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Neurovascular compression syndromes (NVC) are challenging disorders resulting

from the compression of cranial nerves at the root entry/exit zone. Clinically,

we can distinguish the following NVC conditions: trigeminal neuralgia, hemifacial

spasm, and glossopharyngeal neuralgia. Also, rare cases of geniculate neuralgia

and superior laryngeal neuralgia are reported. Other syndromes, e.g., disabling

positional vertigo, arterial hypertension in the course of NVC at the CN IX-X REZ

and torticollis, have insufficient clinical evidence for microvascular decompression. The

exact pathomechanism leading to characteristic NVC-related symptoms remains unclear.

Proposed etiologies have limited explanatory scope. Therefore, we have examined the

underlying pathomechanisms stated in the medical literature. To achieve our goal, we

systematically reviewed original English language papers available in Pubmed and Web

of Science databases before 2 October 2021. We obtained 1694 papers after eliminating

duplicates. Only 357 original papers potentially pertaining to the pathogenesis of NVC

were enrolled in full-text assessment for eligibility. Of these, 63 were included in the final

analysis. The systematic review suggests that the anatomical and/or hemodynamical

changes described are insufficient to account for NVC-related symptoms by themselves.

They must coexist with additional changes such as factors associated with the

affected nerve (e.g., demyelination, REZ modeling, vasculature pathology), nucleus

hyperexcitability, white and/or gray matter changes in the brain, or disturbances in ion

channels. Moreover, the effects of inflammatory background, altered proteome, and

biochemical parameters on symptomatic NVC cannot be ignored. Further studies are

needed to gain better insight into NVC pathophysiology.

Keywords: neurovascular compression syndromes, neurovascular conflicts, trigeminal neuralgia,
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INTRODUCTION

Neurovascular compression syndromes (NVC) are challenging
disorders resulting from the compression of cranial nerves at the
root entry/exit zone (REZ) also known as Redlich–Obersteiner’s
zone. Although the REZ is equated with the transition zone
(TZ) between the central myelin produced by oligodendroglia
and the peripheral myelin comprising Schwann cells, some
publications have revealed differences between the two. Peker
et al., who tested 100 trigeminal nerves from 50 cadavers, showed
that on average the TZ is 3mm from the REZ into the pons
(Peker et al., 2006). This observation has a significant clinical
consequence. During the surgery, it is important to visualize the
compression of an appropriate vessel on the nerve in the TZ, e.g.,

Abbreviations: AD, axial diffusivity; ADC, apparent diffusion coefficient; CPA,
cerebellopontine angle; DBS, deep brain stimulation; FA, fractional anisotropy;
HFS, hemifacial spasm; IL, interleukin; MD,mean diffusivity; MVD,microvascular
decompression; NLRP, Nucleotide-binding oligomerization domain, Leucine-
rich Repeat and Pyrin domain-containing; NVC, Neurovascular compression
syndromes; RD, radial diffusivity; REZ, root entry/exit zone (also known as
Obersteiner-Redlich zone); TLR8, Toll-like receptor8; TN, trigeminal neuralgia;
TZ, transition zone; WM, white matter.

GRAPHICAL ABSTRACT | So far, proposed etiologies of neurovascular compression syndromes have limited explanatory scope. Therefore, we have examined the

underlying pathomechanisms stated in the medical literature. The systematic review suggests that the anatomical and/or hemodynamical changes described are

insufficient to account for NVC-related symptoms by themselves. They must coexist with additional factors such as affected nerves (e.g., demyelination, REZ

modeling, vasculature pathology), nucleus hyperexcitability, white and/or gray matter changes in the brain, or disturbances in ion channels. Moreover, the effects of

inflammatory background, altered proteome, and biochemical parameters on symptomatic neurovascular compression syndromes cannot be ignored in the future.

in the situation in which TZ is retracted toward the pons, the
neurosurgeon should look for conflict between vessel and pons
rather than nerve.

Clinically, we can distinguish the following major NVC
conditions: trigeminal neuralgia (TN), hemifacial spasm (HFS),
and glossopharyngeal neuralgia. Also, rare cases of geniculate
neuralgia and superior laryngeal neuralgia have been described
(Greenberg, 2020). Disabling positional vertigo, arterial
hypertension in the course of NVC at the CN IX-X REZ, and
torticollis have insufficient clinical evidence for microvascular
decompression (MVD; see Table 1). Nerve compression by a
vessel is insufficient to cause NVC-related symptoms by itself.
The pathomechanism leading to characteristic NVC-related
symptoms remains unclear. Proposed etiologies have limited
explanatory scope. Therefore, we have examined the underlying
pathomechanisms described in the medical literature and
subjected them to a systematic review.

MATERIALS AND METHODS

Two of us (BSz and JS) screened all the relevant original English
language papers published in the Pubmed and Web of Science
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TABLE 1 | Typical offending vessel depending on specific neurovascular compression syndromes (NVC) in accordance with Greenberg (2020).

Cranial nerve Syndrome Offending vessel

Number Name

Typical neurovascular compression syndromes

V Trigeminal nerve Trigeminal neuralgia SCA (80-90%), remaining cases (10-20%): persistent primitive

trigeminal artery, dolichoectatic basilar artery

VII Facial nerve Hemifacial spasm AICA (mainly), remaining cases: elongated PICA, SCA, a tortuous VA,

the cochlear artery, a dolichoectatic basilar artery, AICA branches

IX Glossopharyngeal nerve Glossopharyngeal neuralgia PICA, VA

Rare cases

VII Nervus intermedius Geniculate neuralgia AICA

X Vagus nerve Superior laryngeal neuralgia PICA, VA

Insufficient clinical evidence for MVD

VIII Vestibulocochlear nerve Disabling positional vertigo AICA NVC is a rare cause of vertigo. MVD should be limited to selected cases.

X Vagus nerve Arterial hypertension in the

course of NVC at the CN

IX-X REZ

PICA, VA This topic has not been properly explored.

XI Accessory nerve Torticollis VA, PICA (rarely) Torticollis should be considered as focal dystonia.

NVC were divided into three groups based on their significance: typical neurovascular compression syndromes, rare cases, and concepts of historical importance. AICA, anterior inferior

cerebellar artery; MVD, microvascular decompression; PICA, posterior inferior cerebellar artery; SCA, superior cerebellar artery; VA, vertebral artery.

databases before 2 October 2021. We decided to include all
available subtypes of original papers to maximize the coverage of
possible pathomechanisms of NVC. The exact queries are given
in the Supplementary Materials. We obtained 1694 articles after
eliminating duplicates. These records were double screened. In
the case of any discrepancies between the two authors extracting
data, the final decision wasmade by the senior author (MR). Only
357 original papers potentially pertaining to the pathogenesis of
NVC were enrolled in the full-text assessment for eligibility (see
Figure 1), and 63 of these were included in the final analysis.

THE INFLUENCE OF ANATOMICAL AND
HEMODYNAMICAL CHANGES ON THE
COURSE OF NVC

Anatomical Variability
Selected anatomical variabilities such as a duplicate posterior
inferior cerebellar artery, a short basilar artery, and an aberrant
arterial course can affect the course of a NVC (Karki et al., 2019).
Among other known factors, we can distinguish narrowness of
the posterior fossa, a small petrous angle, and a sharp nerve-
pontine angle.

Posterior fossa narrowness is an important example of the
anatomical variabilities predisposing to NVC. This topic was
explored by Kamiguchi et al., who measured the petrous angle
and pons diameter index in 34 HFS patients. They observed a
significantly smaller petrous angle combined with a significantly
greater pons diameter index in the HFS patients than the control
group. This anatomical variability led to more crowding of
cranial nerves and vascular structures, which could contribute to
symptomatic NVC (Kamiguchi et al., 1997).

Zhu et al. suggested that a small cross-sectional area of the
cerebellopontine angle (CPA) could promote HFS pathogenesis.

This hypothesis was corroborated by preoperative findings.
Interestingly, these measurements can be considered predictors
of the microvascular decompression (MVD) effect: they were
significantly lower in the recurrent group than in the non-
recurrent group (Zhu et al., 2020). This hypothesis is consistent
with available literature (Dou et al., 2016; Cheng et al., 2017).
Moreover, a crowded CPA space and a tendency toward attrition
of the neurovascular components are considered likely to
promote the occurrence of bilateral HFS (Dou et al., 2016).

Not only a small CPA but also a sharp nerve-pontine angle
can lead to the NVC and also to the exacerbation of nerve
degeneration (Pang et al., 2019; Zhu et al., 2020). From the
clinical point of view, these anatomical factors are insufficient
to cause NVC-related symptoms by themselves. As there are
observed among many patients without NVC-related symptoms.

Hemodynamical Factors
Lorenzoni et al. observed that the following factors increased
the risk of TN: compression of the superior cerebellar, anterior
inferior cerebellar, basilar or vertebral arteries, and of venous
structures. Moreover, they observed nerve dislocation and/or
distortion by the vessel in 32% of cases (Lorenzoni et al., 2012).

Anatomical variations and hemodynamical changes in the
vertebrobasilar arterial system are important promoters of
vascular compression among HFS patients (Kim et al., 2012;
Wang et al., 2019a). The risk of HFS is greater among
individuals with a dominant vertebral artery and characteristic
direction of the vertebrobasilar junction (Park et al., 2015).
Further, lateral deviation of the vertebral artery is significantly
more frequent among HFS patients, with a relative risk
of 8.44 (Guan et al., 2011).

Kim et al. evaluated the effects of selected parameters of
the vertebral artery (severity of compression, indentation, and

Frontiers in Molecular Neuroscience | www.frontiersin.org 3 July 2022 | Volume 15 | Article 923089

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Szmyd et al. NVC Pathogenesis

FIGURE 1 | The flow-chart of publications included process.

color change) on surgical treatment outcomes among HFS
patients (see Figure 2). They revealed that patients with severe
compression have slightly poorer outcomes than those with mild
or moderate compression. Moreover, they concluded that CNVII
color changes could be related to poor outcomes afterMVD (Kim
et al., 2012). Other important parameters affecting HFS patients
are the angulation and tortuosity of vessels. Computational fluid
dynamics models have confirmed that these lead to significant
pressure differences between the vascular walls on opposite sides
(Wang et al., 2019a).

Another hemodynamic parameter affecting HFS patients is
higher pressure at the REZ. Zhang et al. found strong positive
correlations between measured intraoperative pressure readings
in NVC and (a) preoperative spasm severity according to Cohen
scores and (b) the time to complete recovery after MVD (Zhang
et al., 2019).

Other Hemodynamical Factors
Predisposing to NVC
Interestingly, TN can be caused by arterialization of the
superior petrosal vein in the context of a dural or cerebral
arteriovenous shunt (Robert et al., 2015). Robert et al. observed

this arterialization in 10 (100%) patients with TN, while superior
petrosal vein ectasia explained the compression of the CNV in
two (20%). This could suggest that venous reflux rather than
nerve compression is the primarymechanism of TN in this group
of patients (Robert et al., 2015).

FACTORS ASSOCIATED WITH THE
CHANGES IN THE NERVE STRUCTURE

Selected factors associated with the affected nerve (e.g., length
and volume of its central myelin portion) correlated strongly
with the incidence of symptomatic NVC (Guclu et al., 2011). In
this section, we collected NVC-related changes in the affected
nerve: vasculature pathology, demyelination, REZ modeling, and
alerted nerve structure revealed byMRI/diffusion tensor imaging
(see Figure 2).

Vasculature Pathology
Marinkovic et al. considered possible pathological vasculature
among TN patients (n = 8; two with confirmed vascular
compression). They examined biopsy specimens obtained
during partial rhizotomy by electron microscopy and
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FIGURE 2 | The graphical summary of the underlying pathogenesis of neurovascular compression syndromes based on performed systematic review. Legend as

follow: AD, axial diffusivity; ADC, apparent diffusion coefficient; AMPK, adenosine monophosphate-activated protein kinase; CPA, cerebellopontine angle; FA,

fractional anisotropy; MD, mean diffusivity; MMP-2, metalloproteinase-2; NLRP3, nucleotide-binding domain (NOD)-like receptor protein 3; lncRNA, Long non-coding

RNA; RD, radial diffusivity; REZ, root entry/exit zone; WM, white matter.

immunohistochemistry and found vascular pathological
alterations in three of the patients, including the two
with confirmed vascular compression. Electron microscopy
revealed signs of apoptosis and/or degeneration of endothelial
and smooth muscle cells in the trigeminal arteriole wall.
Immunohistochemical tests gave stronger than normal reactions
against factor VIII, laminin, fibronectin, and collagen IV, but
weaker against CD31, CD34, and α-smooth muscle actin, among
TN patients (Marinković et al., 2007).

Demyelination
A study of a rat model of HFS by Kuroki and Møller showed that
both CNVII demyelination and vascular compression are needed
to induce facial hyperactivity. In other words, they confirmed
that close contact between a peripheral branch of the facial nerve
and an artery facilitates the development of abnormal muscle
response, but only if the facial nerve had previously been slightly
injured at the point of the arterial contact. They also revealed
that blocking neural conduction in the facial nerve proximal to
the artificial vascular compression point abolishes the abnormal
muscle contraction. This observation could suggest that the

anatomical location of cross-transmission is central to vascular
compression (Kuroki and Møller, 1994).

The demyelination component of CNV can be estimated
using diffusion tensor MRI radial diffusivity (RD). This approach
was employed by Willsey et al. to predict the recurrence of
TN following MVD. They noted that normalized RD correlates
negatively with the duration of symptoms, possibly a useful
predictor of pain-free remission (Willsey et al., 2021). However,
this should be juxtaposed with histopathological examination.
Such evidence was presented by Marinković et al., in the form of
detailed ultrastructural and immunohistochemical examinations
of trigeminal axons surrounded by the peripheral type of myelin.
They confirmed not only central zone myelin changes (e.g.,
deformation, thickening, demyelination, and remyelination), but
also peripheral myelin alterations visible by electron microscopy
(e.g., atrophy or hypertrophy, increased neurofilaments, loss
of the myelin and occasional sprouting) (Marinković et al.,
2009). Similar findings were described by Devor et al., who
examined trigeminal root specimens obtained during MVD (n
= 12) ultrastructurally. They observed the following pathological
changes: demyelination (n = 6), a range of less severe myelin
abnormalities (dysmyelination: n = 11), and the presence of
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excess collagen (n = 8). They also noted axonopathy and axonal
loss and residual myelin debris (Devor et al., 2002).

REZ Modeling
Luo et al. investigated glial plasticity in the REZ of a rat TN
model induced by compression injury. Their results revealed that
mechanical compression injury leads to the activation of various
cells (especially oligodendrocytes, astrocytes, Schwann cells, and
macrophages) in the TZ (Luo et al., 2019). These alterations in
glial cell plasticity could result in TN.

Similar observations were made by Lin et al., who also
examined rat models: a TN group with CNV root compression,
a sham operation group, a group with TN plus selective histone
deacetylase inhibitor injection into the REZ, and a group with TN
plus vehicle injection into the REZ. Their results also suggested
that chronic nerve root compression could lead to TN via alerted
glial plasticity and the level of histone acetylation in the REZ (Lin
et al., 2019).

Alerted Nerve Structure
NVC-linked structural alterations are not always apparent on
conventional imaging (DeSouza et al., 2014). Therefore, we focus
here on the description of NVC-induced lesions, which can easily
be observed in magnetic resonance (MRI) and diffusion tensor
(DTI) imaging.

Magnetic Resonance Imaging Findings
High-resolution MRI can be used to explore nerve
microstructure among patients with NVC. Using this approach,
Wang et al. observed a lower CNV volume among TN patients
than controls (Wang et al., 2019b). This was confirmed by
Cheng et al. in a prospective case-control study of 60 consecutive
patients diagnosed with TN compared with 30 sex- and age-
matched healthy controls. They observed a significantly lower
mean volume of the affected CNV than in either the non-affected
side or the controls (Cheng et al., 2017).

Diffusion Tensor Imaging Findings
DeSouza et al. used DTI to measure fractional anisotropy (FA)
as well as identify abnormalities of mean (MD), radial (RD), and
axial (AD) diffusivity from the REZ of CNV. They observed the
following nerve alternations among TN patients: lower FA and
higher RD, AD, and MD than in the control group. The MD and
RD alterations could indicate that neuroinflammation and/or
edema is an important element in TN pathophysiology (DeSouza
et al., 2014).

Even more interesting observations were made by Leal et al.,
who employed DTI for a pre- and post-operative comparative
study 4 years after MVD. The preoperative observations were
similar to those of DeSouza et al.: significantly lower FA on
the affected side than on the unaffected side or in controls.
Affected nerves had smaller cross-sectional areas and volumes
than unaffected nerves or the controls. Moreover, the apparent
diffusion coefficient (ADC) on the affected side was significantly
lower than that on the unaffected side or in the control group
(Leal et al., 2019). These observations accord with the study by
Pang et al. (2019). The postoperative findings showed that MVD

did not change the differences in FA, but the ADC normalized in
the affected nerves after MVD (Leal et al., 2019).

Other Findings
Another parameter related to the affected nerve structure
is an indentation defined as a furrowed hole on the facial
nerve. Ko et al. estimated that 47% of HFS patients had an
indented CNVII. Moreover, those patients required a longer
recovery time after MVD than HFS patients without CNVII
indentation (Ko et al., 2021).

NUCLEUS HYPEREXCITABILITY

Several recent studies suggest that nucleus hyperexcitability is
an important component in the pathogenesis of NVC-related
symptoms. The relative involvements of the vascular component
and hyperexcitability differed among patients, indicating that
something other than a vascular component is involved in
HSF pathology (Hirono et al., 2014). HFS was associated with
ectopic excitation and ephaptic transmission of the facial nerve
(Nielsen, 1984; Møller and Jannetta, 1986). By measuring facial
motor evoked potentials during the MVD procedure, Wilkinson
et al. showed that the suppressive effects of desflurane were
less pronounced on the spasm side than on the non-spasm
side, supporting a mechanism of central pathophysiology for
HFS (Wilkinson et al., 2017). Ishikawa et al. measured F
waves to investigate antidromically-activated neurons of the
facial motor nucleus before and after the MVD procedure.
They showed that in some patients, despite a successful
MVD procedure, the increased F waves and abnormal muscle
response persisted for several months and the muscle response
normalized only after the F waves decreased (Ishikawa et al.,
1996, 1997). A study by Teresaka et al. corroborated this
observation. They indicated a correlation between preoperative
anticonvulsant therapy and delayed cure after MVD, indicating
an important role for hyperexcitation of the facial nucleus
in the pathogenesis of HFS (Terasaka et al., 2016). This
observation suggested that patients who did not respond to
the MVD procedure should not be re-operated until the
hyperexcitability of the facial motor nucleus has disappeared. The
aforementioned neurophysiological observations are consistent
with the known clinical observation (HFS patients after
MVD present minor facial spasms for a few days after
surgery with slow alleviation), which they explain perfectly
(Illingworth et al., 1996).

A few pathomechanisms have been proposed to explain the
role of disturbed neural activation in NVC-related symptoms.
Cai et al. described a mouse model in which silencing
of lncRNA Gm14461 led to activation of the AMPK and
Akt/mTOR signaling pathways, enhancing autophagy and
decreasing astrocyte activation (Cai et al., 2020). In another
study, non-invasive CNX stimulation caused by prostaglandin
infusion led to a rise in glutamate and decreased trigeminal
nociceptive stimulation in allodynic rats (Oshinsky et al., 2014).
Interestingly, in patients with obsessive-compulsive spectrum
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symptoms, where there are abnormalities in the stratio-
thalamocortical circuits, focal dystonia and HFS were highly
represented (Mula et al., 2012).

This phenomenon is somehow reminiscent of a restricted
epileptic activity which might explain why, in the majority of
cases, TN as well as the other NVC neuralgias well respond to an
antiepileptic drug, namely to carbamazepine or gabapentin (see
Figure 3). However, one must be aware that these medications
are not helpful in HFS and other non-neuralgic NVCs.

BRAIN WHITE AND GRAY MATTER
CHANGES

Using high-resolution MRI, Wang et al. observed reduced gray
matter volume in selected pain-related brain regions (e.g., insula,
secondary somatosensory cortex, hippocampus, dorsal anterior
cingulate cortex, precuneus, and several areas of the temporal
lobe) (Wang et al., 2019b). Wu et al. compared morphological
images of TN patients’ brains with and without NVC to those of
healthy controls. They employed voxel-based and surface-based
morphometry to analyze whole-brain gray matter quantitatively.
They observed significantly lower gray matter volume and
cortical thickness in TNwith NVC than in TNwithout NVC (Wu
et al., 2020).

Moreover, they observed extensive alterations in white matter
integrity (Wu et al., 2020). DeSouza et al., using diffusion tensor
imaging data, also found abnormalities in brain white matter:
lower FA, and higher RD, AD, and MD. These changes were
especially visible in the corpus callosum, cingulum, posterior
corona radiata, and superior longitudinal fasciculus (DeSouza
et al., 2014).

DISTURBANCES IN ION CHANNELS

Many studies have highlighted the effect of disturbances in ion
channels on neuropathic pain. This resembles the disturbances
observed among NVC patients (Charlesworth et al., 2012; Wei
et al., 2013; Choi et al., 2016; Li et al., 2021; Romero et al.,
2021). Interestingly, the relationships between disturbances in
ion channels and NVC have been explored in a few papers. Xia
et al. observed overexpression of Nav1.8 in injured peripheral
nerves. These molecular abnormalities were associated with
the generation of HFS (Xia et al., 2014). Liu et al. used
a rat infraorbital nerve chronic constriction injury model
to test the character of TN as an ectopic impulse induced
by a sodium channel modulated by cytokines. Nav1.3 was
upregulated in the compressed CNV (Liu et al., 2020). Finally,
functional testing of a mutation observed among NVC patients,
TRPM8 (NM_024080.5):c.89G>A (p.Arg30Gln), revealed that
it enhances channel activation and increases the basal current
amplitude and intracellular calcium concentration, which could
lead to TN (Gualdani et al., 2021). In the context of the hypothesis
made in chapter 5, the disturbances in ion channels may be
considered a functional variant of “damaged nerve” in the
proposed chain of events leading to NVC symptoms.

INFLAMMATORY BACKGROUND OF
SYMPTOMATIC NVC

Inflammatory cytokines induced by demyelination are known
to cause neuropathic pain (Liu et al., 2019). Moreover, sticky
inflammatory arachnoid membranes in the area of the NVC were
a common finding during MVD (Chen et al., 2019a; Mazzucchi
et al., 2019). Those observations suggested that an inflammatory
response could be relevant to NVC-related syndromes.

An animal model revealed that the expression of a nucleotide-
binding oligomerization domain containing a leucine-rich
repeat and pyrin domain (NLRP), a type of NOD-like receptor
belonging to innate immunity proteins, effectively modulates
TN (Ren et al., 2021). Moreover, Chen et al. showed that
injection of complete Freund’s adjuvant to induce trigeminal
pain leads to increased expression of the mRNAs for NLRP3,
interleukin (IL)-1b, and IL-18. Further, NLRP3, IL-1b, and IL-18
expression was significantly inhibited by microRNA-186, which
alleviated symptoms of neuralgia in CFA-treated mice (Chen
et al., 2018). Accordingly, Liu et al. showed that upregulation of
Nav 1.3 in TN seems to occur via an increase of IL-6 following
constriction injury. Zhao et al. showed that expression of
Toll-like receptor 8 (TLR8) is increased in trigeminal neurons
in a mouse model of trigeminal neuropathic pain. In addition,
deletion or knockdown of Tlr8 reduced the activation of ERK
and p38-MAPK, decreased the expression of proinflammatory
cytokines, and alleviated the neuralgia (Zhao et al., 2021).
Liu et al. indicated that the purinoceptor P2X4, an essential
receptor for preventing allodynia, could be involved in migraine
chronicity via brain-derived neurotrophic factor-tyrosine
receptor kinase B signaling following repeated inflammatory
stimulation. Interestingly, resveratrol, a natural component of
red wine, inhibited chronic constriction injury-induced allodynia
via activation of matrix metalloproteases-9/2 and reduction of
MAP kinase phosphorylation (Yang et al., 2016; Yin et al.,
2019).

These observations were corroborated by studies on patients.
Serum levels of IL-1β, IL-6, IL-8, TNF-α, white blood cell
count, and neutrophil count in patients with HFS or TN were
significantly higher than controls (Liu et al., 2018; Chen et al.,
2019a). Ericson et al. used a proximity extension assay to analyze
the levels of 92 inflammation-related protein biomarkers in
cerebrospinal fluid from patients before and after microvascular
decompression. They showed that surgery leads to a significant
decrease of the immunological proteins to a level comparable
with healthy controls (Ericson et al., 2019). Moreover, a study by
Goebel et al. revealed differences in concentration of interferon-
gamma between sample locations on the trigeminal nerve,
highest in the distal zone (Goebel et al., 2018).

ALERTED PROTEOME AND BIOCHEMICAL
PARAMETERS

Recent studies have shown that the concentrations of several
proteins in serum and cerebrospinal fluid of patients with
NVC-related symptoms are distinctively different from healthy
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FIGURE 3 | The proposed chain of events leading to neurovascular compression-related symptoms: vascular compression in transition zone → demyelination →

nucleus hyperexcitability → symptoms. Not all factors mentioned in Figure 2 are presented here. Future research is needed to understand their role. NVC,

neurovascular compression.

controls. Expressions of transthyretin, retinol-binding protein
4, and alpha-1-acid glycoprotein 2 among TN patients were
higher than in the control group (Farajzadeh et al., 2018).
Federico et al. showed by single-voxel proton magnetic
resonance spectroscopy that patients with idiopathic spasmodic
torticollis have a greater reduction of N-acetyl-aspartate
in the basal ganglia, suggesting neuronal impairment in
this region (Federico et al., 2001). The concentrations
of high-density lipoproteins such as apolipoproteins A4,
M, and A1 were increased in the cerebrospinal fluid
of TN patients (Hamdeh et al., 2020). Moreover, Chen
et al. showed that treatment with botulinum toxin type A
inhibited the synthesis of vasoactive intestinal peptide and
increased the synthesis of beta-endorphin, indicating a role
for these proteins in the pathogenesis of TN (Chen et al.,
2019b).

OTHER PATHOMECHANISMS

Besides the abovementioned studies related to the
pathomechanism of NVC, a few studies have indicated that
this pathology could have a different nature. According to the
transaxonal short circuits hypothesis, squeezing nerve fibers
together leads to the destruction of myelin sheaths and results in
a transaxonal spread of impulses between neighboring neurons
(Hankinson and Wilson, 1976; Kim and Fukushima, 1984;
Kameyama et al., 2016). Accordingly, Truini et al. observed
an association between demyelinating plaque, neurovascular
compression, and TN in patients with multiple sclerosis (Truini
et al., 2016). Nevertheless, it should be highlighted that MVD
is considered as ineffective among MS patients presenting
symptoms from NVC spectrum. Another mechanism was

proposed in a study by Chen et al., who suggested that trigeminal
nerve compression has an arterial rather than a venous origin
(Chen et al., 2014). Another study indicated that c-Abl-p38alpha
signaling mediates dopamine neuron loss and further TN (Fu
et al., 2020). On the other hand, Zhou et al. proposed a role for
disturbed signaling of the autonomic nervous system in the HFS.
They showed that neurotransmitters released from autonomic
nerves can induce action potentials in demyelinated nerves and
could trigger HFS (Zhou et al., 2012). These insights should be
reconsidered in the context of further research to avoid bias in
their interpretation.

CONCLUSIONS

Neurovascular compression syndromes remain challenging
disorders for neurosurgeons, clinical neurologists, and scientists.
Their underlying pathogenesis is not clear. There are many
partial explanations. Specific anatomical and/or hemodynamical
changes alone seem insufficient to account for NVC-related
symptoms. Such anatomical variability must coexist with
additional changes such as factors associated with affected nerve
(e.g., demyelination, REZ modeling), nucleus hyperexcitability,
brain white and/or gray matter changes, or disturbances in ion
channels. Moreover, the effects of inflammatory background
alerted proteome, and biochemical parameters on symptomatic
NVC cannot be ignored. Further studies are needed to gain better
insight into NVC pathophysiology.

PRACTICE POINTS

• Clinically, we can distinguish the following neurovascular
compression (NVC) conditions: trigeminal neuralgia,

Frontiers in Molecular Neuroscience | www.frontiersin.org 8 July 2022 | Volume 15 | Article 923089

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Szmyd et al. NVC Pathogenesis

hemifacial spasm, and glossopharyngeal neuralgia.
Also, rare cases of geniculate neuralgia and superior
laryngeal neuralgia are reported. Other syndromes,
e.g., disabling positional vertigo, hypertension in the
course of NVC at the CN IX-X root entry/exit zone,
and torticollis, have insufficient clinical evidence for
microvascular decompression.

• NVC syndromes remain challenging disorders. The
exact pathomechanism leading to characteristic
NVC-related symptoms remains unclear. The most
likely chain of events leading to NVC symptoms
is vascular compression in transition zone →

demyelination → nucleus hyperexcitability →

symptoms.
• The root entry/exit zone should not be equated

with the transition zone (TZ) between the central
and peripheral myelin. This observation has a
significant clinical consequence. During the surgery,
it is important to visualize the compression of an
appropriate vessel on the nerve in the TZ. When the
TZ is retracted toward the pons, the neurosurgeon
should look for conflict between vessel and pons rather
than nerve.
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