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Electroacupuncture (EA) can help reduce infarct size and injury resulting from myocardial

ischemia/reperfusion (I/R); however, the underlying molecular mechanism remains

unknown. We previously reported that STAT5 plays a critical role in the cardioprotective

effect of remote ischemic preconditioning (RIPC). Here, we assessed the effects of

electroacupuncture pretreatment (EAP) on myocardial I/R injury in the presence and/or

absence of Stat5 in mice and investigated whether EAP exerts its cardioprotective effects

in a STAT5-dependent manner. Adult Stat5fl/fl and Stat5-cKOmice were exposed to EAP

at Neiguan (PC6) for 7 days before the induction of I/R injury by left anterior descending

(LAD) coronary artery ligation. The myocardial infarct size (IS), area at risk, and apoptotic

rate of cardiomyocytes were detected. RT-qPCR and western blotting were used to

measure gene and protein expression, respectively, in homogenized heart tissues.

RNA-seq was used to identify candidate genes and pathways. Our results showed

that EAP decreased IS and the rate of cardiomyocyte apoptosis. We further found that

STAT5 was activated by EAP in Stat5fl/fl mice but not in Stat5-cKO mice, whereas

the opposite was observed for STAT3. Following EAP, the levels of the antiapoptotic

proteins Bcl-xL, Bcl-2, and p-AKT were increased in the presence of Stat5, while that of

interleukin 10 (IL-10) was increased in both Stat5fl/fl and Stat5-cKO. The gene expression

profile in heart tissues was different between Stat5fl/fl and the Stat5-cKO mice with EAP.

Importantly, the top 30 DEGs under EAP in the Stat5-cKO mice were enriched in the

IL-6/STAT3 signaling pathway. Our results revealed for the first time that the protective

effect of EAP following myocardial I/R injury was attributable to, but not dependent on,

STAT5. Additionally, we found that EAP could activate STAT3 signaling in the absence

of the Stat5 gene, and could also activate antiapoptotic, survival, and anti-inflammatory

signaling pathways.
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INTRODUCTION

Electroacupuncture (EA) is based on acupuncture, a key
component of traditional Chinese medicine. Numerous studies
have demonstrated that EA is effective as an alternative
protective treatment against myocardial ischemia/reperfusion
(I/R) injury via electrical stimulation at specific acupoints (1–7).
Recently, a clinical trial was undertaken to assess the effect of
acupuncture treatment on a total of 1,651 patients with chronic
stable angina. The results indicated that acupuncture, used as
adjunctive therapy, could alleviate pain, reduce anxiety and
depression, and improve the quality of life of the patients (5).
Additionally, several studies have demonstrated the effectiveness
of EA in treating cardiovascular diseases, and revealed some
of the mechanisms underlying its effects. These include
improving neurological function, modulating humor states (3, 8–
11), regulating apoptosis (12–15), reducing calcium overload
and antioxidative stress (16–19), activating anti-inflammatory
pathways (12, 20), promoting angiogenesis (21), and regulating
energy metabolism (22). However, the fundamental molecular
mechanisms involved in the cardioprotective effect of EA have
yet to be identified.

There is evidence that EAP can protect the ischemic
myocardium against I/R injury (7, 14, 22, 23). While RIPC
has been applied as one of common cardioprotective strategies
against I/R injury (4, 24, 25), EAP is considered functionally
similar to transcutaneous electrical nerve stimulation (TENS)
and RIPC (4, 26). Studies on ischemic conditioning have been
undertaken using different species, such as mice, rats, pigs,
and humans (27–34). The most practical model of myocardial
ischemia involves coronary occlusion, leading to the partial or
complete obstruction of blood flow in a coronary artery, which
mimics the clinical signs of coronary heart disease. Ideally, RIPC
or EA pretreatment experiments on treating heart disease should
be carried out using big animals or human patients as models
(35, 36), whereas mechanistic studies are better performed on
small animals, especially when a knockout model is needed.
Additionally, evidence from both human patients and mice has
indicated that STAT5 plays an important role in RIPC (27,
33, 37). Given that there are many similarities between EAP
and RIPC, we therefore use the Stat5-knockout mice model to
study the protection of EAP from myocardial I/R injury and its
underlying mechanism.

We established a myocardial I/R mouse model using
cardiomyocyte-specific Stat5-knockout (Stat5-cKO) mice. EA
was applied to themice 7 days before surgery to induce I/R injury.
We also undertook genome-wide gene profiling to identify
candidate genes involved in the cardioprotective role of EAP, and
detected some functional pathways.

MATERIALS AND METHODS

Mice
Stat5-floxed mice (Stat5fl/fl), generated as previously described
(37), were a kind gift from Dr. Hennighausen (NIDDK, NIH).
Tnnt2-Cre male mice (Tnnt2Cre) were a gift from Bin Zhou
(Shanghai Institutes for Biological Sciences of the Chinese

Academy of Sciences). Stat5-cKO mice were generated by
crossing these two genotypes. Doxycycline hyclate (Sigma-
Aldrich) was added to the drinking water of mice at a
concentration of 2 mg/mL and administered for 7 days.
Genotyping was performed as previously described (37).

Study Groups
The mice were randomly divided into the following four groups:
Stat5fl/fl+I/R, Stat5fl/fl+EA+I/R, Stat5-cKO+I/R, and Stat5-
cKO+EA+I/R. The Stat5fl/fl+I/R and Stat5-cKO+I/R mice were
exposed to LAD coronary artery occlusion for 30min, and then
reperfused for 180min, while the Stat5fl/fl+EA+I/R and Stat5-
cKO+EA+I/R mice were subjected to EAP treatment 7 days
before LAD artery ligation. All animal studies were carried
out according to Chinese and international guidelines for the
experimental use of animals. All experiments were approved by
the Institute for Animal Care and Use Committee at Nanjing
University of Chinese Medicine.

In vivo Experiments
EA was performed at bilateral PC6 (also called Neiguan)
acupoints in the Stat5fl/fl+EA+I/R and Stat5-cKO+EA+I/R
mice as previously described (12). The PC6 acupoints are located
in the anteromedial aspect of the forelimb between the radius and
ulna, 3-mm proximal to the wrist joints (12, 38). Anesthesia was
induced with 5% isoflurane andmaintained with 1–2% isoflurane
in pure oxygen. Sterilized disposable stainless steel acupuncture
needles (0.18mm × 13mm, Beijing Zhongyan Taihe Medical
Instruments Factory, Beijing, China) were inserted into the
muscle layer∼1–2mm below bilateral PC6 simultaneously using
Han’s EA instrument (Han Acuten, WQ1002F, Beijing, China).
The frequency was 2/15Hz (alternating dense and disperse
mode) and the intensity was 0.5–1.0mA. Stimulation was applied
for 20min once a day for a total of 7 days. The mice in the
Stat5fl/fl+I/R and the Stat5-cKO+I/R groups were restrained for
20min without EA stimulation. The Stat5fl/fl+I/R and Stat5-
cKO+I/R mice (control groups) were also anesthetized daily for
7 days before I/R surgery.

The I/R operation was performed according to a previously
described protocol (12, 37). Briefly, all the mice were anesthetized
by 5% isoflurane and anesthesia was then maintained with
2% isoflurane in a mixture of 70% N2O and 30% O2. Under
anesthesia, the mice were subjected to a left thoracotomy and
LAD artery ligation. Ischemia was confirmed by myocardium
blanching, as well as ST-segment elevation and widening of
the QRS complex in ECG (37). After 30min, reperfusion
was performed by quickly releasing and removing the suture
continuously for 3 h. In the sham-operation group, the same
procedure was performed except for the LAD artery ligation.
Mice were euthanized by cervical dislocation and the heart
specimens were harvested.

Determination of Infarct Size
After harvesting, the hearts were injected for 1–2min with
0.2mL of 2% Evans blue dye into the ventricle as previously
described (39, 40). The excised and frozen hearts were quickly
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sliced into five pieces, placed in 2mL of 1% TTC (Sigma-
Aldrich, St. Louis, MO, USA) in phosphate-buffered saline
(PBS), and incubated at 37◦C for 15min. After incubating,
the sections were placed in 4% (v/v) paraformaldehyde at 4◦C
for 12 h. Unaffected myocardial tissue was stained blue, while
the area at risk (AAR) and the infarcted area were unstained
and showed as red or white. The infarcted area, AAR, and
total left ventricular (LV) area were quantified using Image-
Pro Plus 6.0 software (NIH, USA). The infarct size (IS) and
AAR percentages were calculated using the following formulas:
IS (%) = IS/AAR × 100; AAR (%) = AAR/total LV area ×

100 (39, 40).

Apoptosis Measurements
TUNEL staining was used to detect cell apoptosis in cardiac
tissue in each group. All the protocols were performed
as previously described (37). Heart tissues were harvested
and embedded in optimal cutting temperature (OCT)
compound (Thermo Scientific, USA). Then, 8-µm-thick
tissues were subjected to TUNEL staining according to the
instructions of the manufacturer (Cat no. 11684817910,
Roche Diagnostics, Lewes, UK). Ten sections were randomly
selected from at least 3 animals per group and visualized
using a fluorescence microscope (Nikon, Japan). DNase-
I served as the positive control labeling solution as the
negative control.

Western Blotting
Whole-ventricle samples were lysed with RIPA buffer
containing protease and phosphatase inhibitors based on
the Protease Inhibitor Cocktail (100X) (Thermo Scientific, USA).
Homogenates were centrifuged at 14,000 × g for 10min at
4◦C, and the collected supernatants were stored at −80◦C until
further use. Protein concentrations were determined using a
BCA protein assay (Pierce, Thermo Scientific, USA). Protein was
mixed with 5× Laemmli loading buffer and heated at 95◦C for
10min. Equal amounts of protein were subjected to SDS–PAGE
and transferred to polyvinylidene fluoride membranes. The
samples were incubated with primary antibodies against Bcl-xL
(1:1,000, Cell Signaling Technology, #2762), Bcl-2 (1:1,000, Cell
Signaling Technology, #3498), Cyt c (1:1,000, Cell Signaling
Technology, #4280), phospho-STAT5 (1:1,000, Cell Signaling
Technology, #4322), STAT5 (1:1,000, Cell Signaling Technology,
#94205), phospho-STAT3 (1:1,000, Cell Signaling Technology,
#4093), STAT3 (1:1,000, Cell Signaling Technology, #4904),
phospho-AKT (1:1,000, Cell Signaling Technology, #4060), AKT
(1:1,000, Cell Signaling Technology, #4298), IL-10 (1:1,000,
Abcam, #ab192271), VEGFA (1:1,000, Abcam, #ab46154),
beta-actin (1:1,000, Abcam, #ab8226), or GAPDH (1:1,000,
Cell Signaling Technology, #2118) overnight at 4◦C, and
then with a secondary antibody for 2 h at room temperature.
Immunoreactive bands were revealed using SuperSignal West
Pico Chemiluminescent Substrate (Pierce) and quantified using
the ChemiDoc Imaging System (Bio-Rad).

Quantitative Reverse Transcription PCR
Total RNA was extracted from heart tissue using TRIzol reagent
(Invitrogen, Mannheim, Germany), and reverse-transcribed
to cDNA using reverse transcriptase and random primers
(11121ES60, Yeasen Biotech Co., Ltd., China). Target genes were
amplified on a MX3000P thermocycler (Stratagene, La Jolla, CA,
USA) using SYBR Green (Q431-02, Vazyme Co., China). Gene
expression was quantified using the 2−11Ct method. The primer
sequences were as follows: Il6, GACTTCACAGAGGATAC
CACCC (forward) and GACTTCACAGAGGATACCACCC
(reverse); gp130, GAGCTTCGAGCCATCCGGGC (forward)
and AAGTTCGAGCCGCGCTGGAC (reverse); beta-actin,
GGTGAAGACGCCAGTAGAC (forward) and TGCTGGAAG
GTGGACAGTGA (reverse).

RNA Sequencing Analysis
RNA-seq for mouse heart tissues was performed using the
Illumina Hiseq 2500 and 2000 platform (Illumina, USA)
as described in our previous study (41). Data analysis was
performed as previously described (41). The quality of the raw
sequencing data was assessed by FastQC. The Cufflinks and
Cuffdiff programs were used to assemble individual transcripts
and for differential transcript expression analysis, respectively.
The pathways were analyzed using DAVID Bioinformatics
Resources. Genes with fewer than 1.0 fragments per kilobase
of exon per million fragments mapped (FPKM) were filtered
out. Log2 fold change (FC) ≥| ±1| and P < 0.05 were used as
thresholds for identifying upregulated and downregulated genes.

Statistical Analysis
Data analyses and treatment conditions were double-blinded.
SPSS 18.0 software was used for statistical analysis. All data were
expressed as means± standard error of the mean (SEM). A two-
tailed unpaired Student’s t-test was used for comparisons between
two groups. For comparisons between multiple groups, one-
way or two-way ANOVA was used followed by the Bonferroni
post-hoc test when equal variances were assumed. P < 0.05 was
considered statistically significant.

RESULTS

EAP Reduced Myocardial Infarct Size and
Attenuated Cardiomyocytic Apoptosis to
the Same Extent in Both Stat5fl/fl and
Stat5-cKO Mice
EAP had no effect on the daily behavior or cardiac performance
of mice of either genotype. After myocardial I/R surgery, we
harvested the heart tissues and measured myocardial infarct
areas and AARs (Figure 1). We found that EAP significantly
reduced infarct size in both Stat5fl/fl mice (55.2 ± 10.8% without
EAP vs. 28.6 ± 4.1% with EAP, P < 0.01) and Stat5-cKO mice
(65.5 ± 5.3% without EAP vs. 29.6 ± 9.6% with EAP, P <

0.01). No significant difference in AAR was seen between the
Stat5fl/fl+EA+I/R and the Stat5-cKO+EA+I/R mice.

TUNEL staining was performed to detect apoptosis
in myocardial cells. As shown in Figure 2, mice in the
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FIGURE 1 | Acupuncture reduced myocardial infarct size. (A) Evans blue/TTC double staining was used to measure the ischemic infarct area and area at risk (AAR).

(B) The infarct size (IS)/AAR ratio was calculated and presented as a percentage. Data are presented as means ± SEM. Normal tissues are stained blue, ischemic

infarct areas and AARs are pale white or red. **P < 0.01 compared with Stat5fl/fl+I/R group; ##P < 0.01 compared with Stat5-cKO+I/R group. (C) The ratio of

AAR/total left ventricular (LV) area was calculated and presented as a percentage. There was no difference between the groups. Data were analyzed by one-way

ANOVA with Tukey’s post-hoc correction, n = 4.

Stat5fl/fl+EA+I/R group had fewer TUNEL-positive cells
compared with those in the Stat5fl/fl+I/R group (1.85 ± 0.26%
vs. 5.62 ± 0.56%, P < 0.01). Similarly, the number of apoptotic
myocardial cells was significantly lower in mice of the Stat5-
cKO+EA+I/R group than in those of the Stat5-cKO+I/R group
(1.85± 0.32 vs. 5.83± 0.35%, P < 0.01).

EAP Activated STAT5 in Stat5fl/fl Mice, but
Not in Stat5-cKO Mice, Following
Myocardial I/R Surgery
To further explore whether the myocardial protective effect of
EAP against I/R injury is STAT5-dependent, we examined the
expression of p-STAT5 in heart tissues by western blotting. EAP
markedly increased the protein levels of p-STAT5/GAPDH in
Stat5fl/fl mice compared with those in Stat5fl/fl mice subjected to
I/R; however, EAP did not affect STAT5 activation in the hearts
of Stat5-cKO mice (Figures 3A,B). This suggested that STAT5
may be involved in the EAP-mediated protective effects against
myocardial I/R injury.

EAP Activated IL-6/gp130/STAT3 Signaling
in the Absence of Stat5
Given that STAT3 might compensate for the loss of STAT5, we
then evaluated the STAT3 and p-STAT3 protein expression levels

in the heart tissues of both Stat5fl/fl and Stat5-cKO mice. The
results showed that the expression of p-STAT3 was increased
in Stat5-cKO+EA+I/R mice compared with that in mice of
the Stat5-cKO+I/R group; however, this was not observed in
Stat5fl/fl mice (Figure 4A). To understand the mechanism by
which STAT3 was activated in this process, we further assessed
the expression levels of genes acting upstream of STAT3. We
found that the mRNA expression of Il6 and gp130 was greatly
increased in Stat5-cKO+EA+I/R mice compared with that in
Stat5-cKO+I/R mice; however, these effects were not observed
in the presence of Stat5. This suggested that, in the absence of
the Stat5 gene, EAP may activate the IL-6/gp130/STAT3 pathway
at the mRNA level when the heart is exposed to myocardial I/R
injury (Figure 4B).

Genome-Wide Analysis Revealed the Gene
Expression Profiles in Both Stat5fl/fl and
Stat5-cKO Mice With or Without EAP
Followed by Myocardial I/R Injury
To identify genes that may have a role in EAP-mediated
protection against myocardial I/R injury, RNA was extracted
from the heart tissues for RNA-seq analysis. The Cufflinks
package was used to filter out the top 30 differentially expressed
genes (DEGs) between the Stat5fl/fl+I/R and Stat5fl/fl+EA+I/R
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FIGURE 2 | The effects of electroacupuncture pretreatment (EAP) on apoptosis in myocardial tissues in the Stat5fl/fl and the Stat5-cKO mice. (A,B) The rate of

apoptosis was measured by TUNEL staining. Values are means ± SEM. **P < 0.01 compared with the Stat5fl/fl+I/R group; ##P < 0.01 compared with the

Stat5-cKO+I/R group. Data were analyzed by two-way ANOVA with Bonferroni’s multiple comparison test, n = 3–6.

groups and the Stat5-cKO+I/R and Stat5-cKO+EA+I/R groups
(Tables 1A,B). Venn diagrams were drawn based on the list of
filtered DEGs among these four groups (Figure 5). The results
showed that 1,052 genes were differentially expressed between the
Stat5fl/fl+I/R and Stat5fl/fl+EA+I/R groups, while 1,039 genes
were found to be differentially expressed between the Stat5-

cKO+I/R and Stat5-cKO+EA+I/R groups; of these DEGs, 133
overlapped between these two clusters (Figure 5). Among the
four groups, only two genes, Hspa1a and Pttg1, were found to
be differentially expressed in all the groups (Table 1).

To further understand the potential pathways involved in the
regulation of STAT5-related DEGs and that of EAP-related DEGs
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TABLE 1 | The top 30 differentially expressed genes with a log2 (FC) > |±1|and q < 0.05.

Up-regulated in EA against I/R Down-regulated in EA against I/R

Gene name Value_1 Value_2 log2 (fold_change) Gene name Value_1 Value_2 log2 (fold_change)

A. The top 30 differentially expressed genes obtained from comparing Stat5fl/fl+EA+I/R vs. Stat5fl/fl+I/R

Fosb

Retnlg

Crisp1

Fos

Cxcl5

Selp

Cxcl1

S100a8

Atf3

Ptx3

Nr4a3

Sele

Socs3

Egr1

S100a9

Il18rap

Thbs1

Rdh12

Hspa1b

Hspa1a

Adam8

Ch25h

Nts

Ifitm6

Egr2

Arc

Agt

Rnd1

Pdk4

Plaur

0.181422

1.26857

1.13838

1.59922

0.375871

0.314312

1.96399

5.82634

2.46681

0.51755

0.472838

0.190666

2.33823

3.52759

11.0427

0.0722091

1.59068

0.122831

2.40171

1.99294

0.400678

0.769351

0.799365

1.20354

0.16011

1.14086

1.55521

0.793702

35.6426

1.59226

27.5826

106.281

82.4984

114.642

21.1825

16.2764

95.2442

256.694

106.299

19.8976

17.3526

6.83815

83.0272

122.674

381.325

2.21294

41.5123

3.01114

58.418

44.6613

8.43168

15.8707

15.3258

22.6423

3.01005

20.7638

27.442

12.8902

578.857

25.5567

7.24827

6.38853

6.17931

6.16363

5.81649

5.69443

5.59977

5.46131

5.42933

5.26476

5.19767

5.16449

5.1501

5.12

5.10986

4.93764

4.70582

4.61557

4.60428

4.48606

4.39531

4.36658

4.26096

4.23367

4.23265

4.18587

4.1412

4.02154

4.02153

4.00455

Hbb-bt

Tcf15

Ccn5

Myl4

Scand1

Zhx2

Nrtn

Tnfrsf25

Pttg1

Zfp771

Fzd2

Fxyd3

Aplnr

Cited4

Eva1b

Msx1

Dkk3

Rnaset2a

Ifi27l2a

Nrarp

Kctd15

Hic1

Gas1

Oas1a

Dynll1

Trim47

Tmsb10

B3gnt3

Myo7a

Fam181b

35.5975

53.5841

6.67781

60.998

105.37

1.93407

43.6184

3.90054

33.8997

19.5158

3.1422

3.78128

15.2807

17.5033

18.5641

3.34857

5.70321

22.5668

180.402

11.2641

2.65098

7.47804

16.0842

3.5286

78.6361

26.4865

110.513

2.39685

2.29499

3.87361

1.35656

3.7788

0.624545

5.99943

11.7828

0.220615

5.0225

0.503182

4.94227

3.02169

0.491571

0.621019

2.89142

3.57884

3.80599

0.6924

1.21389

4.88218

39.5256

2.52363

0.611701

1.74196

3.82293

0.843947

18.9174

6.40037

26.7491

0.580215

0.574977

0.976908

−4.71375

−3.82581

−3.4185

−3.34586

−3.16071

−3.13204

−3.11846

−2.95452

−2.77803

−2.69122

−2.6763

−2.60617

−2.40186

−2.29006

−2.28617

−2.27387

−2.23213

−2.2086

−2.19036

−2.15815

−2.11563

−2.10195

−2.07289

−2.06387

−2.05548

−2.04903

−2.04665

−2.04648

−1.99691

−1.98738

B. The top 30 differentially expressed genes obtained from comparing Stat5-cKO+EA+I/R vs. Stat5-cKO+I/R.

Eno1b

Dynlt1b

H2-Q1

Tmem181c-ps

Gm4737

2610005L07Rik

Gm14421

Mmp3

Gm42887

Ubb

Hba-a2

Tmem191c

Gdnf

Rpl3-ps1

Stbd1

Adh6b

Hba-a1

Polr2l

Myh7

Gapdh

Pttg1

Zc3h3

Gm6472

Cys1

Tgtp2

Rps6

Hspa1a

Eif3j2

Gm8116

Gm15459

0.503646

1.11668

0.264109

0.99792

0.445121

1.25086

0.377049

0.379936

0.544175

35.8823

44.9947

0.28056

0.160275

3.02696

0.465139

0.422625

78.1547

6.80429

174.331

603.792

5.6626

0.178519

5.6958

0.799506

0.951374

94.127

20.8766

0.89728

1.05436

34.4931

6.53728

14.442

3.03007

11.1342

4.58914

12.1968

3.17075

3.17412

4.41682

290.433

363.254

2.17679

1.21115

22.6124

3.32577

3.00224

542.904

43.8946

1091.89

3577.93

32.9153

1.03346

31.1981

4.37525

5.16733

497.199

109.614

4.63881

5.39728

176.148

3.69821

3.69299

3.52015

3.47994

3.36595

3.28551

3.072

3.06253

3.02087

3.01686

3.01315

2.95582

2.91776

2.90117

2.83795

2.82859

2.79629

2.68952

2.64692

2.567

2.53922

2.53333

2.45349

2.45218

2.44134

2.40114

2.39248

2.37012

2.35587

2.35241

Olfr1033

Gm45551

Gm38271

Psg16

Gm3365

Sugct

Gm43197

Gm15280

CAAA01147332.1

Zfp729a

Adgra3

Fmod

Dpy19l3

Gm37324

Gm48274

Pilra

Prc1

Clec4e

Spp1

Rac2

Oxnad1

Fggy

Gm44215

Lars2

Zfp975

Bace2

Suds3

Tesk1

Insig2

Pnkp

855.24

221.558

30.2569

2.41103

7.26917

11.7515

55.389

32.1097

97.5278

6.97773

25.8651

3.18759

2.2277

1.86878

72.516

3.10358

1.51292

6.2329

3.08682

14.0493

117.772

4.18537

2.03074

129.273

3.23415

8.13204

101.31

11.7699

86.0597

30.3154

3.24857

1.31604

0.353232

0.0719611

0.262255

0.52977

3.11501

2.05499

7.86365

0.621896

3.26536

0.452927

0.347531

0.299513

11.6454

0.507

0.247267

1.08171

0.543414

2.49669

21.1786

0.772849

0.376049

25.3961

0.636673

1.6647

22.7191

2.74535

20.4798

7.36189

−8.04038

−7.39534

−6.4205

−5.06629

−4.79275

−4.47133

−4.15229

−3.96581

−3.63254

−3.48801

−2.98569

−2.81512

−2.68034

−2.64141

−2.63854

−2.61387

−2.6132

−2.52658

−2.506

−2.49241

−2.47532

−2.4371

−2.43301

−2.34774

−2.34476

−2.28836

−2.1568

−2.10004

−2.07113

−2.0419

Frontiers in Medicine | www.frontiersin.org 6 July 2021 | Volume 8 | Article 649654

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Guo et al. Electroacupuncture Protects I/R Through STAT3 Signaling

FIGURE 3 | Electroacupuncture pretreatment (EAP) activated the STAT5 protein in the heart tissues of Stat5fl/fl mice, but not in those of Stat5-cKO mice. (A)

Representative western blotting images. (B) Quantitative analysis of p-STAT5 protein levels in each group. Data are presented as means ± SEM of at least three

independent experiments. **P < 0.01 compared with the Stat5fl/fl+I/R group; #P < 0.05 compared with the Stat5-cKO+I/R group. Data were analyzed by two-way

ANOVA with Bonferroni’s multiple comparison test, n = 6.

under conditions of I/R injury, we then carried out a pathway
analysis for these DEGs using DAVID Bioinformatics Resources.
The top 20 pathways are outlined in Figure 6.

KEGG pathway analysis suggested that, in the presence

of Stat5, EAP-activated genes were mainly enriched in the
JAK/STAT, TNF, IL-17, NF-κB, and MAPK signaling pathways,
as well as in cytokine–cytokine receptor interaction (Figure 6A).
In contrast, in the Stat5-cKO mice, the DEGs associated with
EAP-mediated myocardial protection were mainly concentrated
in ribosome pathways, thermogenesis, and the oxidative
phosphorylation pathway (Figure 6B). We also analyzed the top
20 KEGG pathways associated with the 133 overlapping genes
(Figure 6C) and found that some of the EAP-regulated, STAT5-
independent DEGs were mainly linked with inflammation-
related pathways such as the IL-7 signaling pathway, human
T-cell leukemia virus 1 infection, antigen processing and
presentation, and the TNF signaling pathway.

EAP Influenced Apoptotic and Survival
Signaling Only in the Presence of STAT5
The genome-wide profiling data indicated that EAP can activate
antiapoptotic and survival signaling in mice with I/R injury. To
further validate these findings, we investigated the expression
of apoptosis- and survival-related proteins in the myocardial
tissue of Stat5fl/fl and Stat5-cKOmice following EAP. The results
showed that the expression levels of Bcl-2 and Bcl-xL were
significantly increased in the Stat5fl/fl+EA+I/R group compared
with those in the Stat5fl/fl+I/R group (P < 0.05), whereas
the expression of Cyt c did not differ between these groups
(Figures 7A,B). In contrast, no marked changes were observed
in the expression levels of these proteins in the hearts of Stat5-
cKO mice either with or without EAP, suggesting that STAT5
is essential for the EAP-mediated activation of antiapoptotic
signaling in the I/R injury condition. We then measured
the level of IL-10, an important cytokine in cardioprotection,

Frontiers in Medicine | www.frontiersin.org 7 July 2021 | Volume 8 | Article 649654

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Guo et al. Electroacupuncture Protects I/R Through STAT3 Signaling

FIGURE 4 | The expression of IL-6/gp130/STAT3 axis-related molecules. (A) The protein expression of STAT3 and p-STAT3 was assessed by western blotting. **P <

0.01 compared with the Stat5fl/fl+I/R group; ##P < 0.01 compared with the Stat5fl/fl+EA+I/R group; &&P < 0.01 compared with the Stat5-cKO+I/R, n = 4. (B)

The expression of Il6 and gp130 mRNA was measured by RT-qPCR. Data are presented as means ± SEM of at least three independent experiments. *P < 0.05, **P

< 0.01 compared with the Stat5fl/fl+I/R group; #P < 0.05, ##P < 0.01 compared with the Stat5fl/fl+EA+I/R group; &P < 0.05 compared with the Stat5-cKO+I/R

group. Data were analyzed by two-way ANOVA with Bonferroni’s multiple comparison test, n = 3–5.

and that of its related proteins PI3K, AKT, and p-AKT
(Figures 8A,B). The results showed that EAP increased the
levels of p-AKT in the presence, but not absence, of STAT5;
however, under the same condition, IL-10 was upregulated

in the hearts of both Stat5fl/fl and Stat5-cKO mice. These
findings suggested that the EAP-induced activation of survival
signaling to protect against myocardial I/R injury was partially
STAT5-dependent.
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FIGURE 5 | Venn diagrams and clustering analysis of RNA-seq results. Venn diagrams were drawn based on the RNA-seq datasets. The blue circle indicates the

numbers of up- and downregulated genes in the Stat5fl/fl+EA+I/R group vs. the Stat5fl/fl+I/R group the pink circle represents the numbers of up- or downregulated

genes in the Stat5-cKO+EA+I/R group vs. the Stat5-cKO+I/R group. A total of 133 genes overlapped between these two clusters.

DISCUSSION

Ischemic heart disease remains the leading cause of premature
mortality and disability worldwide (34, 42). Although early
coronary reperfusion, a clinically effective method against
myocardial I/R injury, can reduce infarct size, reperfusion by
revascularization initiates a chain reaction that can promote
and amplify post-ischemic injury (43, 44). Pretreatment with
EA or RIPC represents a valid method of reducing the risk
of myocardial injury (3, 6, 45, 46). In our previous study,
we found that STAT5 has a significant impact on RIPC-
mediated late cardioprotection through regulating antiapoptotic
signaling and the PI3K/AKT survival pathway (37). Similar
to RIPC, EAP at acupoint PC6 can also help protect the
myocardium under certain disease conditions by stimulating
multiple functional pathways.

In the present study, we explored the role of STAT5 in
EAP-mediated myocardial protection against I/R by employing
cardiomyocyte-specific Stat5-cKO mice. Surprisingly, we
observed that EAP could reduce the infarct size and the levels
of myocardial cell apoptosis in both Stat5fl/fl and Stat5-cKO
mice (Figures 1, 2), suggesting that STAT5 is not indispensable
for the cardioprotective effect of EAP against myocardial I/R

injury. However, EAP activated STAT5 to promote antiapoptotic

and AKT-dependent survival signaling in the presence, but not

absence, of Stat5 (Figures 7A, 8A). This was confirmed by the

RNA-seq results for the I/R-injured heart tissues, which showed

that STAT5-dependent genes and EAP-regulated genes belonged
to different categories (Table 1, Figure 6). Many of the genes

regulated by EAP in the presence of Stat5 (Stat5fl/fl+I/R group
vs. the Stat5fl/fl+EA+I/R group), such as Fosb, Fos, cxcl1, Cxcl5,
Egr1, Egr2, Nr4a3, Socs3, Ccn5, Myl4, Zhx2, Dkk3, and Dynll1,
have been reported to play a protective role against myocardial
I/R injury, cardiac hypertrophy, or hypoxic insult (47–64).
Moreover, in the presence of functional STAT5, many of these
genes are known to play antiapoptotic, anti-inflammatory, and
antioxidative roles, while some are also involved in STAT3/5
signaling (Table 1A). These DEGs act in many functional
pathways, such as the JAK/STAT, TNF, apoptotic, or NF-κB
signaling pathways (Figure 6A). Additionally, we found that
among the top 30 genes identified as being differentially
expressed between the Stat5-cKO+EA+I/R and the Stat5-
cKO+I/R groups when the Stat5 gene was absent, Rps6, Mmp3,
Pttg1, and Rac2 were closely associated with the IL-6/STAT3
signaling pathway, as previously reported (65–74) (Table 1B).
Matrix metallopeptidase 3 (Mmp3) encodes an extracellular
matrix-degrading enzyme (MMP-3) that is closely linked
with tissue remodeling, wound repair, and the progression of
atherosclerosis (65). Recent findings have indicated that STAT3
binds to the Mmp3 promoter and promotes its transcription
following IL-6 stimulation (75). Pituitary tumor transforming
1 (Pttg1) was originally cloned from rat pituitary tumor cells
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FIGURE 6 | KEGG pathway analysis of up- and downregulated genes in the heart tissues in the presence or absence of Stat5. (A) The top 20 KEGG pathways were

drawn from the 919 differentially expressed genes (DEGs) between the Stat5fl/fl+I/R group and the Stat5fl/fl+EA+I/R group shown in Figure 5. (B) The top 20 KEGG

pathways were drawn from the 906 DEGs between the Stat5-cKO+I/R group and the Stat5-cKO+EA+I/R group shown in Figure 5. (C) The top 20 KEGG pathways

were drawn from the 133 co-regulated genes shown in Figure 5.

and was reported to function as an oncogene (76). Huang
et al. (70) demonstrated that Pttg1 expression is regulated
by IL-6 via the binding of activated STAT3 to the PTTG1
promoter in LNCa P cells. Rac2, a Rac family member, is mainly
expressed in hematopoietic cells. Lai et al. detected that Rac
can enhance STAT3 activation and regulate the expression
of HIF-2α and VEGF, thereby promoting angiogenesis. The
same authors also found that the activation of STAT3, but
not STAT5, was reduced in Rac-depleted glioblastoma cells.
High levels of intracellular galectin-3 expression are essential
for the transcriptional activation of osteopontin [OPN; also
known as secreted phosphoprotein 1 (Spp1)] in STAT3-mediated
macrophageM2 polarization after myocardial infarction (67, 71).
The phosphorylation sites on ribosomal protein S6 (Rps6) have
been mapped to five clustered residues, which play an important
role in protein synthesis in cardiac myocytes, as well as in cardiac
function (66, 72–74). Our KEGG pathway analysis indicated
that the DEGs activated by EAP in Stat5-cKO mice act mainly
in ribosome-related, thermogenesis-related, and oxidative
phosphorylation-related pathways (Figure 6). Genes involved

in the ribosome-related pathway, such as Rps6 and Rpl3-ps1,
were markedly upregulated by EAP in mice lacking Stat5. Rps6
was reported to be closely related to the IL-6/STAT3 signaling
pathway (77, 78). Notably, this pathway has also been linked with
mitochondrial function, which is important in cardioprotection
(79–81). RNA-seq profiling indicated that the mechanisms
underlying the protective effect of EAP against myocardial I/R
injury differed between Stat5fl/fl and Stat5-cKO mice. Combined
with our molecular biological data, these results supported that
EAP can activate STAT3 in the absence of Stat5 and help protect
against I/R injury.

Multiple studies have demonstrated that in the absence of a
given STAT member, receptors will recruit other STAT members
instead (82–87). STAT3 and STAT5 show high homology in their
functional domains, and have different effects and underlying
mechanisms through binding to distinct loci and regulating
specific target genes (88). STAT3 and STAT5 proteins can
also bind to the same regulatory oncogenic loci, resulting in
compensatory or antagonistic signaling (89, 90). Despite the large
number of STAT3/STAT5-related studies, the roles of these two
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FIGURE 7 | The expression of apoptosis-related proteins. (A,B) Western blotting was used to detect the levels of Bcl-2, Bcl-xL, and Cyt c in each group. Data are

presented as means ± SEM of more than three independent experiments. **P < 0.01 compared with the Stat5fl/fl+I/R group. Data were analyzed by two-way ANOVA

with Bonferroni’s multiple comparison test, n = 4.

proteins in myocardial I/R injury have not been investigated.
Studies have indicated that their roles in cardioprotection may
be species-specific (27, 32, 33, 79).

Interestingly, in our study, the level of p-STAT3 was
significantly increased in the Stat5-cKO+EA+I/R group
compared with that in the Stat5fl/fl+EA+I/R group (Figure 4),
suggesting that EAP activates STAT3, and that this contributed
to the protective effect of EAP against myocardium I/R injury
in Stat5-cKO mice. Furthermore, EAP increased the mRNA
expression levels of gp130 and Il6 only in Stat5-cKO mice
(Figure 4B), supporting that IL-6/gp130/STAT3 signaling may

be activated to compensate for the loss of Stat5 following
myocardial I/R injury.

Growing evidence has demonstrated the protective role
of STAT3 in the heart (30, 32, 79, 91–93). STAT3 helps
mitigate cardiac I/R injury by reducing apoptosis or increasing
antiapoptotic signaling, upregulating the expression of
cardioprotective proteins, decreasing ROS generation, and
inhibiting autophagy (92). In addition, the activation of STAT3
is known to enhance mitochondrial function by regulating
the transcription of genes encoding proteins such as Bcl-2,
Bcl-xL, and VEGF (30, 79, 80, 91). Consistent with these
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FIGURE 8 | The expression of survival signaling-related proteins. (A,B) Western blotting was used to detect the levels of IL-10, p-AKT, and AKT in each group. Data

are presented as means ± SEM of more than three independent experiments. *P < 0.05 compared with the Stat5fl/fl+I/R group; #P < 0.05 compared with the

Stat5-cKO+I/R group. Data were analyzed by two-way ANOVA with Bonferroni’s multiple comparison test, n = 4.

observations, we found that EAP promoted the expression of
Bcl-2, Bcl-xL, and p-AKT in Stat5fl/fl+I/R mice, which was
associated with the activation of IL-6/STAT3 signaling. Notably,
IL-10 protein expression was increased in both the Stat5fl/fl

and the Stat5-cKO mice when EAP was applied followed by
I/R injury. IL-10 is an important anti-inflammatory cytokine
that can be produced by most cell types, and can affect the
growth and differentiation of various hematopoietic cells, as

well as increase cell proliferation, angiogenesis, and immune
evasion (94, 95). We have previously shown that RIPC can
activate the expression of IL-10, p-AKT, Bcl-2, and Bcl-xL,
thereby protecting the myocardium (37). Recently, Takahashi
et al. (96) showed that IL-22, a member of the IL-10 cytokine
family, can activate the myocardial STAT3 signaling pathway
and protect against myocardial I/R injury in mice. Other studies
have also shown that members of the IL-6 and IL-10 families of
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cytokines can activate the JAK/STAT3 signaling pathway and
induce the transcription of genes involved in cell survival and
proliferation (92, 97). In this study, EAP altered the expression of
theMmp3, Ubb, andMyh7 genes, which are closely related to the
STAT3 pathway, in Stat5-cKO mice with myocardial I/R injury
(Table 1B). This suggested that STAT3 may have played a vital
cardioprotective role by controlling the expression of these genes,
and may also have activated the functions of macrophages and
mononuclear phagocytes in its role as a transcriptional regulator
of anti-inflammatory-related genes (98–101). Angiogenesis is
an indicator of cardioprotection and STAT3 can promote the
expression of VEGF, a key angiogenic factor (102, 103). In our
study, the expression of VEGFA did not differ among the four
groups (Supplementary Figure 1), suggesting that the activation
of STAT3 by EAP may not be enough to promote angiogenesis
in Stat5-cKO mice. Further investigation is needed to clarify
this observation.

This study had several limitations. We found that, with EAP,
IL-6/gp130/STAT3 signaling was activated in the absence of
Stat5 following I/R injury; however, we did not determine the
levels of the associated proteins. Additionally, we did not assess
the influence of EAP on mitochondrial function, instead of
presenting the apoptotic data alone. The sample size in some
experiments was also too small to draw firm conclusions owing
to the limited border zone of the heart tissue, even though we
pooled 2–3 samples for mRNA extraction to ensure biological
duplication. Finally, whole western blots should be presented and
not the cut-off pieces.

In summary, in the present study, we demonstrated that
EAP can protect against myocardial I/R injury by reducing
the myocardial infarct area and activating antiapoptotic, anti-
inflammatory, and survival signaling pathways. Although STAT5
is involved in this process, the protective effect of EAP is not
STAT5-dependent. STAT3 may compensate for the function of
STAT5 in the absence of the Stat5 gene. Our results suggested that
EAP can mimic RIPC but is more effective at protecting the heart
against I/R injury.
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