± 0.03 50.23 ± 0.01 46.66 ± 0.04

100 57.34 ± 0.01 44.18 ± 0.05 38.11 ± 0.02

5% alkali 25 65.70 ± 0.03 64.35 ± 0.01 60.15 ± 0.04

50 62.45 ± 0.02 60.38 ± 0.03 57.25 ± 0.01

75 60.14 ± 0.05 50.21 ± 0.04 46.34 ± 0.03

100 54.76 ± 0.03 40.36 ± 0.02 36.89 ± 0.02

6.5% alkali 25 64.35 ± 0.04 60.65 ± 0.03 50.65 ± 0.01

50 62.11 ± 0.01 58.32 ± 0.05 48.28 ± 0.06

75 59.15 ± 0.02 49.95 ± 0.06 45.23 ± 0.03

100 53.37 ± 0.03 38.25 ± 0.01 34.47 ± 0.05

8% alkali 25 60.35 ± 0.05 59.01 ± 0.03 48.19 ± 0.02

50 59.34 ± 0.04 58.01 ± 0.02 47.63 ± 0.04

75 56.15 ± 0.06 47.97 ± 0.01 43.23 ± 0.02

100 51.22 ± 0.02 36.25 ± 0.03 32.47 ± 0.01
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Figure 2 Solid yield of the pith after pretreatment with different concentrations of acid and alkali at
different temperatures. (A) Box plot of an included set of data at 25 ºC. (B) Box plot of an included set of
data at 50 ºC. (C) Box plot of an included set of data at 75 ºC. (D) Box plot of an included set of data at
100 ºC. Full-size DOI: 10.7717/peerj.6186/fig-2
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implemented in a shaking incubator at 50 �C and 150 rpm for 72 h using five different
enzyme ratios. As shown in Table 3, after acid pretreatment and alkali pretreatment,
for 10 U/g cellulase and 20 U/g β-glucosidase, the production of total sugar increased from
0.79 ± 0.03 mg/mL cellulase and 1.79 ± 0.03 mg/mL β-glucosidase for 10–20 mesh pith to
1.08 ± 0.05 mg/mL and 2.47 ± 0.07 mg/mL, respectively, for the 100 and 50 mesh pith.
The total sugar greatly increased with the increase from 10 U/g cellulase and 20 U/g
β-glucosidase to 20 U/g cellulase and 30 U/g β-glucosidase. For pith hydrolysed with
20 U/g cellulase and 30 U/g β-glucosidase, the sugars increased from 0.81 ± 0.02 mg/mL
and 2.34 ± 0.02 mg/mL for 10–20 mesh pith to 1.23 ± 0.04 mg/mL and 2.88 ± 0.04 mg/mL
for 100 and 50 mesh pith. The total sugar increased slightly with the increase from
20 U/g cellulase and 30 U/g β-glucosidase to 30 U/g cellulase and 40 U/g β-glucosidase.
The maximum total sugar content was 2.88 ± 0.04 mg/mL, which occurred with 0.1 g of
50 mesh alkali-pretreated pith, 20 U/g cellulase and 30 U/g β-glucosidase.

The relationship between the two enzyme ratios and the total sugar is shown in Fig. 3.
The data in Fig. 3B are modelled by Eq. (4):

f xð Þ ¼ � 1:324x2 þ 2:018x þ 0:2859 (4)

and Fig. 3C. The data in Fig. 3D are modelled by Eq. (5):

f xð Þ ¼ � 4:993x2 þ 7:922x þ�0:3055 (5)

The method of weighted residuals was used to analyse the model of the data from the total
sugar. Figures 3A and 3C show that, the total sugar content sharply increased when the
ratio between the two enzymes ranged from 0.5 to 0.67. The increases in total sugar
content gradually levelled off, regardless of acid or alkali treatment, when the ratio of the
two enzymes was greater than 0.67.

Detection of monosaccharide release by HPLC
Pretreatment with 3% (v/v) acid and 6.5% (w/v) alkali was performed to first depolymerize
the hemicellulose and lignin at a low temperature (50 �C, 72 h) to avoid excessive loss of
effective components at high temperature (100 �C); then, the sugars were hydrolysed
with enzymes at their optimal ratio, which produced monosaccharide that was detected
using HPLC. Figure 4A presents a chromatogram of a monosaccharide standard
solution containing D-arabinose, L-fucose, D-galactose, D-galacturonic acid, D-glucose,
D-gluconic acid, D-mannose, D-ribose, L-rhamnose and D-xylose. Figure 4B shows a

Table 3 Total sugar content of the different particle sizes of pith for different hydrolysed enzyme ratios.

Enzyme dose
(U/g, cellulase
and β-glucosidase)

Total sugar (mg/mL)

Acid (10–20 mesh) Acid (50 mesh) Acid (100 mesh) Alkali (10–20 mesh) Alkali (50 mesh) Alkali (100 mesh)

10 and 20 0.79 ± 0.03 0.97 ± 0.01 1.08 ± 0.05 1.79 ± 0.03 2.47 ± 0.07 2.23 ± 0.03

15 and 25 0.79 ± 0.02 1.01 ± 0.02 1.15 ± 0.02 1.92 ± 0.01 2.56 ± 0.08 2.39 ± 0.06

20 and 30 0.81 ± 0.02 1.03 ± 0.01 1.23 ± 0.04 2.34 ± 0.02 2.88 ± 0.04 2.48 ± 0.05

25 and 35 0.88 ± 0.01 1.09 ± 0.04 1.27 ± 0.02 2.32 ± 0.01 2.81 ± 0.05 2.49 ± 0.06

30 and 40 0.86 ± 0.03 1.05 ± 0.05 1.22 ± 0.03 2.33 ± 0.02 2.83 ± 0.01 2.46 ± 0.04
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Figure 3 Effect of the ratio of cellulase to β-glucosidase on total sugar release. (A) Plot of the model
and original data for 50 mesh pith treated at 50 ºC and with 3% (v/v) acid. (B) The method of weighted
residuals was used to analyse the model of the data from the total sugar quantification. (C) Plot of the
model and original data for 50 mesh pith treated at 50ºC and with 6.5% (w/v). (D) The method of
weighted residuals was used to analyse the model of the data from the total sugar quantification.
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chromatogram of the 10 monosaccharides in the hydrolysates for the optimized
separation conditions. The peak separation was excellent and allowed the identification
and quantification of all neutral sugars of interest. Rovio et al. (2008) reported that the
monosaccharide composition in plant fibre materials determined by capillary zone
electrophoresis included six neutral carbohydrates. This experiment simultaneously
separated 10 neutral carbohydrates.

The content of the 10 neutral monosaccharides in the hydrolysate is described in
Table 4. Variation in the monosaccharide content for the different particle sizes of the
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tion. (B) Chromatogram of 10 monosaccharides in the hydrolysis solution. The peak order of mono-
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Full-size DOI: 10.7717/peerj.6186/fig-4

Jiang et al. (2019), PeerJ, DOI 10.7717/peerj.6186 13/33

http://dx.doi.org/10.7717/peerj.6186/fig-4
http://dx.doi.org/10.7717/peerj.6186
https://peerj.com/


pith was evident throughout the data set. There were relatively high concentrations of
glucose, xylose and arabinose (2.84 ± 0.01–68.23 ± 0.04 mg/g dry matter, 11.95 ± 0.05–
72.76 ± 0.07 mg/g dry matter and 2.28 ± 0.04–25.93 ± 0.05 mg/g dry matter, respectively).
Fucose, ribose and rhamnose (0.15 ± 0.03–0.89 ± 0.01 mg/g, 0.12 ± 0.02–0.33 ± 0.06 mg/g
and 0.06 ± 0.07–0.46 ± 0.06 mg/g, respectively) were regarded as minor lignocellulosic
sugar components. Li et al. (2016) reported the hydrolysis of two-stage (alkali-acid)-
pretreated SSB with more sugar obtained (246.34 mg/g) than in this study
(149.48 ± 0.3 mg/g dry matter).

Analysis of unknown compounds in the pretreatment solution using
GC-MS
An integrated process was used to treat the pith, and GC-MS was used for the identification of
specific compounds in the pretreatment solution. The GC-MS instrument used in this
study was equipped with a DB-5 MS column (30 m � 0.25 mm � 0.25 mm) and an
RI detector and used an ion source temperature of 230 �C. As shown in Table 5, GC/MS and
the LRI were used to identify the compounds already known in the pretreatment solution,
and a total of 42 components were detected. The main components included three
alcohol compounds, 15 ester compounds, six acid compounds, four alkene compounds, five
aldehyde ketone compounds, five phenolic compounds and four benzene ring compounds.

As shown in Table 6, after the pith was subjected to a combined pretreatment
process (mechanical cutting and chemical catalysis), several compounds were found in the
pretreatment solution, including 9-oxabicyclo[6.1.0]nonane, cis-; 4-(trifluoromethyl)
benzoic acid, 3-chloroprop-2-enyl ester; 6-hydroxy-7H-cyclohepta[b]pyridin-7-one;
methyl pentadecyl ether; (Z,Z)-9,12-octadecadienal; (E)-9-octadecenal; 9-octadecen-1-ol,
(Z)-; oleic acid; decyl sulphide; 9-octadecenoic acid (Z)-,2-hydroxyethyl ester;
(9Z,12Z)-octadeca-9,12-dienoyl chloride; 9-octadecenoic acid (Z)-,2,3-dihydroxypropyl
ester; and pentatriacont-9-ene.

DISCUSSION
Generally, the juice of sweet sorghum contains 1.8% fermentable sugars. SSB was found to
be 45% cellulose, 27% hemicellulose and 21% lignin. However, these numeric values

Table 4 Neutral monosaccharide content in enzymatic hydrolysate of pith for different pretreatment methods, and 20 U/g of cellulase, 30 U/g
of β-glucosidase hydrolysed.

Pretreatment
method

Particle
size
(mesh)

Monosaccharide (mg/g dry matter)

Ara Fuc Gala Galb Glua Glub Man Rib Rha Xyl

Acid 10–20 6.48 ± 0.01 0.15 ± 0.03 4.32 ± 0.07 0.98 ± 0.06 47.07 ± 0.05 0.94 ± 0.03 2.54 ± 0.03 0.19 ± 0.05 0.21 ± 0.01 17.10 ± 0.06

50 6.60 ± 0.03 0.17 ± 0.01 5.70 ± 0.02 1.05 ± 0.01 50.12 ± 0.03 1.95 ± 0.05 3.22 ± 0.06 0.23 ± 0.04 0.27 ± 0.04 15.51 ± 0.04

100 25.93 ± 0.05 0.72 ± 0.02 7.49 ± 0.03 5.18 ± 0.02 68.23 ± 0.04 2.02 ± 0.02 3.97 ± 0.07 0.26 ± 0.07 0.32 ± 0.02 57.83 ± 0.01

Alkali 10–20 2.28 ± 0.04 0.54 ± 0.04 0.70 ± 0.05 0.33 ± 0.04 2.84 ± 0.01 1.30 ± 0.04 0.23 ± 0.05 0.13 ± 0.01 0.06 ± 0.07 11.95 ± 0.05

50 14.72 ± 0.05 0.89 ± 0.01 2.27 ± 0.03 1.40 ± 0.01 52.85 ± 0.07 2.53 ± 0.01 1.27 ± 0.01 0.33 ± 0.06 0.46 ± 0.06 72.76 ± 0.07

100 10.22 ± 0.07 0.70 ± 0.02 2.07 ± 0.06 1.94 ± 0.02 11.98 ± 0.05 2.73 ± 0.02 0.79 ± 0.03 0.12 ± 0.02 0.13 ± 0.02 25.39 ± 0.2

Note:
Ara, arabinose; Fuc, fucose; Gala, galactose; Galb, galacturonic acid; Glua, glucose; Glub, gluconic acid; Man, mannose; Rib, ribose; Rha, rhamnose; Xyl, xylose.
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are affected by the harvest season. Lignocellulose consists primarily of plant cell wall
materials; it is a complicated natural composite with three major constituents,
that is, cellulose, hemicellulose and lignin (Wu et al., 2011). The hemicellulose–lignin
complex and the crystalline structure of cellulose are largely responsible for the
recalcitrance of lignocellulose to hydrolysis (Hsu, Ladisch & Tsao, 1980). Inexpensive
sugars are commonly obtained from pith, the solid fibrous lignocellulosic root in SSB, and
effective pretreatment is encouraged (Qin et al., 2013). Pretreatment breaks the ester
and ether bonds in lignin carbohydrate complexes while increasing the internal surface
area of the biomass materials (Mou, Heikkilä & Fardim, 2013). At the same time, cellulose,
hemicellulose and some other compounds are released into the pretreatment solution
for subsequent enzymatic hydrolysis.

Commonly used physical pretreatment methods include mechanical smashing,
the application of high-energy radiation, microwave processing, pyrolysis, freezing and
steam explosion. Amongst these methods, mechanical smashing is a commonly used
pretreatment method for lignocellulosic materials. Before treatment, most materials are
subjected to other pretreatments and must be mechanically smashed, primarily by cutting
and grinding. A high-speed shearing device is used to effectively destroy the physical and
chemical connections between the various components of lignocellulose. The shearing
device can also destroy the crystalline structure of cellulose and increase its specific surface
area. Grinding can produce cellulose with a completely amorphous structure, but this
structure is highly unstable, and the crystal structure will soon reform. Smashing to greater
than 400 mesh can greatly improve the enzymatic efficiency, while the associated
disadvantages include a limited improvement in the overall reaction performance and
large energy consumption. Moreover, excessive smashing may lead to the loss of active
ingredients, including cellulose, while moderate mechanical smashing may increase
the proportion of the amorphous structure of cellulose. Smashing increases the specific
surface area, which benefits the efficiency of the chemical reagent and lowers energy
consumption. Cellulose exposed via pretreatment is an important part of enzymatic
hydrolysis and one of the essential factors that restrict the economic efficiency of
enzymatic hydrolysis. The enzymes must be absorbed inside the lignocellulosic materials
to degrade the cellulose. Therefore, the pith was cut to 10–20, 50 and 100 mesh in
this study. It was clear that certain deposits emerged on the surface of the pith at 100 mesh
(Fig. 1), which may be amorphous cellulose, released carbohydrates or other compounds.
The covalent bond between hemicellulose and lignin was broken by chemical catalysis,
releasing the cellulose trapped by the bond (Song et al., 2013); therefore, the structure
of the pith became more porous, and new pores emerged after pretreatment (Fig. 1).
These findings showed that a combined process of mechanical cutting and chemical
(alkali and acid) treatment at a moderate temperature breaks the covalent bonds between
hemicellulose and lignin in the complex network to remove external fibres, thereby
releasing embedded cellulose for further enzymatic hydrolysis.

Alkali and acid are conventional and cost-effective pretreatments that break down the
physicochemical structural and compositional factors in lignocellulosic biomass materials.
They also increase the pore size to enhance enzyme penetration for improved
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enzymatic efficiency in biofuel production (Table 1). Zheng et al. (2018) pretreated
wheat straw with 4% (w/v) NaOH at 121 �C for 1 h, which resulted in an 87.2%
conversion of cellulose into glucose. Kim et al. (2012) demonstrated that after 1.2% (v/v)
acid treatment of rice straw at 110 �C for 14.02 min, the subsequent enzymatic
hydrolysis improved to 73.14% of the theoretical yield. The pretreatment conditions affect
the composition of lignocellulosic materials and the resulting yield of sugar production.
Preliminary experiments screened the appropriate parameters in this study to find
the optimal particle size, temperature and chemical reagent concentrations and thus
achieve the high-efficiency hydrolysis of lignocellulosic biomass. Figure 2 shows the solid
recovery of pith with different pretreatments at a certain temperature. Solid recovery
is negatively correlated with catalytic chemical concentration. The solid recovery also
sharply decreased as the temperature increased, but excessively high temperatures led
to the degradation of fermentation inhibitors and other active ingredients. A combination
process at a temperature higher than 50 �C led to excess loss of cellulose and hemicellulose,
which was harmful to the release of sugar and resulted in low fermentation efficiency.
When the pretreatment temperature reached 100 �C, only a small amount of pretreated
residues were retained after 8% (w/v) alkaline treatment. The excessive dissolution of
the pith was mainly attributed to a large pore size, which increases with mesh size;
under these conditions, the advantageous entry of acid and alkali solutions disintegrated
the effective components under the relatively high reaction temperature (Ibbett et al., 2014;
Patel et al., 2016). Additionally, the pretreated residues decreased as the pith size
increased from 10–20 to 100 mesh, regardless of the pretreatment conditions, because
physical smashing increased the laxity of the structure (Fig. 1), and chemical pretreatment
broke the resistant structure of the pith. The solid recovery was reduced because the
lignin and hemicellulose were stripped from the pith, exposing the internal structures
and cellulose.

Alkali and acid treatments also had a marked effect on SSB morphology, especially the
cell wall structure. Figure 1 shows images of fibre surfaces on milled samples obtained at a
range of H+ and OH--concentrations. SSB stem pith starts to lose its structure, and
the fibres become detached from each other. Increasing the H+ and OH- concentrations
decreased the SSB stem pith structure further, resulting in completely unattached and
independent fibres, as shown in Figs. 1D–1F. These fibres are more easily fractured than
the knife-milled samples (from Figs. 1A and 1B) because their initial size is relatively large,
and degradation effects are thus less significant. These samples are very useful for
understanding the degradation process as a whole, but comparisons with the samples from
Fig. 1D should be made cautiously, as size reduction and mechanical stress contribute
to enhanced degradation. In Fig. 1C, a general view of the sample is presented, showing a
conducting vessel surrounded by cell bundles that are still joined. Tissue integrity is thus
maintained to some extent, but signs of degradation are evident on the surface of the
wall, as shown in Fig. 1F. Delignification results in the formation of holes in the cell wall
structure, and its surface therefore appears more fragile than that of the untreated samples
in Figs. 1A and 1B. This difference is probably caused by the removal of lignin
fractions from the inner parts of the wall as a consequence of H+ and OH- activity.

Jiang et al. (2019), PeerJ, DOI 10.7717/peerj.6186 21/33

http://dx.doi.org/10.7717/peerj.6186
https://peerj.com/


Based on these results, 50 �C, 3% (v/v) acid and 6.5% (w/v) alkali were considered the most
favourable conditions for pretreatment and the most beneficial for enzymatic hydrolysis
and fermentation in the next step.

Lignin is a phenolic macromolecule that is resistant to enzymatic attack and
degradation, so its content and distribution are the most important factors determining
cell wall hydrolysis. Lignocellulosic substrates must be pretreated to reduce this resistance
and increase yield. The monomers released by enzymatic hydrolysis can be
fermentable sugars. Different pretreatment methods have different mechanisms of action;
they can reduce the crystallinity and/or degree of polymerization of the cellulose,
increase the accessible surface area and selectively remove hemicellulose and lignin
from the lignocellulosic matrix.

Cellulase is a commonly used enzyme that hydrolyses cellulose. β-Glucosidase is an
enzyme with potential utility in industrial bioconversion processes because of its
thermostability and high efficiency, as reported by Sørensen et al. (2011). Therefore, these
two commercial enzymes, cellulase and β-glucosidase, were used to hydrolyse pith to
increase the amount of released. Most of the cellulose and part of the hemicellulose in the
pretreated pith were hydrolysed by the two enzymes, as indicated by the increase in
total sugar yield and total sugar concentration in the hydrolysates, which increased as the
mesh increased (Table 3). An appropriate enzyme ratio can improve the efficiency of
hydrolysis; this result is in agreement with the findings of Marcos et al. (2013) and
Cybulska, Lei & Julson (2009), who found that when steam-exploded wheat straw was
hydrolysed using a high dosage of hydrolase, the cellulose and hemicellulose conversion
reached 81% and 27%, respectively. This result showed that increasing the ratio between
these two enzymes can, to a certain point, effectively enhance the sugar yield and
ratio of hydrolysis, but an excessive enzyme ratio is not practical for the industrial
treatment of straw because the cost of the process significantly increases. Therefore, a
0.67 enzyme ratio was considered appropriate for pith hydrolysis.

The D-glucose originating from cellulose can be degraded directly during hydrolysis.
The C-6 hydroxyl of glucose is oxidized to D-gluconic acid, which contains a carboxyl
group and was detected in this study. Hemicellulose is a highly branched
heteropolysaccharide chain formed from both hexoses and pentoses, which can be
decomposed into D-arabinose, L-fucose, D-galactose, D-galacturonic acid, D-mannose,
D-ribose, L-rhamnose and D-xylose by pretreatment and enzymatic hydrolysis.
After the acid-pretreated pith was hydrolysed, the content of the 10 neutral
monosaccharides increased as the particle size increased, resulting in a maximum
monosaccharide release at 100 mesh (Table 4). This finding can be attributed to increased
degradation of the hemicellulose and lignin after pretreatment including both physical
and chemical processes (Fig. 2). This effect resulted in increased pore size and improved
the accessibility of the enzyme to cellulose, thereby increasing the release of sugar.
The contents of eight neutral monosaccharides first increased with increasing pore size and
later decreased, reaching their highest value in the hydrolysate at 50 mesh with alkali as the
pretreatment reagent. However, gluconic acid and galacturonic acid showed a
different trend from the eight monosaccharides whose content increased as the
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particle size increased. The reason sugar release after alkali pretreatment was optimal at
50 mesh instead of at 100 mesh was likely because lignin was heavily degraded at 100 mesh,
resulting in lower solid recovery from the alkali pretreatment. The cellulose and
hemicellulose were also excessively damaged, and the amorphous cellulose may have
formed other substances during hydrolysis, resulting in a low content of the 10
neutral monosaccharides at 100 mesh. This finding applies to the pith derived from part
of the SSB, and the sugars produced may be converted to other substances. Moreover,
Sakdaronnarong et al. (2018) reported that most hemicellulose and some cellulose can be
degraded into water-soluble saccharides and other small molecules during pretreatment.

How was enzymatic depolymerization stopped? In a strict mathematical sense,
this process is governed by the Michaelis–Menten kinetics model. The process involves a
degradation mechanism, a polymer degradation mechanism and the mathematical
modelling of depolymerization kinetics. In this study, we did not analyse the
mathematics behind the enzyme kinetics.

John et al. (2011) reported using NMR methods to monitor the enzymatic
depolymerization of heparin. Thunberg et al. (1982) also studied the enzymatic
depolymerization of heparin-related polysaccharides. Our main objective was to study the
optimal time for the production of more sugar, and we refer to many reports in which 72 h
is the time period used to degrade lignocellulose (Chen et al., 2018; Amiri, Karimi &
Zilouei, 2014; Singh et al., 2017; Li et al., 2016). Periods longer or shorter than 72 h are not
conducive to the production of sugar by hydrolysis with two enzymes. After 72 h of
enzymatic saccharification, the hydrolysates were centrifuged and the liquid fraction was
collected for analysis of the fermentable sugar concentration. For accuracy and reliability,
all the above experiments were performed in duplicate. Cellulase is a commonly
used enzyme that hydrolyses cellulose. β-Glucosidase is an enzyme with potential utility
in industrial bioconversion processes because of its thermostability and high efficiency
(Sørensen et al., 2011). Crystalline cellulose is attacked by several different enzymes whose
concerted action releases products, and cellobiose is a major soluble product. Cellobiose is
hydrolysed to glucose by β-D-glucoside glucohydrolase (β-glucosidase) (Freer, 1995).
When cellulase preparations are supplemented with β-glucosidase during saccharification,
glucose is the predominant product and the rate of saccharification is significantly
increased (Sternbergo, Vuayakumar & Reese, 1977).

Similar to other plant cell walls, the cell wall of SSB is formed primarily from two
carbohydrate moieties (cellulose and hemicellulose) embedded in a lignin matrix.
Considerable research efforts have focused on the use of acid-catalysed hydrolysis to cut
intrachain linkages in hemicellulose and cellulose chains contained in bagasse to produce
commercial quantities of xylose, glucose and other sugars. As hydrolysis continues,
the sugar may be further degraded into decomposition products such as furfural,
hydroxymethylfurfural and furan resin. The acid hydrolyses hemicellulose and produces a
xylose-rich liquid phase containing a small amount of lignin derivative. Therefore,
acid-catalysed hydrolysis is an excellent hemicellulose recovery method (Lavarack,
Griffin & Rodman, 2002; Fogel et al., 2005) and has been successfully applied to bagasse
(Geddes et al., 2010; Rocha et al., 2011). Alkali treatment was originally used to increase the
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biomass digestibility of animal feed. Diluted alkali solution destroys lignocellulosic cell
walls by dissolving hemicellulose, lignin and silica; by hydrolysing uronic acid and acetate;
and by swelling cellulose (Zhang & Lynd, 2004). Lignin decomposition is usually
attributed to the cleavage of a-polyphenol monomers and their polyphenolic monomers,
while hemicellulose dissolution and cellulose swelling are the result of hydrogen bond
weakening (Jackson, 1977). Rezende et al. (2011) determined the crystallinity of bagasse
samples by X-ray diffraction before and after pretreatment. The crystallinity of
their samples increased linearly with the amount of cellulose. Treating the sample with 1%
H2SO4 or with 0.25% or 0.5% NaOH yielded cellulose percentages of 51%, 66% and
68%, respectively. A linear relationship was also found between these values and the
crystallinity index for samples containing 100% cellulose. In our study, small deviations
from this linear behaviour were observed in samples containing 80–90% cellulose
(Putri, Wahyuni & Sudiyani, 2017), which corresponds to alkali treatment with
5–8% (w/v) NaOH and acid treatment with 1.5–4.5% (v/v) HCl. A slight decrease in
crystallinity (2.6–4.3%) occurred in these samples relative to the results in a previous study
(Vandenbrink et al., 2012; Putri, Wahyuni & Sudiyani, 2017; Hu et al., 2017). This result
may indicate that severe alkali and acid pretreatments decrease the crystallinity of
the sample.

Analysis of the compounds already known to be present in the pretreatment solution,
especially the alcohol, ester, acid, aldehyde ketone, alkene, phenolic and benzene ring
compounds, by GC/MS and the LRI detected 42 components, which accounted for
93.64% of the total peak area. Amongst these components, alcohol compounds accounted
for 6.08% of the total peak area, ester compounds for 39.26%, acid compounds for 7.23%,
aldehyde ketone compounds for 8.33%, alkene compounds for 2.33%, phenolic
compounds for 4.45%, benzene ring compounds for 1.87% and other compounds for
24.09%. These compounds were already known, especially phenolic compounds, furans
and cinnamic acid derivatives, which are the main compounds resulting from acid-
and alkali-based methods. Interestingly, several major unknown compounds whose
chemical structures were determined were found in the pretreatment solution, including
9-oxabicyclo[6.1.0]nonane, cis-; 4-(trifluoromethyl)benzoic acid, 3-chloroprop-2-enyl
ester; 6-hydroxy-7H-cyclohepta[b]pyridin-7-one; methyl pentadecyl ether; (Z,Z)-
9,12-octadecadienal; (E)-9-octadecenal; 9-octadecen-1-ol, (Z)-; oleic acid; decyl sulphide;
9-octadecenoic acid (Z)-,2-hydroxyethyl ester; (9Z,12Z)-octadeca-9,12-dienoyl chloride;
9-octadecenoic acid (Z)-,2,3-dihydroxypropyl ester; and pentatriacont-9-ene.
These compounds may have been observed because the samples were analysed as received
from the mill, without being washed. Therefore, they may have contained dust, soil and
other debris accumulated during harvest, transportation and storage after juice
extraction in the mill. These compounds may affect the decomposition of lignocellulose,
as well as the release of sugar. Some of these cyclic compounds may have value and
could be further extracted as a recycled resource. Moreover, this effect may accelerate the
production of certain inhibitors, whose negative effects on the pith hydrolysis have not
been explored. To the best of our knowledge, this study is the first to analyse these
other compounds in the pretreatment pith solution using GC-MS. Our next step is to
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remove these compounds to increase the release of sugar and improve the utilization of
lignocellulosic materials.

CONCLUSION
An integrated process based on physical and chemical pretreatment effectively increased
the amount of exposed cellulose to improve the saccharification rate according to
SEM and HPLC detection results. In particular, the exposed cellulose and saccharification
increased as the particle size increased. The crystallinity of the sample increased linearly
with the amount of cellulose. The crystallinity in these samples was slightly less than
that observed in a previous study, which may indicate that severe alkali and acid
pretreatment decreases the crystallinity of the sample. A total of 10 types of
monosaccharides were detected in this study, with a total achievable monosaccharide
content of 149.48 ± 0.3 mg/g dry matter from the pith. Furthermore, compounds that were
already known and unexpected compounds were analysed using GC-MS, including
linear chain compounds and circular compounds. These compounds may reduce sugar
production but may also be used to produce other substances for resource recycling,
which makes separating these compounds the next step in our research. More importantly,
this cost-effective conversion of pretreated pith will enable the efficient use of every part of
sorghum bagasse for sustainable development of the economy and protection of the
environment.
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