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A key property of many antibiotics is that they will kill or inhibit a diverse range of
microbial species. This broad-spectrum of activity has its evolutionary roots in ecologi-
cal competition, whereby bacteria and other microbes use antibiotics to suppress other
strains and species. However, many bacteria also use narrow-spectrum toxins, such as
bacteriocins, that principally target conspecifics. Why has such a diversity in spectrum
evolved? Here, we develop an evolutionary model to understand antimicrobial spec-
trum. Our first model recapitulates the intuition that broad-spectrum is best, because it
enables a microbe to kill a wider diversity of competitors. However, this model neglects
an important property of antimicrobials: They are commonly bound, sequestered, or
degraded by the cells they target. Incorporating this toxin loss reveals a major advantage
to narrow-spectrum toxins: They target the strongest ecological competitor and avoid
being used up on less important species. Why then would broad-spectrum toxins ever
evolve? Our model predicts that broad-spectrum toxins will be favored by natural selec-
tion if a strain is highly abundant and can overpower both its key competitor and other
species. We test this prediction by compiling and analyzing a database of the regulation
and spectrum of toxins used in inter-bacterial competition. This analysis reveals a
strong association between broad-spectrum toxins and density-dependent regulation,
indicating that they are indeed used when strains are abundant. Our work provides a
rationale for why bacteria commonly evolve narrow-spectrum toxins such as bacterio-
cins and suggests that the evolution of antibiotics proper is a signature of ecological
dominance.
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It is nearly a century since penicillin was accidentally discovered on a bacterial culture
plate contaminated with mold (1). What made penicillin such a revolutionary drug was
its ability to kill a diverse range of bacterial species (1). This broad-spectrum of activity
meant that it could be used to treat a wide range of infections, including ones where the
causal agent was unknown (2). In the decades since, countless microbial toxins have
been identified, purified, and characterized (3) based on their spectrum of activity, and
yet we understand almost nothing about the evolution of this defining trait.
Many antibiotics were originally isolated from microbes or are modifications of

microbial products (4). By analogy with their use in medicine, it might be assumed
that antibiotics will benefit producers by allowing them to eliminate a wide range of
species. Streptomyces bacteria, for example, make many antibiotics, including several
structurally similar to penicillin, which eliminate competing bacteria and other organ-
isms (5). However, bacteria also make a wide range of antimicrobial compounds that
have a much narrower spectrum of activity, including many bacteriocins (6–8). For
example, the best studied bacteriocins are the colicins—protein toxins made by Escherichia
coli and related species—and these appear to principally target members of the same spe-
cies or genus (6). Such examples raise the question, why evolve such narrow-spectrum tox-
ins, given the potential benefits of broad-spectrum drugs that can eliminate a much wider
range of competitors?
Several evolutionary studies have asked why bacteria make antibiotics and bacterio-

cins (9–16), but these have not tackled the question of why there is such striking diver-
sity in spectrum. We decided, therefore, to develop an evolutionary model to study
this problem. We focus on a strain of bacteria living in a diverse community and
ask, does natural selection favor the use of a toxin that only targets closely related
strains (narrow-spectrum) or one that also targets members of the community more
widely (broad-spectrum)? Our first model follows the basic intuition that broad-
spectrum toxins give the most benefit to producers because they kill the most competi-
tors. However, we then show that this result rests upon an unrealistic assumption
present in most previous models of toxin competition, namely, that toxins are not
bound, degraded, or otherwise inactivated by target cells. Accounting for these pro-
cesses reveals a clear advantage to narrow-spectrum toxins: They ensure toxins are used

Significance

Antibiotics, like penicillin, treat a
wide range of infections. This
broad-spectrum of activity has its
evolutionary roots in microbial
warfare, where antibiotics can
provide a competitive edge. But
bacteria also make narrow-
spectrum toxins, which presents a
puzzle: Why not use broad-
spectrum toxins to target more
competitors? Using evolutionary
modelling, we show that narrow-
spectrum toxins help focus an
attack on a key competitor,
minimizing toxin loss to other
targets. Broad-spectrum attacks
only make sense when a microbe
is abundant and can make a lot of
toxin. We survey available data
and find, as predicted, that broad-
spectrum toxins are typically
made by bacteria at high
abundance. This suggests that
antibiotics evolved in dominant
microbes that could afford to take
on diverse competitors.

Author affiliations: aDepartment of Biology, University
of Oxford, Oxford, OX1 3RB, United Kingdom; and
bDepartment of Biochemistry, University of Oxford,
Oxford, OX1 3QU, United Kingdom

Author contributions: J.D.P. and K.R.F. designed research;
J.D.P. performed research; J.D.P. and K.R.F. contributed
new reagents/analytic tools; J.D.P. and K.R.F. analyzed
data; and J.D.P. and K.R.F. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission. D.Q. is a
guest editor invited by the Editorial Board.

Copyright © 2022 the Author(s). Published by PNAS.
This open access article is distributed under Creative
Commons Attribution License 4.0 (CC BY).

See online for related content such as Commentaries.
1To whom correspondence may be addressed. Email:
jacob.palmer@biology.ox.ac.uk or kevin.foster@biology.
ox.ac.uk.

This article contains supporting information online at
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2205407119/-/DCSupplemental.

Published September 13, 2022.

PNAS 2022 Vol. 119 No. 38 e2205407119 https://doi.org/10.1073/pnas.2205407119 1 of 11

RESEARCH ARTICLE | EVOLUTION OPEN ACCESS

https://orcid.org/0000-0001-7928-8673
https://orcid.org/0000-0003-4687-6633
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1073/pnas.2205407119
mailto:jacob.palmer@biology.ox.ac.uk
mailto:kevin.foster@biology.ox.ac.uk
mailto:kevin.foster@biology.ox.ac.uk
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205407119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205407119/-/DCSupplemental
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2205407119&domain=pdf&date_stamp=2022-09-13


on the most important competitors and not wasted on less
important strains. Why then do broad-spectrum toxins evolve
at all? We find that highly abundant bacteria can benefit from
broad-spectrum toxins, as these strains have the numbers to
successfully overcome a wide range of competitors. We test our
model with a meta-analysis of published studies on toxin regu-
lation and spectrum, which suggests—as we predict—that
broad-spectrum toxins are typically used when bacteria are at
high abundance.

Results and Discussion

Model Overview. We are interested in the evolutionary impacts
of a bacterium using broad- versus narrow-spectrum toxins to
compete with other strains and species. We consider a focal
species that can evolve to use toxins that 1) solely target mem-
bers of the same species that share its ecological niche (narrow-
spectrum) or 2) target these conspecifics and, additionally,
members of the wider bacterial community (broad-spectrum)
(Fig. 1). Specifically, we capture toxin spectrum with a variable
σ, which lies on a continuum between a purely narrow-
spectrum toxin (σ = 0) and an indiscriminate broad-spectrum
toxin (σ = 1). We do not change the energetic cost of toxin
production across spectrum values; that is, there is no spectrum
trade-off built into the model.
The heart of the model is a system of differential equations

that follow the focal strain, a conspecific strain, and the wider
community as three parties that compete for resources in the
environment. These ecological equations and their underlying
assumptions closely follow established models of microbial
competition (10–12, 14, 17, 18), and we use them to study the
dynamics of the three parties, their toxins, and the two
nutrients as they compete in a given patch. Because nutrients
are limited, it follows that there can be an evolutionary incen-
tive for the focal species to invest in toxins that suppress some,
or all, of the other bacterial strains in the environment.
Following refs. 11 and 18, we predict evolutionary outcomes

using evolutionary game theory in the tradition of Maynard
Smith and Price and adaptive dynamics (19, 20), which identi-
fies evolutionarily stable strategies (ESSs). With this informa-
tion, we can then ask whether an established genotype of the
focal species with toxin spectrum σ and production rate γ can
be outcompeted by a new, rare genotype with a different strat-
egy. More specifically, we assume that the bacteria live in a
patchy landscape, where each patch could be within an

individual host. Each competition is then modeled by the dif-
ferential equations at the scale of one patch, but is assumed to
be one of a large number that can occur in parallel. We then
calculate fitness of a given strategy using an invasion analysis
(20). This approach is detailed in Methods but is based on cal-
culating the number of cells produced by the focal strain in its
patch when using a rare, mutant strategy against a conspecific
that uses the resident strategy and is currently established in the
population. If the mutant strategy (e.g., using a broader-
spectrum toxin than the resident) is predicted to invade, this
strategy is then taken as the new resident strategy, and the pro-
cess is iterated until an ESS is reached that cannot be invaded
by other strategies. We do not model the evolution of toxin
diversity here, which is an interesting topic in its own right,
but it is commonly high in natural populations (9, 21, 22).
Therefore, again following previous work (11, 23), we assume
that toxin diversity is generally high, such that any two strains
that meet will have toxins that they are able to use against each
other.

The wider community in which a focal species lives will typi-
cally contain multiple species. To limit the model’s complexity,
we capture this wider community with one differential equa-
tion, but the framework is extendable to include more species.
The form of our models, which explicitly capture ecological
dynamics, is not amenable to analytical treatment. Simpler
models can always be considered if the priority is to achieve
analytical tractability. However, such simplification is very lim-
iting for models of toxin-mediated competition (see ref. 11 for
a formal treatment of the limitations of analytical assessment in
capturing toxin competition). Accordingly, here we follow pre-
vious work and use a numerical approach (10–12, 17). This
methodology ensures our model is realistic enough to test its
predictions using microbiological data, which is our priority
(see A Meta-analysis Suggests That Broad-Spectrum Toxins Are
Deployed at High Cell Abundances). We give more details of our
approaches in Methods, and further background can be found
in refs. 11 and 18.

A Standard Model Predicts that Broad-Spectrum Toxins Will
Always Evolve. Our goal is to model how toxin spectrum and
toxin production rate (i.e., level of investment) evolve for the
focal species. In each competition, the focal strain must contend
with another member of its species (conspecific)—which is com-
peting for its specific metabolic niche—as well as the wider bac-
terial community (Fig. 1). As just discussed, our modeling
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Fig. 1. (A) Modeling scenario. The focal strain (red) produces a toxin that targets a conspecific strain (blue), with an evolvable spectrum (σA) that means it
may also target members of the wider community (yellow). The conspecific strain (blue) can also produce toxins that target the focal strain and the commu-
nity. Members of the focal species (red and blue) compete over a limited nutrient (orange). The community has its own limiting nutrient (green), but there
can be niche overlap with the focal species, defined by parameter (Ω1), leading to resource competition between the community and the focal species.
(B) Sample dynamics from a single local competition between the focal strain (solid red line), a conspecific (solid blue line), and a community species (solid
yellow line). The focal strain and the conspecific both produce toxins (dashed red and blue lines, respectively). The focal strain and conspecific can only
consume nutrient 1 (orange), while the community consumes both nutrient 2 (green) and nutrient 1 (orange). For these illustrative plots, single-species
abundances are normalized to a maximum abundance of 1.0, and combined toxin abundances are normalized to a maximum of 1.0, which allows the differ-
ent dynamics to be easily seen. See Methods for details of model and parameters. In the plot, σA = ,1.0; σB = 1.0; γA = 0.08; γB = 0.03; E = 1, and other param-
eters are set to default values.
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assumptions and methods are based closely on previous theoretical
work on the ecology and evolution of bacterial competition
(Methods). However, our question needs us to also capture
toxin spectrum, which lacks a precedent in the evolutionary lit-
erature. Here, based on the biochemistry of many toxins
(24–27), we model the spectrum of activity as a toxin-receptor
affinity problem using the Hill equation (15, 28). With a Hill
coefficient of one, a single parameter, Kij, then determines
toxin-receptor affinity for the toxin of species i for the receptor
of target bacteria j. Toxin spectrum (σ) can then be defined as

σi = 1� KiC � Kmin

Kmax � Kmin

� �
,

where KiC defines the receptor affinity for the toxin of the focal
species (i) toward members of the community (C) (note that a
low K value in the Hill equation implies high affinity, and vice
versa). The toxins always bind with the same affinity to the con-
specific strain (KAB = KBA = Kmin = 0.05). The equation then
defines spectrum by comparing binding to the community (KiC)
to the minimum (Kmin) and maximum (Kmax) of the toxin
across all targets. This puts σi on a scale of zero to one. When
σi = 1, the toxin targets community members with equal affin-
ity to the conspecific strain and is an indiscriminate broad-
spectrum toxin (KAB = KBA = KiC = 0.05). When σi = 0, the
toxin is narrow-spectrum, targeting the conspecific strain with
maximum affinity, and targeting the community with minimum
affinity (KiC = Kmax = 3.0).
A second novelty of our analysis is that we study the simulta-

neous evolution of two properties of toxins, both spectrum and
production rate. To solve this two-parameter optimization
problem, we first use game theory to find the production rate
that is an evolutionary stable strategy (γESS) for all values of
spectrum, when the two competing strains use toxins of equal
spectrum (σi = σj). We then find the ESS for the spectrum
(σESS), assuming that bacteria use the production rate ESS pre-
viously calculated for each spectrum value (Methods and SI
Appendix, Fig. S1). In practice, this approach implies that bac-
teria can rapidly evolve to alter their production rate as the
spectrum evolves. We believe this is a reasonable assumption,
given the great flexibility in toxin regulation seen in bacteria
(9, 11, 29, 30), and the marked changes in production rate
that can occur from relatively minor mutational changes in reg-
ulatory regions(29). In summary, with this approach, the focal
strain and the conspecific strain are coevolving both spectrum
and production rate, while toxin diversity is assumed to be
maintained at a high level in the population such that each
strain will utilize a different toxin.
This initial model predicts that the evolution of toxin spec-

trum is always a race for the broadest (Fig. 2C). That is, we
find that a genotype carrying a narrower-spectrum toxin can
always be outcompeted by one carrying a broader-spectrum
toxin. The reason this occurs is that the broad-spectrum toxin
is, in essence, better value. A broad-spectrum toxin allows a
focal strain to inhibit both conspecifics and members of the
wider community. When both conspecifics and the wider com-
munity compete for the focal strain’s limiting nutrient, this
strategy carries evolutionary benefits over a narrow-spectrum
toxin that only inhibits conspecifics. The additional benefit of
broad-spectrum toxins that comes from suppressing the com-
munity is conferred on both the strain that makes the toxin
and the conspecific strain (Fig. 2A). That is, it does not provide
a specific advantage to the more broad-spectrum toxin pro-
ducers within a given competition. However, as a result, a

patch where the focal strain makes a broad-spectrum toxin
(Fig. 2A) produces more cells of the focal strain than a patch
where it makes a narrow-spectrum toxin (Fig. 2B). This patch-
level effect gives an evolutionary benefit to broad-spectrum gen-
otypes over narrow-spectrum ones.

An Important Advantage to Narrow-Spectrum Toxins. Our
first model predicts that broad-spectrum toxins will always evolve.
Not only does this prediction fly in the face of the biology of
bacteriocins, which are often narrow-spectrum (6, 31, 32), but
it also rests upon a potentially problematic assumption com-
monly used in previous studies of bacterial toxin competition
(10–12, 14, 17). There, it has been typical to assume that
toxins are lost at a constant rate, simply proportional to their
concentration, and we followed this assumption with our first
model. However, an alternative assumption is that toxins will
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Fig. 2. Broad-spectrum toxins evolve in a standard model of bacterial com-
petition. (A) Broad-spectrum toxins allow a focal strain (red) to inhibit both
its conspecific competitor (blue) and the community (yellow). Representative
temporal dynamics are shown where the focal strain (red) and conspecific
(blue) both produce broad-spectrum toxins (red and blue dashed lines,
respectively) to inhibit each other, and the community (yellow). σA = σB = 1.0;
γA = γB = 0.14027 (γESS for σ = 1.0); E = 5. (B) Narrow-spectrum toxins mean
that the focal strain now fails to inhibit community growth as much. Even
though the blue strain still makes a broad-spectrum toxin in this example,
the result of narrow-spectrum toxin use by the red strain is that the com-
munity blooms and the abundance of both the red and blue strain falls.
This outcome translates to lower fitness for the red strain from the use
of narrow-spectrum toxins, as opposed to a broad-spectrum toxin. σA = 0;
σB = 1.0; γA = γB = 0.14027 (γESS for σ = 1.0); E = 5. For these illustrative plots,
single-species abundances are normalized to a maximum abundance of 1.0,
and combined toxin abundances are normalized to a maximum of 1.0,
which allows the different dynamics to be easily seen. (C) Pairwise invasibility
plot for spectrum of activity (σ) using models of constant toxin degradation.
The evolutionary stable strategy is indiscriminately broad (σESS = 1); E = 5. All
parameters are default unless otherwise indicated.
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be lost from the system in a cell density–dependent fashion,
where loss rate is linked to the number of target cells in the sys-
tem (13, 16, 33). While this results in a more complex model,
there is a good reason to believe that this is the more realistic
assumption. Many toxins are bound or otherwise trapped by their
targets cells as a product of their inhibitory action, and toxins are
also degraded (both inadvertently and via dedicated enzymes)
(27, 34–36). In the terminology of game theory, these processes
mean that toxins are diminishable as opposed to nondiminishable
in our first model (37). In many models, the difference between
these two assumptions may be a detail that has little impact on
predictions. However, as we show below, for our question, this
seemingly subtle distinction proves to be critical for predictions.
We incorporated a model for toxin loss into our equations

based upon the same Hill dynamics that we use to model spec-
trum of activity. With this change, the action of a toxin interact-
ing with target cells is now linked to its removal from the system.
Put another way, this captures the fact that toxins will be con-
sumed or lost as a result of binding their targets and/or entering
cells. This one change completely reverses the modeling predic-
tions. Rather than always seeing natural selection for broad-
spectrum toxins, we see the evolution of the narrowest possible
toxin (Fig. 3C). Why does this occur? By incorporating toxin
degradation processes, a major advantage of narrow-spectrum tox-
ins becomes clear. Targeting other community members with a
broad-spectrum toxin can be wasteful because it consumes toxin,
but these species do not compete that strongly with the focal
strain. By contrast, a narrow-spectrum toxin targets the most
important competitors in the community, which compete
directly for the same nutrients. This specificity can make narrow-
spectrum toxins more efficient and effective than broad-spectrum
ones. Another potential advantage of narrow-spectrum toxins is
that a producer can avoid harming other species upon which it
depends, which may occur, albeit in a minority of cases (38, 39).
While we do not explicitly model this effect here, the expectation
is that this would only further favor narrow-spectrum toxins.
The advantage of a narrow-spectrum toxin is seen in the

dynamics of competition within a given patch between a broad-
and narrow-spectrum toxin user (Fig. 3). By avoiding the wider
community, the narrow-spectrum toxin is degraded much less
and can accumulate to much higher levels to inhibit conspecific
strains, as compared to a broad-spectrum toxin. We note that
this advantage to narrow-spectrum toxins would be lost if they
were to bind to nontarget cells. However, the biochemistry of
narrow-spectrum toxins is such that they are expected to bind
more strongly to the strains that they inhibit than to those that
they do not. For example, many bacteriocins bind to specific
protein receptors that have a restricted phylogenetic range,
where the absence of the receptor results in no binding and
allows the bacteriocin to continue diffusing (27).
Exploring the model across a wide range of parameter space,

including changes in nutrient abundance (N), niche overlap (Ω),
toxin killing effectiveness (E), growth rate (r), toxin absorption
(θ), and small changes in arrival time to a patch, all yield narrow-
spectrum toxins as the evolutionary stable strategy (Methods and
SI Appendix, Figs. S2 and S3). We also consider an alternative
version of the model where the cells of a toxin producer also con-
tribute to the loss of its own toxin (“soaking”) (40), which again
gives the same prediction (SI Appendix, Fig. S4).

Broad-Spectrum Toxins Are Most Useful When a Producer Is
Abundant. Our model reveals the potential for a major evolu-
tionary advantage to narrow-spectrum toxins. Whenever toxins
are removed from a system as a by-product of their interaction

with target cells, being narrow-spectrum can ensure that a toxin
is used where it is most needed, that is, against the strongest
competitor of a focal strain. As just discussed, there are good
reasons to believe that this form of toxin removal commonly
occurs, as any toxin that binds or enters a target cell is expected
to be made less available for killing through these effects
(13, 27, 34, 35, 41). For example, a recent study found that
the binding of bacteriocins to E. coli target cells creates a major
toxin sink because, while it only takes a few toxin molecules to
kill a cell, each cell can carry hundreds of receptors that bind
the toxins (27). Our prediction that narrow-spectrum toxins
can have such a strong advantage is also broadly borne out by
their frequent use by bacteria, in particular, the prevalence of
bacteriocins (9). However, bacteria also use broad-spectrum
toxins, including canonical antibiotics, which raises the ques-
tion of why these have evolved. To explore this, we decided to

R
el

at
iv

e
Ab

un
da

nc
e

0

1

R
el

at
iv

e
Ab

un
da

nc
e

0.2

0.4

0.6

0.8

1

0 2 4 6 8

Sp
ec

tru
m

 (σ
i)

0 1

1

Iinv > 1
Iinv < 1
Iinv = 1
σESS

Spectrum (σr)

0.2

0.4

0.6

0.8

Narrow

Broad

Before After

Time

C

A

B Before After
Time

10

2 4 6 8 10

Fig. 3. The advantage of narrow-spectrum toxins. In this model, we assume
that toxin degradation or loss is caused by target cells (as opposed to simply
assuming a constant loss rate; Fig. 2). (A) Broad-spectrum toxins are used by
both the focal strain and the conspecific competitor. Large amounts of toxin
are lost due to targeting the community (yellow), and toxin levels remain rel-
atively low (dashed lines in dynamics plot) rendering them ineffective. The
community has its own unique nutrient and grows fast enough to outpace
toxin-mediated killing. σA = σB = 0.99; γA = γB = 0.16577 (γESS for σ = 0.99).
(B) The focal strain produces a narrow-spectrum toxin, which allows it to out-
compete the conspecific strain (blue), which is using a broad-spectrum toxin.
The narrow-spectrum toxin experiences a much lower loss rate, allowing it
to build up (red dashed line in dynamics plot) and give the focal strain its
advantage. σA = 0; σB = 0.99; γA = γB = 0.22315 (γESS for σ = 0). For these illus-
trative plots, community abundance is normalized to a maximum abun-
dance of 1.0 and combined focal species abundances and combined toxin
abundances are normalized to a maximum of 1.0, which allows the different
dynamics to be easily seen. (C) PIP for spectrum of activity (σ) using models
of target density-dependent toxin degradation. The evolutionary stable spec-
trum strategy is fully narrow (σESS = 0). All parameters are default unless
otherwise indicated.
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expand our model for a wider range of conditions to determine
whether we ever find that broad-spectrum toxins are predicted
to evolve.
This analysis revealed that the relative abundance of the focal

strain is critical to whether broad- or narrow-spectrum toxins
are predicted to evolve. An important cause of variability in rel-
ative abundance in natural systems is order of arrival (42),
where early-arriving strains can benefit from an early popula-
tion expansion and a resulting higher abundance than late-
arriving strains. We can explore the impact of this effect on
evolution in the focal species by assuming that there are now
two possible scenarios for within-species competition: Half of

the time, the focal strain arrives before the conspecific strain,
and, in the other half, the reverse is true (Fig. 4). In other
words, this model incorporates variation in starting frequency.
In each case, we assume, for simplicity, that the rest of the
community arrives at the average of the arrival time of the two
strains, that is, halfway between their respective arrival times.
By systematically increasing the disparity in arrival time, we
identified a point where there is a shift toward natural selection
for broad-spectrum toxins (Fig. 4C and SI Appendix, Fig. S3).

What drives this evolution of broad-spectrum toxins? The
great majority of natural selection on the focal strain occurs in
the cases where it arrives early, because this is when it reaches a
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high abundance and generates the vast majority of its cells
across patches. Here, the focal strain is ecologically dominant,
outnumbering both its conspecific competitor and the commu-
nity. This abundance means the focal strain can produce
enough of a broad-spectrum toxin to overcome the high levels
of toxin loss and, thereby, inhibit all species in the patch. The
result is complete dominance of a local patch (Fig. 4A). As
such, making a narrow-spectrum toxin under these conditions
results in a lost opportunity for the early-arriving strain to
remove all competitors from the patch.
To further investigate this effect, we can also vary the arrival

time of the community. As expected, when the community
arrives earlier, this can undermine the benefit of using a broad-
spectrum toxin, and again lead to natural selection for narrow-
spectrum toxins. Early arrival by the wider community results
in the broad-spectrum toxin being lost to targeting these cells
and no longer accumulates or inhibits effectively (SI Appendix,
Fig. S5). Again, this predicts that broad-spectrum toxin evolu-
tion is associated with conditions where a strain is locally abun-
dant and ecologically dominant.
Finally, we consider the possibility that a focal strain is

always at high initial abundance (rather than only some of the
time due to arriving early). This could occur, for example, if
the strain is an intrinsically better disperser than all of the other
bacterial strains in the patch and so it reliably arrives earlier. An
important implication of this scenario is that the ecology of the
focal strain is now distinct from all other bacteria in the patch,
including the niche competitor that we previously assumed was
a conspecific. We therefore no longer assume that evolutionary
changes in the focal strain are also reflected in its key competitor
strain; that is, they are no longer conspecifics in the same gene
pool. Put another way, we now treat these two strains as different
species that are no longer coevolving. To study toxin evolution in
this scenario, we then ask, simply, what is the best strategy for
the focal species to maximize its abundance? In agreement with
our earlier coevolutionary models (Fig. 4), we observe the evolu-
tion of broad-spectrum toxins whenever the focal strain starts at
considerably greater abundance than its key niche competitor (SI
Appendix, Fig. S6). Moreover, as we increase the starting abun-
dance of the community, natural selection for broad-spectrum
toxins requires a corresponding increase in focal strain abundance
(SI Appendix, Fig. S7). Despite the differing assumptions from
our main model, therefore, this final analysis further supports the
prediction that the relative abundance of a producer is critical for
the evolution of broad-spectrum toxins.

A Meta-analysis Suggests That Broad-Spectrum Toxins Are
Deployed at High Cell Abundances. Our model predicts
narrow-spectrum toxins often carry a major advantage, but
broad-spectrum toxins can become effective when a strain is
abundant enough to compete effectively with multiple species.
This density dependence for broad-spectrum toxins is consis-
tent with the general prediction from recent mathematical
models and experiments that show that toxin efficacy can
depend strongly on producer abundance (33). However, there
are other factors that may select for broad-spectrum toxins that
are not captured by our model. For example, ecologies with
highly unpredictable competitor species could favour broad-
spectrum toxins that are more able to inhibit diverse competi-
tor species than narrow-spectrum ones. Therefore, we sought
an experimental test of our prediction that strain abundance is
linked to the benefits of using broad-spectrum toxins. There
are few data on the relative abundance of microbial species at
the fine spatial scales at which they interact and compete with

one another (27, 43), and even if such data were available, we
are unlikely to know the toxins and their spectrum for most
species. However, if our predictions are correct, we reasoned
that one should be able to observe a difference in the regulation
of narrow- and broad-spectrum toxins. Specifically, our model-
ing predicts that broad-spectrum toxins should mostly be used
when a producer is at high abundance.

In order to explore the potential relationship between the
spectrum of a toxin and its regulation, we compiled a dataset of
antibacterial toxins with the goal of identifying all well-
understood examples that have information on the toxins’ spec-
trum of activity, regulation, and molecular targets. We include
a known molecular target to help select well-understood exam-
ples with high-quality data. Target information also helps to
validate experimental data on spectrum, based upon how wide-
spread the target is across strains and species. From the data,
we identify 71 well-studied toxins for which our conditions for
inclusion are satisfied (Methods). For each of these, we classify
the nature of each toxin’s form of regulation—in particular,
whether their expression is likely to be up-regulated at high
density—and their spectrum. Further details of mechanisms of
regulation, spectrum, and receptors are available in SI
Appendix, Table S1, which also provides references for the cate-
gorizations of all toxins included in our analysis.

For regulation, we use three categories to broadly capture the
observed variation. We group regulatory networks that are most
likely to drive density-dependent responses under one category.
Central among these is quorum sensing, whereby cells release a
small molecule from the cell (44). By monitoring the concentra-
tion of this small molecule as it builds up, cells can infer the
density of bacteria around them producing this molecule. Also
included as density-dependent regulation mechanisms are those
related to sporulation (e.g., Spo0A) (45) and biofilm conditions
(OmpR) (30, 46), whose expression have both been linked to
high density. A second key category is stress responses that spe-
cifically respond to nutrient limitation, such as iron deprivation,
nitrogen starvation, and the stringent response. Nutrient limita-
tion may sometimes be indicative of high cell density, but it is
also likely that many bacteria occur at low density because they
are in low-nutrient conditions, giving the opposite pattern. We,
therefore, do not consider nutrient limitation a reliable indicator
of high cell density. The other major category is that of DNA
damage–mediated regulation, specifically, the SOS response,
which is known to regulate many well-characterized toxins includ-
ing many colicins and pyocins (6, 47). DNA damage–mediated
regulation is not considered to be an indicator of high cell density.

We categorize the spectrum of toxins based upon the phyloge-
netic diversity of the species that can be inhibited. This approach
allows us to be systematic and avoid the subjectivity that can
come with comparing one particular toxin, or group of toxins,
to others (48). Even toxins that are considered narrow-spectrum,
such as the canonical narrow-spectrum colicins of E. coli, can
inhibit bacteria from different families (49). We therefore use
the within one class level for the narrow-spectrum category
(spectrum value of 1), and then within one phylum (spectrum
value of 2) and targets multiple phyla (spectrum value of 3) for
increasingly broad-spectrum toxins. A final caveat is that, just
because a toxin can be shown to inhibit diverse species, this does
not necessarily mean that it will in nature, where these diverse
species may not be present. Nevertheless, these experimental
measures of toxin spectrum are likely to be a good general indi-
cator of their activities in natural contexts.

Simply ranking the toxins by their spectrum immediately
indicates a strong association with regulation mode (Fig. 5A),
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where density-dependent regulation is strongly enriched within
the broad-spectrum toxins. Specifically, the toxins we catego-
rized as being under density-dependent regulation, based on the
literature, have a mean spectrum value of 2.71 and a median
value of 3 (the maximum of our measure of spectrum, previous
paragraph). This contrasts strongly with the non-density-depen-
dent regulation toxins, which have a mean spectrum value of
1.14 and a median value of 1 (the minimum of our measure of
spectrum). However, a caveat is that it is possible for such associ-
ations to occur due to phylogenetic biases. For example, if there
is a large clade of bacteria that all have density-dependent regula-
tion and broad-spectrum toxins, this could drive the association,
when, in fact, it only evolved on one occasion in one common
ancestor.
We can account for any such effects by putting the species

on a phylogeny (Fig. 5B) and then testing the effect of spec-
trum on the mode of regulation using a statistical model that
incorporates phylogenetic effects [binaryPGLMM (50, 51)].
More specifically, we assess the likelihood of toxins with spec-
trum value 2 (intermediate) or 3 (broad) being regulated by a
density-dependent mechanism (classified as a binary presence
or absence variable) compared to toxins with a spectrum value
of 1 (narrow) by fitting a logistic model. There is no effect

when comparing narrow (spectrum value of 1) and intermedi-
ate (spectrum value of 2) toxins (SI Appendix, Table S2), which
is expected as there are few examples of intermediate toxins.
However, comparing narrow (spectrum value of 1) and broad
(spectrum value of 3), we find, as predicted, a highly significant
association between broad-spectrum toxins and density-dependent
regulation (β: 4.1699; S.E.: 1.2196; P < 0.001). Putting the sta-
tistical results into more relatable terms, β is the log-odds ratio
between our two groups of interest. By exponentiating β, this
gives that broad-spectrum toxins are ∼60 times more likely to be
under density-dependent regulation than narrow-spectrum toxins.
This analysis, therefore, supports a strong interaction between
density-dependent regulation and the use of broad-spectrum tox-
ins. To ensure these results were not dependent upon our statisti-
cal method, we used another widely used statistical model,
MCMCglmm (52), which is a Bayesian statistical model that
accounts for phylogeny as a random effect to account for depen-
dence in the data. This model again supported a strong effect
between density-dependent regulation and broad-spectrum toxins
(SI Appendix, Table S2, “Main analysis”).

One potential criticism of our analysis is that we have included
some forms of regulation—regulators of sporulation and biofilm
formation—that are not always thought of as density-dependent
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Fig. 5. Broad-spectrum toxins are associated with density-dependent regulation. (A) Ranking antibacterial toxins by spectrum of activity indicates a strong
association with density-dependent regulation. Pink: density-dependent; blue: SOS response; orange: nutrient stress. Spectrum of activity based on experi-
mentally demonstrated susceptibility is as follows: 1, within one class; 2, within one phylum; 3, across multiple phyla. (B) The association between spectrum
and regulation remains when one controls for phylogenetic effects (see main text for statistics). Here we show the 16S ribosomal RNA based phylogeny of
the toxin producing species in our analysis with toxin, regulation, and toxin spectrum of activity metadata. Toxins that share regulation, spectrum, and target
are listed as a single line entry. Further details and references are provided in SI Appendix, Table S1.
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regulation to the same extent as quorum sensing. We believe the
inclusion of these additional forms of regulation as density depen-
dent makes sense given the available data (46, 53). Nevertheless,
we decided to test whether the inclusion of these additional regu-
lators was critical for our findings. To do this, we took a more
stringent definition of density-dependent regulation that only
includes canonical quorum sensing. We again see the same pat-
terns. For density-dependent toxins, we find a mean spectrum
value of 2.71 and a median value of 3, while those not regulated
by density-dependent mechanisms have a mean spectrum value
of 1.33 and a median value of 1. The phylogenetic analysis is
again significant for both statistical methods (binaryPGLMM
spectrum 1 vs. 3; β: 2.9727; S.E.: 0.9944; P value < 0.005; for
Bayesian test, see SI Appendix, Table S2, “Strict Analysis”). While
we favor our initial definition of density-dependent regulation,
therefore, we still find strong evidence for a link between density
dependence and the use of broad-spectrum toxins when we apply
a more stringent definition.

Conclusions. Spectrum of activity is a key property of any anti-
microbial compound, and yet the evolutionary origins of this
property have received little attention. Here, we have identified an
evolutionary rationale for the evolution of both narrow- and
broad-spectrum toxins during bacterial warfare. Our models pre-
dict that narrow-spectrum toxins will evolve to target competing
strains that are the greatest threat, without wasting toxin invest-
ment on other species which are less of a threat (Fig. 3). However,
when a strain is sufficiently abundant, natural selection can,
instead, favor broad-spectrum toxins that allow a strain to cement
its ecological dominance by suppressing not only their key com-
petitors but also members of the wider community (Fig. 4).
We tested this prediction with a phylogenetically controlled

meta-analysis of published data, which identified a strong link
between density-dependent regulation and the use of broad-
spectrum toxins (Fig. 5). This suggested, as predicted, that bac-
teria have evolved to use broad-spectrum toxins when they are
at relatively high abundance. It is interesting to consider alter-
native explanations for this link between broad-spectrum toxins
and density-dependent regulation. For example, if broad-spectrum
toxins are inherently less potent, and therefore require higher con-
centrations to be effective, this could favor density-dependent reg-
ulation. However, the data suggest that broad-spectrum toxins can
be both highly effective and under density-dependent regulation
[e.g., colistin and nisin are inhibitory at comparable concentra-
tions to the most potent of the narrow-spectrum colicin bacterio-
cins (54–57)]. While changes in efficacy may be a contributing
factor, therefore, it does not appear to explain the data. More gen-
erally, our meta-analysis only considered bacteria, where there is
the most information on regulation and spectrum of antimicro-
bials. However, our predictions are generally applicable to other
microbes. In fungi, for example, we might expect similar links
between abundance and the benefits of broad-spectrum toxins.
There is an ongoing discussion of the relative merits of

broad- vs. narrow-spectrum antimicrobials as a treatment strategy
(8, 32, 58). Traditionally, broad-spectrum antibiotics have been
favored, as they enable treatment of a wide range of conditions
without specific knowledge of the causal agent. However, narrow-
spectrum alternatives, including the bacteriocins, are increasingly
being considered due to their ability to target a given pathogen
without negatively affecting the commensal community (8, 32,
58, 59). Our evolutionary modeling suggests another benefit to
their use: By targeting a specific species, less of a given drug may
be lost to off-target effects. This targeting has the potential to
improve delivery, particularly in dense communities where large

amounts of a given drug can be degraded or absorbed by targeted
cells (27, 34, 60). More generally, our model underlines the great
potential for bacteria and other microbes to evolve narrow-
spectrum toxins. In line with this prediction, there is a growing
number of bacteriocins being discovered (61–64), which raises the
possibility of a large, and largely untapped, diversity in these anti-
microbial compounds. Another prediction of our modeling is that
a focus on abundant species may inadvertently enrich for antibi-
otic production, because it is ecologically dominant species that
stand to benefit the most from broad-spectrum toxins. If the goal
is to shift to narrow-spectrum toxins, therefore, there may be value
in a focus on the less abundant taxa.

Methods

Our methods closely follow published work on the evolution of competition in
bacteria (10, 11, 18). These methods combine 1) a realistic description of the
dynamics of bacterial population growth within competitions with 2) approaches
from evolutionary game theory that take the outcomes of individual competitions
and use them to predict evolutionary outcomes. More details of these approaches
can be found in the earlier work (10, 11, 18), but we also go through the meth-
ods here, with particular focus on the aspects tailored to studying spectrum evolu-
tion, which is the key novelty in our work.

Differential Equations and Default Parameters. The core of the model is a
system of ordinary differential equations (ODEs), which is based on earlier mod-
els (11, 13, 17). In the first model, we use a constant term for toxin loss from
the system, as is typical (10–12, 14, 17), but we later modify this. We use the
model to follow the dynamics of three species, the two toxins made by species
A and B, and two nutrients,

dA
dt

= AðtÞ � N1ðtÞ
ðN1ðtÞ + KN1Þ � rA � ð1� γAÞ � E � ThB ðtÞ

ThB ðtÞ + KhBA

 ! !
[1]

dB
dt

= BðtÞ � N1ðtÞ
ðN1ðtÞ + KN1Þ � rB � ð1� γBÞ � E � ThA ðtÞ

ThA ðtÞ + KhAB

 ! !
[2]

dC
dt

= CðtÞ �
 

N2ðtÞ
ðN2ðtÞ + KN2Þ � rC +

N1ðtÞ
ðN1ðtÞ + KN1Þ

� Ω1 � rC � E � ThA ðtÞ
ThA ðtÞ + KhAC

 !
� E � ThB ðtÞ

ThB ðtÞ + KhBC

 !! [3]

dTA
dt

= γA � AðtÞ �
N1ðtÞ

N1ðtÞ + KN1

� �
� LT � TAðtÞ [4]

dTB
dt

= γB � BðtÞ �
N1ðtÞ

N1ðtÞ + KN1

� �
� LT � TBðtÞ [5]

dN1
dt

= � N1ðtÞ
N1ðtÞ + KN1

� �
� ðAðtÞ + BðtÞ + Ω1 � CðtÞÞ [6]

dN2
dt

= � N2ðtÞ
N2ðtÞ + KN2

� �
� CðtÞ, [7]

where A, B, and C are the biomass of the focal species, the conspecific (or niche
competitor, in the case of SI Appendix, Figs. S6 and S7), and the community,
respectively. The community, therefore, is modeled as a single species, for sim-
plicity. Extending the model of the community to define multiple individual spe-
cies (with differing degrees of niche overlap with the focal strain) could result in
natural selection for intermediate spectrum toxins, where certain community
members are targeted while others are avoided. However, we do not explore
this further here. TA and TB are the biomass of the focal species toxin and the
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conspecific (or niche competitor, in SI Appendix, Figs. S6 and S7) toxin, respec-
tively. N1 and N2 denote nutrient 1 and nutrient 2. As discussed in the Results
and Discussion, we represent spectrum in terms of toxin-receptor affinity. A small
Kij value results in high affinity of toxin from species i to the receptor of species
j, whereas a large Kij value results in low affinity of toxin from species i to the
receptor of species j. The affinity of toxins for the receptor of their conspecific are
fixed at the highest level of affinity within our model (Kmin = 0.05). This leaves
KiC, the affinity of toxin from species i to the receptor of the community (C), as
the evolving parameter of the spectrum (σ) in our model. We convert KiC to σ
using Eq. 8 to create a term which varies from zero to one and is more easily
interpreted than KiC. A full list of variables and default parameters can be found
in SI Appendix, Table S3.

σi = 1� KiC � Kmin
Kmax � Kmin

� �
: [8]

We modify this model to incorporate a density-dependent toxin loss term.
While the majority of previous models take the form of our first model, there are
some that have density-dependent toxin loss, and we follow these in this second
model (13, 16, 33). This modification means the model now captures the poten-
tial for target cells to drive loss of the toxin from the system, such as would occur
if they degrade or bind the toxin. We also include a toxin absorption term (θ)
with a default value of one, yet modify this term as part of our parameter
sweeps. This second model replaces Eqs. 4 and 5 with Eqs. 9 and 10.

dTA
dt

= γA � AðtÞ �
N1ðtÞ

N1ðtÞ + KN1

� �
� θ

� BðtÞ � ThA ðtÞ
ThA ðtÞ + KhAB

 !
+ CðtÞ � ThA ðtÞ

ThA ðtÞ + KhAC

 ! !
[9]

dTB
dt

= γB � BðtÞ �
N1ðtÞ

N1ðtÞ + KN1

� �
� θ

� AðtÞ � ThB ðtÞ
ThB ðtÞ + KhBA

 !
+ CðtÞ � ThB ðtÞ

ThB ðtÞ + KhBC

 ! !
: [10]

We use these ODEs to model outcomes of toxin-based bacterial competition
within a given patch (Figs. 1B, 2 A and B, , and and SI Appendix, Fig. S5 A and
B), and we then use game theory to predict, from these competitions, the evolu-
tion of both toxin production rate and spectrum, as discussed in the next section.
For one analysis (SI Appendix, Fig. S4), we also include a term for toxin loss
driven by the producer strain, replacing Eqs. 9 and 10 with Eqs. 11 and 12. This
term is set to the strongest toxin-receptor affinity.

dTA
dt

= γA � AðtÞ �
N1ðtÞ

N1ðtÞ + KN1

� �
� θ � AðtÞ � ThA ðtÞ

ThA ðtÞ + KhAA

 ! 

+ BðtÞ � ThA ðtÞ
ThA ðtÞ + KhAB

 !
+ CðtÞ � ThA ðtÞ

ThA ðtÞ + KhAC

 !! [11]

dTB
dt

= γB � BðtÞ �
N1ðtÞ

N1ðtÞ + KN1

� �
� θ � AðtÞ � ThB ðtÞ

ThB ðtÞ + KhBA

 ! 

+ BðtÞ � ThB ðtÞ
ThB ðtÞ + KhBB

 !
+ CðtÞ � ThB ðtÞ

ThB ðtÞ + KhBC

 !!
:

[12]
Default parameters are used throughout (SI Appendix, Table S3), except

where noted. All equations are allowed to proceed until steady state, as
defined by the point where the change in nutrient abundance is less than
5e�8 (MaxðjdN1=dtj, jdN2=dtjÞ < 5e�8), which proved a reliable proxy for
steady state across all variables. Once at steady state, abundance of the focal
strain is measured.

Game Theory. The differential equation models predict the outcome of a given
competition between our focal strain, its conspecific competitor, and the wider
community. We embed these competitions in a broader framework of game

theory, known as adaptive dynamics (20), which we use to understand how traits
evolve over successive rounds of competition. Unlike some models which focus
on a single trait, we follow the evolution of two traits, toxin production rate and
toxin spectrum, in two steps.
Step 1: Evolution of production rate γESS. We perform multiparameter optimi-
zation with a two-step process where we first ask, what is the evolutionarily sta-
ble production rate—the ESS (65)—(γESS), under the assumption that both strains
are producing toxins with equal spectrum (σA = σB)? In this first step, we make
no assumptions about the optimum spectrum strategy, but rather, we ask, what
is the evolutionarily stable production rate (γESS) for every possible spectrum
strategy (σ) from zero to one?

To establish an evolutionary stable strategy (in this case, γESS), we employ a
form of adaptive dynamics (11, 66, 67) (SI Appendix, Fig. S1). We consider a resi-
dent bacterial strategy of γres, which gives the current toxin production rate in the
focal species. Following previous work, we assume that the bacteria live in a
patchy landscape, which could be a series of hosts, where each competition mod-
eled by the differential equations occurs at the scale of one patch. Any competi-
tion in one patch, therefore, is assumed to be one of a large number that can
occur in parallel. In this population, the fitness of the resident strategy (ωres) is
assessed from the number of cells it makes when the focal strain uses its γres
strategy in competition with its conspecific strain using the identical γres strategy.
We do not model the evolution of toxin diversity here, but it is commonly high in
natural populations (9, 21, 22). Therefore, again following previous work (11,
23), we assume that toxin diversity is high, such that any two strains that meet
will have toxins that they are able to use against each other. Next, we calculate
the fitness of a new (invading) strategy (ωinv). Because this strategy is rare, it is
not expected to meet the same strategy in a patch. Instead, it will meet the resi-
dent strategy. Accordingly, the fitness of the invading strain is taken from the
number of cells it produces when the focal strain uses γinv strategy, while in com-
petition with its conspecific strain using the γres strategy. We then calculate the
invasion index (Iinv) for the invading strategy as previously (11, 66, 67), where

Iinv =
ωinv

ωres
=
ωðγinv j γresÞ
ωðγres j γresÞ

: [13]

We calculate the invasion index for all possible pairs of resident and invader
strategies, and visualize the results as a pairwise invasibility plot (PIP) (20) (SI
Appendix, Fig. S1). When Iinv is greater than one (red regions in SI Appendix,
Fig. S1), the invading strategy can invade, and, when Iinv is less than one (black
regions in SI Appendix, Fig. S1), the invading strategy cannot invade and is lost.
By definition, when the invading strain and the resident strain have the same
value, they will achieve equal biomass and Iinv = 1 (shown in white in our PIPs).
A γESS in a PIP is the point on the diagonal where no other strategy can invade,
representing a new monomorphic metapopulation utilizing the γESS strategy.
Visually, for any given PIP, the ESS will appear as a white point along the diago-
nal where there is no red above or below it. For most of the PIPs for the spec-
trum in this work, the ESS is at the edge of the bounded interval, and so
the white point on the diagonal is bounded by the outer edge of the PIP, and a
column of black above or below.
Step 2: Evolution of spectrum σESS. In the second step, we equip both the focal
strain and the conspecific with the evolutionarily stable production rate (γESS) for
each value for the spectrum (σ), as determined in the first step. We again use
adaptive dynamics and invasion analysis, except now we measure the Iinv based
on variability in the spectrum (σ) strategy. Specifically, we calculate the fitness of
the resident strategy (ωres) by measuring the final biomass achieved when the
focal strain uses σres and the corresponding γESS, while in competition with its
conspecific strain using the identical σres strategy and γESS. We then calculate
the fitness (ωinv) of a new mutant σ strategy (σinv) (using the same γESS) by mea-
suring the biomass of the mutant focal species when in competition with the
conspecific strain utilizing the σres and γESS strategy. Again, assuming that the
production rate can rapidly evolve (9, 11, 29, 30), with each successful invasion
of a new spectrum strategy, the production rate automatically shifts to the γESS for
the new σres. We then repeat the invasion analysis as before, establishing the
evolutionary stable state of σ (σESS) (Figs. 2–4 and SI Appendix, Figs. S2–S5).

Iinv =
ωinv

ωres
=
ωðσinv j σres Þ
ωðσres j σresÞ : [14]
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It is typical, in adaptive dynamics, to focus on small changes in trait values in a
mutant relative to a resident when making predictions. Our models perform
well under this assumption, but, in most cases, they also perform well for large
changes in trait value, owing to the simplicity of the resulting PIPs. For example,
Figs. 2–4 would ultimately be expected to reach the same ESS with large steps
sizes, so long as there are also occasional small step sizes to allow optimization.

Modeling Variability in Arrival Time. For the competitions using asymmetric
starting ratios (Fig. 4 and SI Appendix, Figs. S3 and S5), the fitness of a given
strategy was calculated from the average number of cells produced across
patches when the focal strain arrives early, and then when the conspecific arrives
early. For example, the results shown in Fig. 4 use starting values of 1e�4

for the early-arriving strain (default starting abundance), and 0.4e�4 for the
late-arriving strains, which is a simplified way to model what would occur if
the early-arriving strain had the chance to undergo population growth before
the late-arriving strain appeared. We again use the two-step process as described
above (SI Appendix, Fig. S1) to determine the optimized production rate (γESS)
for each value of the spectrum (σ), using the average biomass produced for a
given strategy (when both arriving early and arriving late) when calculating the
fitness (ω) for a given strategy. We repeat this same process again to calculate
the optimum spectrum (σESS). For SI Appendix, Fig. S5, we use the exact same
methodology, except now the community species is already established in each
case (starting abundance 3.0e�4).

It could be argued that variation in starting abundance is too simplifying of
an assumption for modeling variation in arrival time. Therefore, we also develop
a model which allows the early-arriving strain to grow and produce toxins prior
to the arrival of other competitors, although this results in a more complex
numerical model (SI Appendix, Fig. S3B). We achieve this by allowing the early-
arriving strain to increase its own abundance by a specified percentage in the
absence of the community and the conspecific competitor. The community
always arrives halfway between the arrival of the two strains of the focal species.
This requires stopping and restarting the numerical solver for the addition of
each new strain. Each strain then arrives with the same starting abundance
(1e�4). This more complex version of the model does not qualitatively affect pre-
dictions, so we focus on the simpler version.

Toxin Spectrum, Regulation, and Target Receptor Survey. We began
compiling a list of bacterial toxins for our meta-analysis by downloading all cur-
rent entries, as of March 17, 2021, in the BAGEL4 database (1,005 entries),
which is a database of ribosomally synthesized peptide/protein bacterial toxins.
Each entry in BAGEL4 was individually examined to determine whether experi-
mental data were available regarding regulation, spectrum of activity, and target

receptor. The first reference examined in each case was the reference associated
with the BAGEL4 entry. If this reference lacked the necessary information, all
reasonable effort was made to find supplementary references to provide the rele-
vant data for inclusion in this analysis. The spectrum of activity data required sus-
ceptibility testing against at least one species other than the producing species.
This requirement only excluded S pyocins (S1, S2, S3, and S4) of Pseudomonas
aeruginosa. Even so, there remains the potential for our estimates of spectrum
to be influenced by how widely a given toxin was tested. Toxins in the BAGEL4
database that did not include a reference or any clear identifying information
(e.g., Class I lanthipeptide 001) were excluded from consideration. A single
toxin, lacticin Q produced by Lactococcus lactis strain QU5, met our requirements
for inclusion, yet was excluded from Fig. 5 and the corresponding meta-analysis.
The positive regulator of lacticin Q production, LnqR, is attenuated at elevated
temperatures, leading to decreased lacticin Q production (68). This form of regu-
lation does not fit naturally with any of the typical categories, and, given it is a
one-off, we deemed it unhelpful to include it.

As discussed above, the BAGEL4 database exclusively contains ribosomally
synthesized peptides/proteins, which excludes many other molecules which are
often implicated as interbacterial toxins. No similar database exists to catalog
such compounds. We therefore compiled a list manually for the other classes of
toxins, which include small-molecule antibiotics, with the goal, again, of finding
all toxins that meet our criteria. All toxins included in the analysis, and relevant
citations, are included in SI Appendix, Table S1.

Supplementary Methods. For additional methods regarding the statistical
meta-analysis and default parameter values for the models, please see SI
Appendix. All code and data from this work can be found at doi:10.5281/
zenodo.6819262.

Data, Materials, and Software Availability. Matlab scripts, R scripts, and
data files have been deposited in GitHub: JPox14/PNAS_2022-05407 (69). All
code and data from this work can be found at doi: 10.5281/zenodo.
6819262 (70).
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