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Abstract

During meiotic prophase, chromosomes display rapid movement, and their telomeres attach to the nuclear envelope and
cluster to form a ‘‘chromosomal bouquet.’’ Little is known about the roles of the chromosome movement and telomere
clustering in this phase. In budding yeast, telomere clustering is promoted by a meiosis-specific, telomere-binding protein,
Ndj1. Here, we show that a meiosis-specific protein, Csm4, which forms a complex with Ndj1, facilitates bouquet formation.
In the absence of Csm4, Ndj1-bound telomeres tether to nuclear envelopes but do not cluster, suggesting that telomere
clustering in the meiotic prophase consists of at least two distinct steps: Ndj1-dependent tethering to the nuclear envelope
and Csm4-dependent clustering/movement. Similar to Ndj1, Csm4 is required for several distinct steps during meiotic
recombination. Our results suggest that Csm4 promotes efficient second-end capture of a double-strand break following a
homology search, as well as resolution of the double-Holliday junction during crossover formation. We propose that
chromosome movement and associated telomere dynamics at the nuclear envelope promotes the completion of key
biochemical steps during meiotic recombination.

Citation: Kosaka H, Shinohara M, Shinohara A (2008) Csm4-Dependent Telomere Movement on Nuclear Envelope Promotes Meiotic Recombination. PLoS
Genet 4(9): e1000196. doi:10.1371/journal.pgen.1000196

Editor: Michael Lichten, National Cancer Institute, United States of America

Received February 11, 2008; Accepted August 8, 2008; Published September 26, 2008

Copyright: � 2008 Kosaka et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a MEXT grant of the Japanese Government and the Asahi Glass Science Foundation. Sponsors or funders had no role in
study, design, data collection, analysis, and interpretation of the data, and in the preparation, review or approval of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ashino@protein.osaka-u.ac.jp

Introduction

Meiotic recombination promotes the faithful segregation of

homologous chromosomes at meiosis I (MI) by creating physical

linkages between the homologs [1,2]. Recombination produces

two types of products: crossovers (COs) and non-crossovers

(NCOs). Only COs mature into exchanges between chromosome

axes called chiasmata, which together with arm cohesion ensure

homolog separation.

Recombination during meiosis is initiated by the formation of

double-strand breaks (DSBs) at recombination hotspots [3]. A

protein complex containing the Spo11 core catalytic subunit is

involved in DSB formation. Resection of DSB ends results in the

formation of single-stranded DNA (ssDNA), which is then used in

the search for homologous DNA sequences. The homology search

is catalyzed by two RecA homologs, Rad51 and Dmc1 with their

accessory factors [4–7]. This homology search results in the

invasion of ssDNA into duplex DNA, and the formation of a

single-end invasion intermediates [SEIs; 8]. SEIs undergo second-

end capture of the DSB to form a second prominent joint

molecule, called the double-Holliday junction (dHJ), which is

primarily resolved to form COs [9]. The intermediate required to

form NCOs has yet to be identified. Importantly, the homology

search resulting in SEI formation appears to be biochemically and

temporally distinct from the second-end capture steps [8,10].

CO formation is regulated by the action of a group of proteins

called ZMM or SIC (synaptic initiation complex; hereafter called

ZMM for simplicity). Members of the ZMM group include Zip1,

Zip2, Zip3, Msh4, Msh5, Mer3, Spo16, and Spo22/Zip4 [11–16].

Mer3 and Msh4–Msh5 possess helicase and structure-specific

DNA-binding activities, respectively [17,18]. Zip3, together with

the Zip2–Spo16–Spo22 adaptor complex, is thought to catalyze the

post-translational modification of target protein(s), e.g., sumoylation

or ubiquitylation [15,19]. Zip1 is a component of the synaptonemal

complex [20]. The ZMM proteins ensure the formation of wild-type

CO levels [12,16]. In addition to the ZMM-dependent CO

pathway, budding yeast has two additional pathways for recombi-

nation: a minor CO pathway and a NCO pathway, both dependent

on the junction resolvase Mus81–Mms4 [21,22].

One of the most notable features in meiosis is chromosome

dynamics and morphogenesis. In most organisms, synapsis of

homologous chromosomes is facilitated by the recombination.

Synapsis culminates in the formation of SC, a tripartite structure

seen in pachytene [23,24]. In leptotene when DSBs are formed,

sister chromatids form chromatin loops along a shared axis (the

axial element). Leptotene is followed by zygotene, in which short

patches of SC form between homologous axial elements.

Elongation of SC occurs along entire chromosomes, resulting in

the formation of full-length SC in pachytene. SCs are then

disassembled in the diplotene. Importantly, SC formation is tightly

coupled with CO formation. Formation of SEIs and dHJs occurs

at the leptotene-zygotene and zygotene-pachytene transitions,

respectively [8,12]. Resolution of dHJs occurs during late

pachytene.

In the vegetative growth phase of S. cerevisiae, centromeres are

present near the Spindle Pole Body (SPB), a fungal equivalent of

the centrosome in other eukaryotes. In S. cerevisiae, the SPB is

embedded in the nuclear envelope (NE), and telomeres are

clustered and often associated with the NE in a dispersed

distribution (Klein et al. 1992). This configuration of chromosomes
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in vegetative cells is referred to as the ‘‘Rabl’’ orientation. In

meiotic prophase, cells undergo a drastic change in their

chromosome configuration. Centromeres detach from the SPB,

while telomeres cluster in one area of the nuclear membrane near

the SPB. This chromosomal bouquet configuration is prominently

seen only during zygotene. The bouquet is a conserved feature in

the meiotic prophase of most eukaryotes, but its function remains

unknown [23]. In S. cerevisae, a meiosis-specific telomere-binding

protein, Ndj1 [25,26], is involved in tethering telomeres to the

nuclear membrane and promoting bouquet formation [27]. ndj1

mutation reduces spore viability and confers some defects in

recombination [25,26,28]. In S. pombe, the Bqt1–Bqt2 complex

promotes bouquet formation through interactions with a telomere-

binding protein, Taz1 [29]. The bouquet is thought to facilitate

pairing of homologous chromosomes by restricting the homology

search to a smaller area.

In this study, we found that a meiosis-specific protein, Csm4

[30], promotes efficient transition from SEIs to dHJs as well as

resolution of dHJs in the CO-specific recombination pathway.

These results suggest that Csm4 regulates various steps during

meiotic recombination. Recombination-related phenotypes in

csm4 mutants are very similar to those seen in ndj1 mutants [28].

Csm4 forms a complex with Ndj1 in vivo. We also found that

similar to ndj1 mutants, csm4 mutants are deficient in bouquet

formation, but unlike ndj1 mutants, they are proficient in tethering

telomeres to the NE. These results suggest that chromosome

architecture and/or dynamics, which are mediated by the

tethering telomeres to the NE, control various biochemical steps

during meiotic recombination. The accompanying paper by

Wanat et al. (2008) shows similar and complementary results [31].

Results

Csm4 Promotes Meiotic Recombination
Previous analysis showed that csm4 mutants are defective in the

segregation of chromosomes during meiosis [30]. However, little is

known about the functions of Csm4 in meiosis. We re-analyzed the

meiotic phenotypes of csm4 mutants in an SK1 background.

Consistent with a previous study [30], the csm4 mutation reduces

spore viability to 66%, as compared to 96% in the wild type.

Interestingly, 4-, 2-, and 0-viable spore tetrads exceed 3- and 1-

viable spore tetrads, suggesting non-disjunction of homologs at MI

(Figure 1A) Similar results have been described by Wanat et al. in

the accompanying paper [31]. Furthermore, csm4 mutation delays

its entry into MI by 5 h (Figure 1B). This delay is suppressed by

introducing a mutant allele of SPO11, spo11-Y135F, which

abolishes the catalytic function [3,32]. Similar results have been

described by Wanat et al. [31], suggesting that the delay seen in

the csm4 mutant is due to a defect in meiotic recombination. The

delay is also suppressed by the introduction of a mutation of the

RED1 gene (Figure 1B), which encodes a component of the axial

element of the SC [33], is necessary for DSB formation [34], and

acts as a barrier to inter-sister recombination [35,36].

We then analyzed the turnover of meiotic DSBs at the HIS4-

LEU2 recombination hotspot [37] in the csm4 mutant (Figure 1C).

In the wild type, DSBs appear at 3 h after incubation in the

sporulation medium (SPM) and then disappear at around 6 h

(Figure 1D). The csm4 mutant accumulates DSBs up to a slightly

higher level compared to the wild type. Formation of DSBs in the

mutant is slightly delayed, and disappearance of the DSBs is

delayed by 4 h. At 8 h, DSBs are still detected in the mutant.

These results indicate that CSM4 is required for the efficient

conversion of DSBs into later-stage recombination intermediates.

Next, we examined the formation of crossovers (COs) in csm4.

Consistent with delayed DSB repair, CO formation in csm4 is

delayed by approximately 4 h compared to the wild type

(Figure 1E). Similar results have been described by Wanat et al.

in the accompanying paper [31]. However, the final level of COs

at the HIS4-LEU2 locus is similar to the wild type (92% of the

wild-type level).

In addition to COs, meiotic recombination produces non-

crossovers (NCOs). CO and NCO recombinants can be

distinguished using restriction site polymorphisms around DSB

site I in the HIS4-LEU2 locus [38]. As seen for COs, NCOs in the

csm4 mutant are formed 5 h later than in the wild type (Figure 1F).

In this assay, the final level of COs in the mutant is slightly higher

(1.2-fold) than the wild type. Wanat et al. show a slight reduction

of NCOs using the same assay [31]. The level of NCOs in csm4 is

reduced to 75% of the wild type. This suggests that Csm4 is

required for timely and efficient formation of both types of

recombinants. This was confirmed using a heteroduplex assay that

detects CO and NCO at the same locus (Figure 1G). The final

level of NCOs containing heteroduplex DNA at the MluI/BamHI

site in the mutant is reduced to 50% that of the wild-type level,

while the level of COs containing heteroduplex DNA is unaffected

by csm4 mutation. Interestingly, the csm4 mutant increases ectopic

recombination between HIS4-LEU2 and leu2::hisG on chromosome

III (Figure 1G; [39]).

Relationship of Csm4 with Msh4 and Mms4 during
Meiotic Recombination

Meiotic recombination has been grouped into two CO

pathways and a single NCO pathway [21]. One major pathway

for COs depends on ZMM proteins [12] and the other depends on

the junction-specific resolvase, Mus81–Mms4 [22]. To examine a

possible role for Csm4 in these pathways, we constructed a csm4

mutant with a mutation in MSH4, which encodes a meiosis-

specific MutS homolog that acts in the ZMM pathway [40]. csm4

and msh4 single mutants display reduced spore viability (66 and

29%, respectively; Figure 1A). The csm4 msh4 double mutant

shows more severe defects in spore viability (18%) than either

single mutant. In the CO/NCO assay, msh4 affects formation of

both COs and NCOs (Figure 2A). As reported previously [12], at

30uC, msh4 mutation decreases the final amount of COs to 50%

Author Summary

Meiosis is a specialized cell division that produces haploid
gametes. Homologous recombination plays a pivotal role
in the segregation of homologous chromosomes during
meiosis I by creating physical linkages between the
chromosomes. Drastic reorganization of chromosomes in
the nucleus is a prominent feature of meiotic prophase I,
during which telomeres get associated with the nuclear
envelope and move within the envelope, culminating in
the formation of telomere clusters, often referred to as
‘‘chromosome bouquets.’’ The roles that telomere move-
ment and clustering play in meiotic prophase I are largely
unknown. In the budding yeast Saccharomyces cerevisiae,
tethering of telomeres to the nuclear envelope is mediated
by a meiosis-specific telomere-binding protein, Ndj1. We
studied the functions of a meiosis-specific gene, CSM4, in
telomere clustering and during meiotic recombination.
CSM4 is necessary for the clustering of Ndj1-associated
telomeres. Interestingly, csm4 mutants show pleiotropic
defects during meiotic recombination. It is likely that the
chromosome movement promotes various biochemical
reactions during meiotic recombination.
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Figure 2. Relationship of csm4 with msh4, mms4, and ndj1 in meiotic recombination. (A-C) CO/NCO analysis of the wild type, csm4 mutant
with or without msh4 (A) mms4 (B), or ndj1 (C) null mutant allele. Southern blots were prepared as shown in Figure 1 and the quantification of COs
and NCOs as well as progression through meiosis I (MI) in each strain is shown in the graphs (right). Progression through MI was analyzed by DAPI
staining. Wild type (A, B, C), open circles; csm4 (A, B, C), closed circles; msh4 (A), mms4 (B), ndj1 (C), open green triangles; csm4 msh4 (A), csm4 mms4
(B), csm4 ndj1 (C), closed red triangles. (D) DSBs at the HIS4-LEU2 locus in rad50S and csm4 rad50S cells were analyzed by Southern blotting (left) and
quantified (right) as described in the Materials and Methods. Error bars (+/2SD) were obtained from three independent analyses.
doi:10.1371/journal.pgen.1000196.g002

Figure 1. Csm4 promotes meiotic recombination. (A) Spore viability (SV). The indicated strains were sporulated at 30uC and more than 100
tetrads were dissected per strain. The distribution of 0, 1, 2, 3, and 4 viable spores per tetrad are shown for each strain. (B) Meiotic cell cycle
progression. Entry into meiosis I and II in the wild type, csm4 with or without spo11-Y135F (upper panel) and red1 (bottom panel) mutations were
analyzed by DAPI staining. Graphs show the percent of cells that completed MI at the indicated times. (C) A schematic diagram of the HIS4-LEU2
recombination hotspot. Restriction sites for PstI, XhoI, BamHI, and MluI are shown. Diagnostic fragments for analysis on double-strand break (DSB),
crossover (CO), non-crossover/crossover (CO/NCO) and heteroduplex (HD) in CO and NCO are shown at the bottom. The size of each fragment (kilo-
bases) is presented within parentheses. (D-G) DSBs (D), CO (E), CO/NCO (F), and heteroduplex in COs and NCOs (G) at the HIS4-LEU2 locus in the wild
type and csm4 cells were analyzed by Southern blotting and quantified (graphs on right). Genomic DNA was digested as follows; DSBs, PstI; CO, XhoI;
CO/NCO, XhoI and MluI; heteroduplexes, XhoI, BamHI and MluI. ER (in G) is a product of intra-chromosomal ectopic recombination. Wild type, open
circles; csm4 mutant, closed circles.
doi:10.1371/journal.pgen.1000196.g001
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that of the wild type, but increases the level of NCOs to 1.7-fold of

the wild type. The csm4 msh4 double mutant shows more severe

defects in CO formation; the final level of COs in the double

mutant is significantly reduced compared to csm4 and msh4 single

mutants. However, the amount of NCOs in the csm4 msh4 double

mutant is only slightly reduced compared to the csm4 single

mutant. This suggests that Csm4 functions in meiotic recombina-

tion independently of Msh4 and that Csm4 promotes CO

formation in the absence of Msh4. Furthermore, Msh4 is not

necessary for residual NCO formation in the absence of Csm4.

Next, we constructed the csm4 mms4 double mutant. Unlike

either single mutant, the csm4 mms4 double mutant cannot form

spores. In the CO/NCO assay (Figure 2B), the mms4 single mutant

exhibits a delay in formation of COs and reduces CO levels to

73% of the wild type [41]. Interestingly, NCOs in the mms4

mutant appear at the same time as in the wild type and at levels

that are 1.5-fold higher than the wild type. The csm4 mms4 double

mutant shows an effect on NCO formation similar to the csm4

single mutant. Similar to csm4, CO formation in the double

mutant is delayed, but reaches an almost wild-type level. These

observations suggest that Csm4 works upstream of Mms4 in

meiotic CO and NCO recombination pathways.

We also examined the amount of DSBs formed in the csm4

mutant in the rad50S background, which blocks processing of DSB

ends [42]. The csm4 rad50S double mutant accumulates DSBs like

the rad50S mutant (Figure 2E). Similar results have been described

by Wanat et al. in the accompanying paper [31]. DSB levels in the

double mutant were slightly higher than those seen in rad50S.

Csm4 Is Required for Timely Formation of and Exit from
Double-Holliday Junctions

As shown above, Csm4 is necessary for timely CO formation

recombination pathway, which mainly depends on ZMM proteins

such as Msh4. In the ZMM-dependent CO pathway, single-end

invasions (SEIs) and double-Holliday junctions (dHJs) have been

identified as major recombination intermediates [8,9]. We

analyzed the effect of csm4 mutation on the formation of these

intermediates, which can be detected at HIS4-LEU2 (Figure 3A) in

2D gel electrophoresis after cross-linking DNA samples with

psoralen [8,9]. In the wild type, SEIs begin to appear at 3 h, peak

at 4.5 h, and disappear at around 6 h (Figure 3B and 3D). In

contrast, the csm4 mutant shows a slight delay in the onset of SEI

formation, and SEIs persist at later times during meiosis (Figure 3C

and 3D). At 8 h, a significant level of SEIs could be detected in the

csm4 strains. Although delayed, SEIs are turned over in the mutant

at around 12 h. dHJs in the wild-type cells start to appear at 4.5 h,

peak at 5 h, and then disappear (Figure 3B and 3E). In csm4,

formation of dHJs is delayed by 3.5 h compared to the wild type

(Figure 3C and 3E). The maximum level of dHJs in the mutant at

8 h is slightly higher than in the wild type. Furthermore, the

resolution of dHJs is clearly delayed in the mutant. These data

suggest that csm4 mutation affects various steps of CO formation,

likely during the SEI–dHJ transition and dHJ resolution. Similar

results but with more quantitative analysis of recombination

intermediates have been described in the accompanying paper by

Wanat et al. [31].

Csm4 Is Necessary for Timely Disassembly of RecA
Homolog Foci and Efficient Chromosome Synapsis

We analyzed the localization of RecA homologs on meiotic

chromosome spreads by immunostaining. Eukaryotic RecA

homologs Rad51 and meiosis-specific Dmc1 both act in the

homology search/strand exchange process that results in SEI and

dHJ formation [6,43,44]. In the wild type, Rad51 as well as Dmc1

shows punctate staining, or foci [44,45]. Rad51 foci begin to

appear at 3 h, peak at 4 h, and then disappear at later times

(Figure 4A). The kinetics of Rad51 focus formation is very similar

to that of DSBs. In the csm4 mutant, the formation of Rad51 foci is

slightly delayed compared to the wild type (Figure 4B and 4C),

consistent with a delay in DSB formation in the mutant.

Disassembly of Rad51 foci is clearly delayed in the csm4 mutant,

indicating inefficient repair of DSBs. The average number of

Rad51/Dmc1 foci in the csm4 mutant at 4 h is 42.8 for Rad51 and

40.5 for Dmc1 (per total nucleus), which is higher than that seen in

the wild type (22.6 and 24.8 for Rad51 and Dmc1, respectively).

At later time points, much brighter and larger Rad51 foci, possibly

representing aggregates, are observed in the mutant (Figure 4B).

These aggregates appear to be specific to csm4, since other

mutants, which also accumulate Rad51/Dmc1 foci at later times

(e.g., tid1, mnd1, and hop2), do not accumulate these structures [45–

47]. Dmc1 in csm4 shows a staining pattern similar to that seen for

Rad51 (Figure 4B and 4C). These data suggest that CSM4 is

necessary for a step after loading of Rad51 and Dmc1, e.g., during

the homology search.

To examine the effect of csm4 on chromosomal synapsis, i.e.,

formation of the synaptonemal complex (SC) during meiotic

prophase, we stained chromosome spreads with an antibody

against the Zip1 protein, which is a component of the central

element of the SC [20]. In leptotene, Zip1 shows dotty-staining in

the wild type (2–3 h; class I; Figure 4Di). In zygotene (3–5 h), short

lines of Zip1 (class II; Figure 4Dii) are observed in addition to the

Zip1 foci. At pachytene (5–7 h), Zip1 elongates along entire

chromosomes (class III; Figure 4Diii), indicating full chromosome

synapsis. The csm4 mutant shows a deficiency in SC formation.

Similar to the wild type, Zip1 foci form in the mutant (Figure 4Ei).

Zip1 starts to elongate, but full chromosome synapsis is rarely seen

in the mutant (class II’; Figure 4Eii). As a result, the csm4 mutant

accumulates zygotene-like nuclei (Figure 4F). Consistent with a

synapsis defect, most zygotene-like csm4 nuclei contain an

aggregate of Zip1 called polycomplex. Although pachytene-like

nuclei are rare in the mutant, Zip1 dismantles when further

incubated with SPM (Figure 4F). These results indicate that CSM4

is required for efficient SC formation, particularly SC elongation.

Similar results have been described by Wanat et al. using Zip1–

Green fluorescent protein (GFP) fusion protein [31].

Csm4 Interacts with Meiosis-Specific Telomere-Binding
Protein, Ndj1

Expression of CSM4 mRNA is specific to meiosis [30]. Western

blotting analysis using an antibody against Csm4 reveals that this

protein is present in lysates from meiotic cells, but not from mitotic

cells (Figure 5A). Our initial immunostaining analysis of both

whole cells and chromosome spreads failed to localize the protein

either in nuclei or on chromosomes (HK, unpublished results).

However, when expressed in vegetative cells as a GFP fusion

protein, Csm4 localizes to nuclear membranes and the endoplas-

mic reticulum [48].

We noticed that the csm4 and ndj1 mutants share similar

recombination defects [28]. In particular, similar to csm4, the ndj1

mutant specifically decreases NCO formation in physical assays.

When a csm4 ndj1 double mutant was constructed and analyzed for

CO/NCO formation, the double mutant exhibited a phenotype

similar to csm4 and ndj1 single mutants (Figure 2C). Although

CSM4 and NDJ1 appear to function in the same recombination

pathway, there are several phenotypic differences between two

single mutants. In general, csm4 shows more severe defects than

ndj1 and csm4 ndj1 double mutants show defects that are more

Csm4-Dependent Telomere Movement
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similar to csm4. The spore viability of csm4 is lower than that of ndj1

(Figure 1A; 66% versus 77%), and the csm4 mutant enters into MI

2 h later than the ndj1 mutant (Figure 2C).

Ndj1 is a meiosis-specific protein that binds to telomeres [25,26]

and is required to form the bouquet, where telomeres cluster near

the SPB [27]. The similarity between csm4 and ndj1 phenotypes

prompted us to examine the interaction of Csm4 with Ndj1. We

used a strain in which Ndj1 protein is tagged with the HA epitope

at its C-terminus. This strain exhibits wild-type spore viability.

Immunoprecipitation (IP) using anti-HA antibody reveals the

presence of Csm4 in precipitates of meiotic cell lysates from NDJ1-

HA diploid, but not in those from the untagged strain (Figure 5B).

Reciprocal IP using anti-Csm4 also detects Ndj1-HA in these

precipitates (Figure 5B). These results demonstrate a physical

association interaction of Csm4 with Ndj1 in meiotic cells. Since

the csm4 mutant expresses Ndj1 (Figure 5A), the defect conferred

by csm4 is not due to the inability of csm4 cells to express Ndj1.

CSM4 Promotes Proper Clustering of Ndj1
Next, we studied the localization of Ndj1-HA protein to the NE

in csm4 mutants. Whole cells were fixed with formaldehyde and

then stained with anti-HA antibody followed by fluorescent-

conjugated antibody. The cells were then observed under an

epifluorescence microscope. We also analyzed the localization of

Dmc1 in intact cells as a marker for meiotic cells. As reported

previously [27], in wild-type cells, Ndj1 shows several foci or

patches near the nuclear periphery in the meiotic prophase

(Figure 5C). The kinetics of accumulation and disappearance of

Ndj1- and Dmc1-positive cells were very similar (Figure 5E). We

sorted the staining patterns into three classes: rim, loose bouquet,

and tight bouquet (Figure 5F). Loose and tight bouquets are only

seen in the meiotic prophase (Figure 5F). Furthermore, a

significant fraction of wild-type cells at 4 h shows clustering of

Ndj1 foci (loose and tight bouquets) in one area of the NEs

(Figure 5F). On the other hand, csm4 cells do not show clustering

Figure 3. 2D analysis of recombination intermediates in the csm4 mutant. (A) Schematic drawing of the HIS4-LEU2 locus for the SEI and dHJ
assay. (B, C) Southern blots of 2D gel analysis of the wild type (B) and the csm4 mutant (C). Genomic DNA samples taken at various times were
psoralen-crosslinked, digested with XhoI, and analyzed in 2D neutral/neutral gels. (D, E) Quantification of SEI and dHJ. The amount of SEIs (D) and
interhomolog dHJs (E) were quantified at each time point and plotted. Wild type, open circles; csm4, closed circles.
doi:10.1371/journal.pgen.1000196.g003

Csm4-Dependent Telomere Movement
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of Ndj1, but rather exhibit dispersed staining of Ndj1 patches at

the nuclear periphery (Figure 5D and 5F). In csm4, Ndj1 patches

persist in the periphery longer than in the wild type (Figure 5D

and 5E). Importantly, Ndj1 in the csm4 mutant is still associated

with the NE. These data indicate that Csm4 is required for

efficient clustering of Ndj1 on the NE, but not for tethering,

suggesting a role of Csm4 in Ndj1-mediated telomere clustering.

CSM4 Promotes Bouquet Formation
Ndj1 promotes telomere clustering during meiotic prophase [27].

We examined bouquet formation by analyzing Rap1–GFP localiza-

tion [49,50]. Rap1 is concentrated at telomeres and is used as a

marker for telomere localization [51]. As shown previously, Rap1–

GFP is localized at the nuclear periphery as several foci in mitosis

[49,52]. Nuclei were visualized by deconvoluting Z-series images; one

focal plane is shown in Figure 6. When diploid cells enter the meiotic

prophase, after 3–5 h incubation with SPM, a small fraction of

diploid cells in meiotic prophase show a polarized distribution of

Rap1–GFP at the cell periphery. In S. cerevisiae, the bouquet appears

unstable and is possibly dynamic during the meiotic prophase

[50,52]. In the wild type, clustering of Rap1 foci is prominently seen

at 4 h (Figure 6A); however, due to the very transient nature of the

clustering, only 15–25% cells show the clustering. On the other hand,

the csm4 mutant shows a disperse distribution of Rap1 on NEs after 4

and 5 h incubation with SPM (Figure 6B). Very few cells show the

clustering of Rap1–GFP in the mutant between 4 and 6 h (see

Figure 5F). This indicates that Csm4 is necessary for clustering of

telomeres but not for tethering telomeres to the NE. Furthermore,

some Rap1–GFP foci in the ndj1 mutant are not localized at the

nuclear periphery but are seen within the nucleus [Figure 6C; 27].

Similar results have been described by Wanat et al. [31]. We also

noticed that most csm4 nuclei were round, while the wild type as well

as the ndj1 mutant nuclei were irregularly shaped, suggesting a defect

in nuclear deformation in the csm4 mutant.

CSM4 Is Not Required for Relocalization of Mps3
It was recently reported that a component of the SPB, Mps3, is

necessary for telomere clustering during meiosis [53] and

anchoring telomeres [54]. Mps3, which contains Sad1-Unc-84

(SUN) and trans-membrane domains, changes its localization from

the SPB to the NE during meiosis [53,54]. We examined the effect

of csm4 mutation on Mps3 relocalization. Whole cells containing

Figure 4. The csm4 mutant is defective in disassembly of RecA homolog foci and SC formation. (A–C) Rad51-Dmc1 focus formation in the
csm4 mutant. Nuclear spreads of the wild type (A) and csm4 (B) were stained with anti-Rad51 (red; left graph) and anti-Dmc1 (green; right graph) as
well as DAPI for DNA (blue). The percent of cells positive for Rad51 or Dmc1 foci (more than 5 foci per nucleus) were counted at each time point (C).
At least 100 nuclei were counted at each time point. Wild type, open circles; csm4 mutant, closed circles. Bars = 2 mm. (D, E) Chromosome synapsis in
csm4 mutants. Nuclear spreads were stained with anti-Zip1 (green) and DAPI (blue), categorized, and plotted as described previously [33]. SCs of wild-
type cells shown in leptotene (D-i), zygotene (D-ii), and pachytene (D-iii). SCs of csm4 mutants shown in leptotene (E-i) and zygotene-like stages (E-ii)
contain the polycomplex (PC) as shown by an arrow. Bars = 2 mm. (F) Plots showing each class of SC (Wild type, left; csm4 mutant, right) at indicated
times in meiosis. Class I (open bars), Zip1 dots; Class II (dotted bars), partial Zip1 linear; Class III (closed bars), linear Zip1 staining; Class II’, partial Zip1
linear with PC (blue bars). The formation of Zip1 PC is shown for each strain (red closed circles).
doi:10.1371/journal.pgen.1000196.g004
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MPS3 tagged with HA were fixed with formaldehyde and stained

with antibodies against the HA tag and Dmc1 protein. As reported

previously [54,55], at 0 h, Mps3 is seen as a single spot at the

nuclear periphery (Figure 7A), which is consistent with its

localization near the SPB. During the meiotic prophase (at 4 h

in SPM), in Dmc1-positive nuclei, Mps3 relocalizes throughout the

NE and occasionally exhibits patchy staining (Figure 7A). This NE

localization of Mps3 is still observed after the MI division. In the

csm4 mutant, Mps3 shows a distribution in the NE similar to the

wild type, but remains longer than in the wild type (Figure 7A and

7B). This is consistent with a prolonged meiotic prophase in csm4.

Therefore, the effect of the csm4 mutation on telomere clustering

appears to be independent of Mps3 relocalization. In addition,

csm4 does not affect Mps3 protein levels (Figure 7C).

Discussion

Csm4 Functions with Ndj1
Previously, the csm4 mutant was isolated on the basis of its defect

in chromosome segregation during meiosis [30]. In this paper, we

Figure 5. Csm4 promotes the clustering of Ndj1 at the nuclear periphery. (A) Expression of Csm4 protein. Lysates obtained from the wild
type and csm4 mutant strains bearing NDJ1-HA induced for meiosis were analyzed by Western blotting using anti-Csm4 (upper), anti-HA (middle), or
anti-tubulin (lower) antibodies. (B) Co-immunoprecipitation of Csm4 and Ndj1. Cell lysates from strains containing or lacking NDJ1-HA were
immunoprecipitated with anti-HA (left) and anti-Csm4 (right) antibodies, and probed with anti-Csm4 (left upper panel) and anti-HA (right upper
panel), respectively. Whole cell extracts (WCE; bottom panels) were also analyzed by Western blotting. (C, D) Localization of Ndj1 protein in intact
meiotic cells. Wild type (C) and csm4 mutant strains (D) containing NDJ1-HA were induced for meiosis. Cell aliquots were collected at indicated times,
fixed, stained with anti-HA and anti-Dmc1 antibodies, and examined using a fluorescence microscope. Ndj1-HA (green), Dmc1 (red), and DAPI (blue).
Bars = 2 mm. (E) Kinetics of Ndj1 and Dmc1 foci. Nuclei positive for Ndj1 (left) and Dmc1 (right) localization in whole cells (C, D) were counted and
plotted. Wild type, closed circles; csm4 mutant, open circles. (F) Classes of Ndj1–telomere clustering. Cells with tight bouquet, loose bouquet, or
peripheral staining of Ndj1-HA (green) are classified at each time after induction of meiosis. The percent of each class (per Ndj1-positive cells) is
shown for the wild type (left) and the csm4 mutant (right).
doi:10.1371/journal.pgen.1000196.g005
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show that Csm4 functions with the meiosis-specific telomere-

binding protein Ndj1. Recombination defects conferred by a csm4

mutation are very similar to those caused by a mutation in NDJ1

[28]. Indeed, the csm4 ndj1 double mutant phenotype is similar to

that seen for the single mutants. In addition, co-IP shows that

Csm4 is physically associated with Ndj1 in vivo. Furthermore,

Csm4 is required for efficient clustering of Ndj1 at the nuclear

periphery. These results indicate that Csm4 and Ndj1 function in

the same structural pathway.

The csm4 mutant, however, shows more severe defects in

meiosis than the ndj1 mutant. Spore viability is lower in csm4

compared to ndj1. The csm4 mutation delays its entry into MI to a

greater extent than ndj1. These observations suggest that Csm4 has

additional functions in meiosis or that ndj1 is not null for related

functions.

CSM4 Is Necessary for Various Steps of Meiotic
Recombination Pathways

Csm4 is necessary for normal functioning of all three

recombination pathways of meiosis: ZMM-dependent and

-independent (MMS4-dependent) CO and NCO formation.

Although the final level of COs in the csm4 single mutant is

similar to that in the wild type, csm4 reduces the level of NCOs

compared to the wild type, indicating the involvement of Csm4 in

NCO formation during meiosis. Csm4 is a meiosis-specific protein;

this suggests that NCO formation is under the control of a meiotic

program and thus is likely to be mechanistically distinct from

Figure 6. Csm4 promotes bouquet formation. Localization of
Rap1–GFP in intact cells. Wild type (A), the csm4 mutant (B) and ndj1
mutant cells (C) with Rap1–GFP were directly examined as described in
Materials and Methods. Rap1–GFP is shown in white. Deconvoluted
images of one focal plane are shown. Bars = 2 mm.
doi:10.1371/journal.pgen.1000196.g006

Figure 7. Mps3 relocalization is independent of Csm4. (A) Localization of Mps3-HA protein in intact meiotic cells. Wild type (left) and csm4
mutant (right) bearing MPS3-HA were induced for meiosis, collected at the indicated times, fixed, stained with anti-HA and anti-Dmc1 antibodies, and
then examined using a fluorescence microscope. Mps3-HA (green), Dmc1 (red), and DAPI (blue). Arrowheads show the possible location of the SPB.
Bars = 2 mm. (B) Appearance and disappearance of Mps3- and Dmc1-positive cells. Nuclei positive for Mps3 (left) and Dmc1 (right) localization in
whole-cell staining were counted and plotted. Wild type, open circles; csm4 mutant, closed circles. (C) Expression of Csm4 protein. Cell lysates
prepared from the wild type and csm4 mutants bearing the MPS3-HA at indicated times in meiosis were analyzed by Western blotting using anti-HA
(upper panel) or anti-tubulin (lower panel) antibodies. An asterisk indicates a non-specific band.
doi:10.1371/journal.pgen.1000196.g007
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NCO formation during mitosis. When csm4 mutation is combined

with a mutation in MSH4, the double mutant is almost completely

deficient in CO formation. Therefore, Csm4 functions in CO

formation independently of Msh4.

CO formation in meiosis, about half of which depends on ZMM

genes, is severely delayed in csm4, indicating that Csm4 is also

required for efficient formation of COs in the major ZMM-

dependent meiotic recombination pathway. Two intermediates,

SEIs and dHJs, have been identified in the ZMM-dependent CO

pathway [8,9]. The most severe effect of csm4 mutation is seen in

SEI–dHJ transition and dHJ resolution, two distinct biochemical

steps in the ZMM pathway. It is likely that SEI–dHJ transition is

accompanied by the capture of SEI by the second end of the DSB

[8,56]. Therefore, Csm4 seems to promote the second-end capture

during strand exchange. Generally, this capture is considered a

simple annealing reaction between ssDNA of the second end and a

displaced ssDNA in SEI [57]. However, our results strongly

suggest that the second-end capture is not a simple biochemical

reaction as believed previously; rather, it is a critical regulatory

step in the CO pathway. Although the exact molecular nature of

SEIs in the csm4 mutant is not known, they are likely to contain D-

loop structures that can be converted into COs or NCOs (Hunter

et al. 2002). Thus, the transition of SEIs to dHJs could be regarded

as an irreversible commitment step towards CO formation. The

transition can be independently governed by both ZMM- and

Csm4-dependent functions. Furthermore, disassembly of the two

RecA homologs Rad51 and Dmc1 is delayed in the csm4 mutant.

This strongly suggests that disassembly of the RecA homologs

occurs during the SEI–dHJ transition, and thus is somehow

coupled with the second-end capture.

Csm4 Affects Meiotic Recombination through Telomeres
How does Csm4 control the various steps during meiotic

recombination? One notion is that Csm4 functions as an enzyme

directly involved in recombination. However, it is very difficult to

assign a biochemical activity to Csm4 (,23 kD) with no apparent

structural domains, since it is likely to be involved in various steps

in the aforementioned three recombination pathways. One

possibility is that Csm4 acts as a component of the meiotic

chromosomes. Red1, a chromosome axis protein, is involved in

various recombination steps [43,58]. However, our initial attempt

to localize the protein on DNA by chromatin IP failed to detect the

binding of Csm4 to a recombination hotspot (unpublished results).

Our initial attempt to localize Csm4 was also unsuccessful because

both N- and C-terminal tagged genes are non-functional and our

anti-Csm4 did not work for immunostaining (HK, unpublished

results). However, Csm4 is predominantly enriched in the NE

when overexpressed as a GFP fusion protein in vegetative cells

[48], consistent with the fact that Csm4 contains a putative

transmembrane domain. Furthermore, a Csm4 partner, Ndj1, is

enriched at telomeres, that are tethered to the NE [25,26]. These

observations strongly suggest that Csm4 is localized in the

telomeres. Indeed, similar to Ndj1, Csm4 binds to telomeres on

nuclear spreads [59]. Thus, the Csm4–Ndj1 complex is likely to

affect recombination indirectly through its function at telomeres

and/or the NEs. In addition to Csm4–Ndj1, the Mps3 protein

containing Sad1-UNC84 domain is also involved in the process

[53]. During vegetative growth, Mps3 is localized to the SPB and

then relocated to the NEs in the meiotic prophase [53]. Mps3

forms a complex with Ndj1 and Csm4 [59]. An allele of mps3

shows pairing defects in meiosis similar to those seen in ndj1 and

csm4 mutants [59]. Given that Mps3 is an inner nuclear membrane

protein, it is likely to tether Ndj1-bound telomeres to the NE.

How Does Telomere Tethering to the NE Regulate
Meiotic Recombination?

How do telomeres control recombination on the interstitial sites

of chromosomes? The fact that ndj1 and csm4 mutants are defective

in chromosomal bouquet formation [this study; 59,60] suggests

that a polarized configuration of chromosomes in zygotene might

play a positive role in meiotic recombination. As proposed

previously [23,61], telomere clustering may restrict the arrange-

ment of chromosomes in the nucleus, and in turn increases the

probability that two allelic loci undergo colocalization. Although

this could explain defects specific to zygotene, such as first end

capture or SEI formation, those in second-end capture and dHJ

resolution, occurring in the end of zygotene and pachytene,

respectively, cannot be simply explained by telomere clustering

during zygotene.

Rather, we propose that chromosome dynamics accompanied

by telomere movement facilitates meiotic recombination. Tether-

ing telomeres to nuclear membranes followed by movement along

the envelope might change the chromatin structure, which might

indirectly promote various biochemical steps during recombina-

tion. Dynamic movement of chromosomes in the meiotic prophase

has been recently described; it depends on actin polymerization

[59,60,62,63]. Furthermore, the dynamic nature of telomeres on

the NE is somehow dependent on Ndj1 and Csm4 [59,60]. It is

likely that the global changes in the chromosome structure and/or

movement of chromosomes, promoted by the anchoring of

telomeres to the NE, control the biochemistry of recombination

of meiotic chromosomes.

Multi-Step Assembly of Chromosomal Bouquet in
Budding Yeast

Our analysis of csm4 provides new insights into the mechanism

of telomere clustering in budding yeast. Both csm4 and ndj1

mutants are deficient in telomere clustering, but the nature of

deficiency in these mutants is qualitatively different. While NDJ1

promotes tethering of telomeres to the NE, CSM4 facilitates

clustering of Ndj1-bound telomeres in one area of the envelope.

Csm4 may promote bouquet formation by directly clustering the

telomeres and/or by stabilizing them. Given that telomere

movement on the envelope is a dynamic process [52,62], Csm4

might be involved in the movement of telomeres on the NE.

However, the csm4 mutant exhibits some local movement of

telomeres on the membrane, which is clearly different from the

movement in the presence of an actin-inhibitor [60; HK and AS,

unpublished results]. Thus, the movements of telomeres are either

Csm4-dependent or Csm4-independent. Our results suggest that

meiotic telomere clustering consists of different steps including

telomere tethering, movement, and clustering. Consistent with

this, nuclei in csm4 mutants are relatively round compared to the

irregular shapes of meiotic nuclei seen in the wild type (Figure 6).

Nuclear deformation may be induced by external physical forces

on the nuclei. Therefore, Csm4 might be involved in the

transduction of forces on the NEs.

Methods

Strains and Plasmids
All strains described here are derivatives of SK1 diploids,

NKY1551 (MATa/MATa, lys2/lys2, ura3/ura3, leu2::hisG/leu2::-

hisG, his4X-LEU2-URA3/his4B-LEU2, arg4-nsp/arg4-bgl) and

NKY3230 (MATa/MATa, lys2/lys2, ura3/ura3, leu2::hisG/leu2::-

hisG, his4X-LEU2-(N/Bam)-URA3/HIS4-LEU2-(N/Bam) and its

derivatives with csm4::KamMX6 were used for the 2D analysis.
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Rap1-GFP was a kind gift from Dr. Y. Hiraoka. The genotypes of

each strain used in this study are described in Table S1.

Strain Construction
csm4, ndj1, mms4, and msh4 null alleles were constructed by PCR-

mediated gene disruption using either the URA3 gene or the

KanMX6 [64]. NDJ1-3HA and MPS3-3HA were constructed by a

PCR-based tagging methodology [65].

Primer details used for PCR amplification are available upon

request.

Anti-Serum Preparation and Antibodies
Anti-Csm4 antibody was raised against recombinant protein

purified from E. coli. The open reading frame of Csm4 was PCR-

amplified and inserted into pET15b plasmid (Novagen) in which

the N-terminus of CSM4 gene was tagged with hexahistidine.

Csm4 protein with the histidine tag was affinity-purified in

accordance with the manufacturer’s protocol and used for

immunization (MBL Co. Ltd). Primer details for PCR amplifica-

tion are available upon request.

Anti-HA antibody (16B12; Babco), anti-tubulin, guinea pig anti-

Rad51 [45], and rabbit anti-Dmc1 [5] were used for staining.

Antiserum against Zip1 was raised using a recombinant GST-

fusion protein purified from E. coli [16].

Cytology
Immunostaining of chromosome spreads was performed as

described previously [45,66]. Whole cell immuno-staining was

preformed as described previously [27] with a slight modification.

Cells were fixed with formaldehyde. Stained samples were

observed using an epi-fluorescent microscope (BX51; Olympus)

with a 100x objective (NA 1.3). Images were captured by a CCD

camera (Cool Snap; Roper), and processed using IP lab (Sillicon)

and Photoshop (Adobe) software. For focus counting, more than

100 nuclei were counted at each time point.

Rap1-GFP was observed as described previously [52]. Images

were captured by a computer-assisted fluorescence microscope

system (Delta Vision; Applied Precision) with an oil-immersion

objective lens (100x, NA 1.35). Image deconvolution was

performed using an image workstation (SoftWorks; Applied

Precision).

Analyses of Meiotic Recombination
Time-course analyses of DNA events in meiosis and cell cycle

progression were performed as described previously [8,12,58].

Immuno-Precipitation Assay and Western Blotting
IP assay was performed as described previously [5].

Reproducibility
Each result presented in the figures is representative of several

experiments. The number of experiments performed is shown in

Table S2.

Supporting Information

Table S1 Strain list.

Found at: doi:10.1371/journal.pgen.1000196.s001 (0.04 MB

DOC)

Table S2 The number of experiments.

Found at: doi:10.1371/journal.pgen.1000196.s002 (0.04 MB

DOC)
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