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Purpose: To evaluate the in vitro response of retinal pigment epithelial (RPE) cells to a nonlethal dose of blue light.
Methods: The human RPE cell line ARPE-19 was irradiated with blue light (405 nm) at an output power of 1 mW/cm2

or 0.3 mW/cm2. The following parameters were studied: metabolic activity; apoptosis; reactive oxygen species (ROS)
production; mitochondrial membrane potential (MMP); ultrastructural changes of mitochondria; production of advanced
glycation endproducts (AGEs); and stress-related cellular proteins.
Results: Nonlethal doses of blue light irradiation significantly reduced ARPE-19 metabolic activity and MMP while
increasing intracellular ROS levels and expression of stress-related proteins heme oxygenase-1 (HO-1), osteopontin, heat
shock protein 27 (Hsp-27), manganese superoxide dismutase (SOD-Mn), and cathepsin D. Blue light irradiation also
induced ultrastructural conformation changes in mitochondria, resulting in the appearance of giant mitochondria after 72
h. We further found enhanced formation of AGEs, particularly Nε-(carboxymethyl) lysine (CML) modifications, and a
delay in the cell cycle.
Conclusions: ARPE-19 cells avoid cell death and recover from blue light irradiation by activating a host of defense
mechanisms while simultaneously triggering cellular stress responses that may be involved in RPE disease development.
Continuous light exposure can therefore detrimentally affect metabolically stressed RPE cells. This may have implications
for pathogenesis of age-related macular degeneration.

Age-related macular degeneration (AMD) is the leading
cause of progressive blindness in elderly in developed
countries [1]. In recent years, the number of people affected
has steadily increased as more than 35% of the population is
now over age 75 and showing disease symptoms [1]. The
pathogenesis of AMD is poorly understood, and to date, there
is no efficient cure or prevention. Several epidemiologic
studies suggest that long-term history of exposure to light may
trigger the onset of AMD [2-5].

The human retina is protected from high-energy
ultraviolet light by the cornea and lens, which absorb
ultraviolet (UV) light below 400 nm, but can be damaged by
visible light [6]. Components of the visible spectrum can be
absorbed by biologic chromophores in retinal pigment
epithelial (RPE) cells, causing cellular dysfunction and even
death of cells [7]. The blue region of the spectrum (400–500
nm) has relatively high energy and can penetrate through
tissues to cells and their organelles. Blue light in particular is
known to damage retinal tissue [8-12]. Much attention has
been given to chromophores formed by rhodopsin
intermediates in the photoreceptor outer segments, such as the
protein A2E, a major component of lipofuscin [7,13]. These
chromophores have been regarded as the major source of
radicals in RPE cells, however, it has recently been shown that
blue light can also damage lipofuscin-free RPE cells [14,15].
Cell culture studies revealed that blue light directly induces
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the production of reactive oxygen species (ROS) in RPE
mitochondria [14] and leads to apoptosis [16], potentially
triggered by ROS damage to mitochondrial DNA (mtDNA)
[17].

In this study, we established an in vitro model system in
which blue light irradiation of RPE cells induces mild stress
without causing cell death. It is likely that the accumulation
of subthreshold damage to cellular processes produces long-
term subapoptotic cell stress that finally leads to the apoptosis
associated with AMD. Thus, we applied subapoptotic doses
of blue light to our RPE cell model and assayed indicators of
subtle cellular change. We were particularly interested in
effects on mitochondrial morphology and membrane
potential, metabolic activity, stress-related protein levels, the
cell cycle, and formation of advanced glycation endproducts
(AGEs), particularly Ne-(carboxymethyl) lysine-modified
proteins. AGEs are a heterogenous group of reaction products
formed by nonenzymatic Maillard reactions between a
protein`s primary amino group and a carbohydrate-derived
aldehyde group. Intracellular formation of AGEs is a crucial
pathological process in various retinal degenerations,
including AMD.

METHODS
Cell culture: The human retinal pigment epithelial cell line
ARPE-19 (ATCC, Rockville, MD) [18], was grown in a 1:1
mixture of Dulbecco’s modified eagle medium (DMEM) and
Ham’s F12 (PAN Biotech, Aidenbach, Germany)
supplemented with 10% fetal calf serum (Biochrom, Berlin,
Germany). Cells were used at passages 25 to 30. They were
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counted with a Casy cell counter (Schärfe System, Reutlingen,
Germany) before seeding.
Exposure of ARPE-19 cells to blue light: Illumination was
produced by a LED-based system generating 405 nm blue
light at an output power of either 0,3 mW/cm2 or 1 mW/cm2.
LED arrays were developed in cooperation with Hydrosun
Medizintechnik GmbH, Müllheim, Germany. Cells were
irradiated in six-well chambers (TPP, Trasadingen,
Switzerland) or microslides (ibidi, Munich, Germany) for 3,
24, or 72 h.
Chemicals and antibodies: The following chemicals were
used in our experiments: propidium iodide, RNase, saponin,
triton-X and tetramethylrhodamine isothiocyanate-labeled
phalloidine (Sigma-Aldrich, St. Louis, MO); bovine serum
albumin (BSA; Serva, Heidelberg, Germany); NP-40 (Roche
AG, Basel, Switzerland), 2’7’-dihydro ethidium (DHE), 5-
(and-6)-chloromethyl-2’,7’-dichlorodihydrofluorescein
diactate acetyl ester (CM-H2DCFDA), and 5,5′,6,6’-
tetrachloro-1,1’,3,3′-tetraethylbenzimidazol-carbocyanine
iodide (JC-1; Molecular Probes, Leiden, The Netherlands).
The following antibodies were used in our studies: 1:1,500
polyclonal rabbit anti-CML antiserum (gift of Erwin D.
Schleicher, Department of Medicine IV, University of
Tübingen, Tübingen, Germany) [19]; heme oxygenase-1
(HO-1) and heat shock protein 27 (Hsp-27; Stressgen,,
Victoria, Canada); osteopontin (Vector Laboratories,
Burlingame, CA); manganese superoxide dismutase (SOD-
Mn; Calbiochem, Cambridge, MA); and cathepsin D (Bio
Genex, San Ramon, CA). Secondary antibodies included
fluorescein isothiocyanate (FITC)–conjugated anti-
rabbitIgG, anti-goat IgG or anti-mouse IgG (Dianova,
Hamburg, Germany) at a final dilution of 1:80.
Detection of metabolic activity: Cell metabolic activity was
quantitatively assessed using a resazurin assay according to
the manufacturer’s instructions (Sigma-Aldrich) [20,21].
Cells were irradiated with blue light, and the assay was
performed. Cell-free wells containing medium and resazurin
were used as blanks.
Measurement of intracellular ROS production: Cells were
incubated with DHE or H2DCFDA at a final concentration of
10 μM for 30 min at 37 °C in the dark. Excess dye was
removed by washing in PBS. Fluorescence intensity was
measured in a FACSCalibur cytofluorimeter (Becton-
Dickinson, Heidelberg, Germany). For each analysis, 10,000
cells were recorded.
Detection of apoptosis: Apoptosis was quantified by flow
cytometry to detect cells with a subdiploid DNA peak and by
M30 Apoptosense ELISA (Peviva; Axxora, Lörrach,
Germany). The assay for subdiploid DNA (sub-G1 peak) was
performed as described by Nicoletti et al. [22]. Cells were
fixed in cold 70% ethanol for 5 min. Next, 50 μl PBS (Pan
Biotech GmbH, Aidenbach, Germany; components of
Dulbecco's PBS: potassium chloride, potassium dihydrogen

phosphate, sodium chloride, di-sodium hydrogen, pH 7.4)
with 1% horse serum containing 1 μg propidium iodide and
10 μg RNase was added, and the mixture was incubated for
30 min at room temperature. Flow cytometry was performed
using a FACSCalibur cytofluorimeter. The number of cells
per histogram was 10,000. With this method, cells with a
normal DNA peak were distinguishable from apoptotic cells.
Necrotic cells were detected by incubating unfixed cells for 5
min with 0.01 mg/ml propidium iodide, and this was followed
by cytofluorimetric analysis.

The M30-Apoptosense ELISA was performed as
follows: cells were lysed by adding 100 µl 10% NP-40 per
well. After 5 min incubation at room temperature, 25 µl of the
lysate was transferred to each well of M30 coated microstrips.
The samples were assayed in triplicate and the standards in
duplicate. The extinctions were averaged before calculation
of M30 values. Photometrical analysis at 450 nm was
conducted using a TECAN Sunrise ELISA Reader (Tecan
trading AG, Switzerland).
Measurement of mitochondrial membrane potential:
Mitochondrial membrane potential (MMP) was assessed by
measuring the potential-dependent accumulation of JC-1
[23-25]. After treatment with blue light, cells were stained
with JC-1 (1 mg/ml stock solution in DMSO diluted to 1 μg/
ml with medium) for 10 min at 37 °C. Fluorescence intensity
was imaged using a fluorescence microscope (IX81;
Olympus, Hamburg, Germany) equipped with a dual view
imaging system and an Olympus Megaview camera
(statistical analysis of JC-1 labeled mitochondria in ARPE-19
cells from 40 images of 8 separate experiments with 5
replicates each).
Electron microscopy: Prior to transmission electron
microscopy, cells were fixed for 2 h at room temperature (RT)
in 0.1 M sodium cacodylate buffer (pH 7.4) containing 2.5%
glutaraldehyde. The samples were incubated in 1% OsO4 in
0.1 M cacodylate buffer for 2 h at RT. Afterwards, samples
were contrasted with 3% uranyl acetate en bloc, dehydrated
through a graded alcohol series at RT, and incubated for 2 h
with 1:1 ethanol-epon. Thereafter samples were embedded in
epon overnight and the flat embedding molds filled with epon
were polymerized for 48 h at 60 °C. Ultrathin sections (65 nm)
were mounted on grids and contrasted with uranyl acetate (8
min) and lead citrate (2 min). Ultrastructural studies were
performed with an EM 906 electron microscope (Carl Zeiss,
Oberkochen, Germany). All buffers, fixatives, and embedding
materials for electron microscopy were purchased from Serva.
Cytofluorimetric analysis of intracytoplasmic proteins: To
detect Nε-(carboxymethyl) lysine (CML)-modified proteins
and cytoplasmic proteins, we fixed cultured cells in 2% (w/v)
formaldehyde in PBS for 20 min and centrifuged. The cells
were resuspended in wash buffer, which contained 0.5% BSA
in PBS, and permeabilized for 20 min using 0.5% (w/v)
saponin in wash buffer. After incubation with primary
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antibodies for 30 min, the cells were washed twice in PBS
containing 0.5% BSA and 0.5% (w/v) saponin. Then cells
were incubated with a FITC-conjugated anti-rabbit IgG or
anti-mouse IgG for 60 min at RT. Cells were washed in PBS,
resuspended in 400 μl PBS, and analyzed by flow cytometry
(FACSCalibur). At least 10,000 cells were analyzed.
Cell cycle analysis: After cells were harvested, 5×105 cells
were prepared using the CycleTestTM Plus DNA Reagent Kit
(Becton Dickinson) and analyzed by flow cytometry.
Approximately 20,000 events were recorded per analysis. Cell
cycle phase distribution was analyzed by ModFit LTTM 2.0.1
(Verity Software House Inc., Topsham, ME).
Statistical analysis: Values are given as mean±SD, with n
equal to the number of independent experiments. Unless
stated otherwise, all assays were performed at least five times.
Statistical analysis was performed by one-way ANOVA with
correction for post hoc multiple comparisons according to
Bonferroni using SPSS, version 12.0 (SPSS, Chicago, IL).
Significance was accepted at p<0.05. Histograms and images
are examples of series from similar experiments.

RESULTS
Viability and apoptosis of ARPE-19 cells: We used ARPE-19,
a human adult diploid RPE cell line similar to RPE in vivo, to
test the effects of sublethal exposure to blue light. Viability
and cell number after exposure to blue light for 24, 48, and 72
h did not vary significantly in any of the experiments
described here. Cell viability was assayed by trypan blue and
propidium iodide exclusion, and microscopic and flow
cytometric evaluations were performed. None of our samples
showed a sub-G1-peak, indicative of apoptotic cells.
Consistent with this, M30 Apoptosense ELISA detected no

blue-light-induced apoptosis after 24, 48, or 72 h (data not
shown). Thus, the blue-light exposure delivered in our setup
is indeed sublethal for ARPE-19 cells.
Metabolic activity of ARPE-19 cells: To determine the impact
of blue-light exposure, we quantified ARPE-19 cell injury by
measurement of the reduction of resazurin. Metabolic activity
of the cells was significantly decreased after irradiation for
either 3 or 24 h with blue light at an output power of 1 mW/
cm2. It was also significantly decreased after 24 h irradiation
at an output power of 0.3 mW/cm2 (Figure 1).
Evaluation of intracellular oxidative stress: Intracellular ROS
level is an important biomarker for oxidative stress, with
increased ROS levels generally indicating greater oxidative
stress. To test for blue-light-induced ROS production in our
system, we treated ARPE-19 cells with blue light for 3, 24, or
72 h. Intracellular ROS formation was measured by
incubating cells with DHE or CM-H2DCFDA. The dyes, DHE
and CM-H2DCFDA, have been used to measure intracellular
generation of superoxide and hydrogen peroxide,
respectively. We found that 24 h of exposure to blue light
significantly stimulated ROS production as evidenced by
oxidation of DHE and H2DCFDA (Figure 2). Moreover, this
effect was dependent on the output power of the blue light.
Evaluation of MMP: To evaluate the effect of blue light on
MMP, we used fluorescence microscopy to detect the
potential-dependent accumulation of JC-1 (Figure 3). After 3
h of irradiation, no significant effect on MMP was detectable
compared to control cells. However, after 24 h, blue light
irradiation decreased red JC-1 aggregate fluorescence and led
to predominantly green JC-1 monomere fluorescence,
indicating decreased MMP. Most mitochondria in the control
cells displayed red fluorescence by JC-1 aggregates. Over

Figure 1. Effect of blue light on
metabolic activity. Metabolic activity of
ARPE-19 cells measured by
spectrophotometric detection of
resazurin. Cells were unirradiated
(white bars) or irradiated with either 1
mW/cm2 (black bars) or 0.3 mW/cm2

(red bars) for 3 h and 24 h. Bars
represent mean±SD from n=5 separate
experiments; The asterisk (*) indicates
a p<0.05 (one-way ANOVA and
Bonferroni test).
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time, in both the control and irradiated cells, intact
mitochondria (red) redistributed to the cell periphery and
depolarized mitochondria (green) located to the perinuclear
region. This redistribution process was most prominent after
72 h of blue light irradiation. We further observed the
elongation of several mitochondria. The average MMP of
control and treated cells did not vary significantly after 72 h
of irradiation.

Electron microscopic observations of mitochondria: The
changes in mitochondrial distribution and shape after 72 h of
irradiation were also evident using electron microscopy
imaging (Figure 4). Irradiated cells showed mitochondria with
unusually elongated profiles, similar to giant mitochondria.
We additionally observed some small mitochondria in the
cells after irradiation with blue light. In untreated cells, most
of the mitochondria formed a dense cluster on one side of the
nucleus. After blue light exposure, mitochondria were found
in the entire perinuclear region.

Expression of stress-related proteins: Flow cytometric
analysis revealed blue-light-induced changes of stress-related
cellular proteins (Figure 5, Table 1). The expression of HO-1,
osteopontin, Hsp-27, SOD-Mn, and cathepsin D were
examined in ARPE-19 cells following different exposure
times to blue light. Blue light with an output power of 1 mW/
cm2 (blue diagrams) enhanced HO-1, SOD-Mn, and cathepsin
D expression in ARPE-19 cells after 72 h irradiation.
Expression of of the anti-apoptotic glycoprotein osteopontin
was enhanced after only 24 h and Hsp-27 after 48 h. With a
lower output power of 0.3 mW/cm2, the stress reaction was
diminished. Only cathepsin D expression increased in
ARPE-19 cells after irradiation at 0.3 mW/cm2 (green
diagrams).

Induction of CML-modified proteins: The blue-light-induced
formation of intracellular CML-modified proteins in
ARPE-19 cells was studied. After 24 h of exposure to blue
light with an output power of 1 mW/cm2, cytofluorometrical

analysis revealed an accumulation of the AGE product CML
in ARPE-19 (Figure 5, Table 1).
Cell cycle analysis: We performed cell cycle analysis on cells
irradiated with blue light for different time periods. Blue light
treatment resulted in a relative increase in the G2M and S
phase of the cell cycle in a dose-dependent manner. The
maximum effect was observed at 72 h and did not increase
with longer durations of irradiation (Figure 6). The population
of cells in the G2M phase of the cell cycle reached 14.3% after
72 h of irradiation, while the control cells were at 11.3%. The
percentage of cells in S phase was also higher in the irradiated
cells (15%) compared to control cells (10.9%). Subsequently,
the G0G1 phase of cell cycle decreased from 77.7% in control
cells to 70.5% after blue light exposure.

DISCUSSION
Here we develop and characterize an in vitro model system in
which blue light irradiation of RPE cells induces mild stress
without causing cell death. Although most studies
investigating the relationship between blue light, RPE cells,
and AMD focused on the elucidating mechanisms of blue
light-induced apoptosis [12,15,26-31], widespread RPE cell
death is not generally seen in early AMD. In fact,
epidemiologic data has demonstrated that RPE cell death,
termed geographic atrophy, occurs in only 10%–15% of AMD
patients and only at the latter stages of the disease [32 [32].

Using our model, we show that blue-light-illuminated
RPE cells exhibit a stress response to low doses of stimuli that
do not otherwise affect cell viability. Using a resazurin assay,
we found decreased metabolic activity in ARPE-19 cells
treated with blue light for 24 h. Viability was not affected as
shown by trypan blue exclusion, propidium iodide staining,
and apoptosis assays. Thus, changes in resazurin reduction
must be due to a decrease in metabolic activity and not reduced
viability. Upregulation of stress proteins is a known protective
response to oxidative stress [33-39]. FACS analysis of cell
stress-related proteins showed increased HO-1, osteopontin,

Figure 2. Effect of blue light on
intracellular ROS. Flow cytometric
analysis of intracellular ROS levels with
the oxidant-sensitive dyes DHE (A) and
CM-H2DCFDA (B) in ARPE-19 cells.
Cells were irradiated with 1 mW/cm2

(dark bars) or 0.3 mW/cm2 (light bars)
for 3, 24, or 72 h. Unirradiated cells were
used as negative controls. The graph
displays median fluorescence intensity
ratios of irradiated cells versus
unirradiated controls. Bars represent
mean±SD from n=5 separate
experiments; The asterisk (*) indicates
a p<0.05 (one-way ANOVA and
Bonferroni test).
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Hsp-27, SOD-Mn, and cathepsin D expression after blue light
treatment of ARPE-19 cells. These results confirm our
hypothesis that stress signaling is part of the RPE reaction to
blue light at low doses.

Blue light exposure in our system caused significant ROS
production in ARPE-19 cells. These findings are consistent
with other studies that demonstrated blue light could trigger
intracellular ROS production [14,40,41]. There is evidence
that blue light might interact with mitochondrial cytochrome

Figure 3. Effect of blue light on MMP. A: Representative images of JC-1 labeled mitochondria of ARPE-19 cells. Unirradiated cells (control)
and irradiated cells (1 mW/cm2) were stained after 3 h, 24 h, or 72 h. Each panel is representative of 8 separate experiments (Bar=50 μm).
B: Statistical analysis of JC-1 labeled mitochondria of ARPE-19 cells. Unirradiated cells (control) and irradiated cells (1 mW/cm2) were
stained after 3 h, 24 h, or 72 h. 40 images from n=8 separate experiments were taken and red and green fluorescences of JC-1 were counted
to quantify MMP. Blue light treatment for 24 h resulted in a significant decrease in red-green ratio of JC-1. The asterisk (*) indicates a p<0.05
(one-way ANOVA and Bonferroni test).
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and flavin oxidases to elevate ROS [42,43]. In vivo, this might
lead to mitochondrial impairement and cell dysfunction over
time [44]. In AMD, oxidative stress induced by light may be
a key factor in RPE degeneration [2,8,26,28]. In our model
system, intracellular elevated ROS production caused by blue
light was not sufficient for initiation of apoptosis. This was
expected, as RPE cells are able to tolerate oxidative stress
without initiating cell death [7,45]. Stress signaling may
explain our observation that blue light exposure leads to
mitochondrial membrane depolarization after 24 h. A
decrease in MMP is found in many apoptotic systems [46]. A
lower MMP can result in a decreased energy metabolism in
mitochondria. This indicates that blue light irradiation affects
mitochondrial activity and leads to a lower of metabolic state.
Irradiation for longer periods resulted neither in cell death nor
in increased metabolic affection.

We propose that RPE cells are able to adapt to low doses
of blue light stimuli. This was confirmed by our observation
that mitochondrial shape and distribution vary after 72 h of
blue light treatment as visualized by electron microscopy and
JC1-staining. Formation of so-called mega mitochondria is
described in the literature as a response to cell stress [47,48].

The elongation of mitochondria that we observed after 72 h
may reflect the formation of mega mitochondria as a reaction
to blue light. This likely represents an adaptation mechanism
to the applied stress, thereby causing better resistance to
external damage. The transfer of energy accumulated as the
difference in proton electrochemical potentials within one
small mitochondrion is inefficient in contrast to giant
mitochondria. These structures are capable of energy transfer
along extensive mitochondrial membranes, providing higher
levels of respiration and energy turnover [49].

DNA cycle analysis revealed an increase in both S and
G2M phases and therefore a decrease in the G0G1 phase in
blue-light-irradiated ARPE-19 cells. The obtained values
remained stable for more than 72 h of treatment. A complete
cell cycle arrest would have resulted in a constant increase of
cells entering the cell cycle. Here, blue light irradiation caused
a temporary delay in cell cycle completion, probably at the
last checkpoint [50-52]. In our case it is likely that after
damage, repair, and adaptation to blue light, cells finally
complete the cell cycle. This assumption is confirmed by the
absence of differences in cell number between treated and
untreated groups.

Figure 4. Effect of blue light on mitochondrial shape. The figure shows electron micrographs of sections from untreated ARPE-19 cells (A,
D), irradiated cells with an output at 0.3 mW/cm2 (B, E) and 1 mW/cm2 (C, F) for 72 h (Bar=1 μm). Irradiated cells showed mitochondria
with unusually elongated profiles.
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Strikingly, we found that blue light irradiation resulted in
the formation of AGE products, particularly CML-modified
proteins in ARPE-19 cells. CML modification is one of the
most abundant AGEs formed under oxidative conditions
[53-55]. Increased AGE levels are also found in skin elastin
and collagen during UV-induced photoaging [56-58].
Reactive oxygen intermediates are involved in the formation
of early glycation adducts such as CML [55,59]. Increasing
published evidence suggests that the accumulation of AGEs

in the retina could play a significant role in initiation and
pathogenesis of AMD [60,61]. Cumulative prolonged blue
light damage at the RPE level may contribute to the
development of specific changes characteristic for early
AMD, including RPE pigmentary abnormalities and
formation of sub-RPE extracellular deposits [62,63].

Our in vitro-model system provides a simple and useful
means to investigate the effects of phototoxicity in the RPE.
Phototoxicity includes light-induced apoptosis at high

Figure 5. Effect of blue light on
expression of stress-related proteins.
The figure shows flow cytometric
analysis of HO-1 (A), SOD-Mn (B),
osteopontin (C), Cathepsin D (D),
Hsp-27 (E), and CML (F) expression in
ARPE-19 cells. Cells were irradiated at
1 mW/cm2 (blue) and 0.3 mW/cm2

(green) or unirradiated (black) for 24 h
(C, F), 48 h (Hsp-27), or 72 h (A, B,
D). Fluorescence intensity distribution
correspond to expression of appropriate
protein or CML expression. Blue light
with an output power of 1 mW/cm2

enhanced expression of stress-related
proteins.The expression of cathepsin D
increased in cells also after a lower blue
light output power of 0.3 mW/cm2.
Results are representative of 3 separate
experiments.

TABLE 1. QUANTITATIVE ANALYSIS OF FLOW CYTOMETRIC RESULTS IN FIGURE 5.
 
Stress-related protein

Blue light
0.3 mW/cm2 1 mW/cm2

HO-1 1.2±0.2 4.3±0.6 *
SOD-Mn 1.3±0.1 4.2±0.5 *
Osteopontin 0.9±0.2 1.2±0.2 *
Cathepsin D 1.9±0.3* 5.3±0.8 *
Hsp-27 1.0±0.1 4.5±0.5 *
CML 1.2±0.1 3.7±0.4 *

Mean fluorescence intensities in blue light-irradiated cells relative to control cells. Results are representative of 3 separate
experiments, each performed in triplicate. Mean fluorescence intensities in blue-light-irradiated cells relative to control cells.
Asterisk (*) denotes p<0.05 versus control.
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irradiation intensities, but also the effect of blue light at
nonapoptotic levels on human RPE cells. We demonstrated
that RPE cells in vitro first react with stress signaling at low
doses of stimuli. Cells adapt to the light-induced stress and
therefore survive. Adaption over the long time includes an
altered mitochondrial profile as well as cell cycle delay. It
remains to be elucidated whether these changes in RPE cells
alone lead to impaired visual functions in vivo. Future
investigation will determine which pathways activate the
adaptation process in response to blue light exposure.
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