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Abstract
Background: In India, Curcumin (CMN) is popularly known as "Haldi", and has been well studied
due to its economic importance. Traditional Indian medicine claims the use of its powder against
biliary disorders, anorexia, coryza, cough, diabetic wounds, hepatic disorder, rheumatism and
sinusitis. This study was designed to examine the possible beneficial effect of CMN in preventing
the acute renal failure and related oxidative stress caused by chronic administration of cyclosporine
(CsA) in rats. CMN was administered concurrently with CsA (20 mg/kg/day s.c) for 21 days.
Oxidative stress in kidney tissue homogenates was estimated using thiobarbituric acid reactive
substances (TBARS), reduced glutathione (GSH) content, superoxide dismutase (SOD), and
Catalase (CAT). Nitrite levels were estimated in serum and tissue homogenates.

Results: CsA administration for 21 days produced elevated levels of TBARS and marked depletion
of renal endogenous antioxidant enzymes and deteriorated the renal function as assessed by
increased serum creatinine, Blood Urea Nitrogen (BUN) and decreased creatinine and urea
clearance as compared to vehicle treated rats. CMN markedly reduced elevated levels of TBARS,
significantly attenuated renal dysfunction increased the levels of antioxidant enzymes in CsA
treated rats and normalized the altered renal morphology.

Conclusion: In conclusion our study showed that CMN through its antioxidant activity effectively
salvaged CsA nephrotoxicity.

Background
Cyclosporine (CsA) (formerly called cyclosporine A), a
hydrophobic cyclic undecapeptide produced by the fun-
gus Tolypocladium inflatum, can be considered the proto-
type of immunosuppressant that has revolutionized the
management of allotransplantation. This drug specifically
and reversibly inhibits immunocompetent T-helper lym-
phocytes by suppressing the interleukin-2 driven prolifer-
ation of activated T-cells [1]. CsA combines low
myelotoxicity with effectiveness in preventing allograft

rejection and graft versus host disease as well as in the
treatment of various autoimmune and ocular inflamma-
tory diseases [2]. Nephrotoxicity and hypertension are the
major adverse effects that often limit CsA treatment fol-
lowing solid organ transplantation and autoimmune dis-
eases [3]. The functional changes caused by CsA are dose
dependant and are usually reversible after short-term CsA
treatment [4].
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Cumulative data suggest a role for reactive oxygen metab-
olites as one of the postulated mechanisms in the patho-
genesis of CsA nephrotoxicity. CsA results in enhanced
generation of hydrogen peroxide in cultured hepatocytes
[5] and mesangial cells [6,7]. In vitro and in vivo studies
indicate that CsA enhances lipid peroxidation, reduces
renal microsomal NADPH cytochrome P450, and renal
reduced/oxidized glutathione ratio (GSH/GSSG) in kid-
ney cortex as well as renal microsomes and mitochondria
[8-11]. Antioxidants such as α-tocopherol, ascorbate, sili-
binin, lazaroid, propionyl carnitine and superoxide dis-
mutase/catalase, have been shown to ameliorate
cyclosporine-induced renal toxicity [5,12].

Current traditional Indian medicine claims the use of Cur-
cuma longa L. (Zingiberaceae) powder against biliary disor-
ders, anorexia, coryza, cough, diabetic wounds, hepatic
disorder, rheumatism and sinusitis [13]. Curcumin
(CMN) is a major component in curcuma/turmeric, being
responsible for its biological actions. More and more
studies now show that CMN exhibit anti-inflamma-
tory[14,15], anti-human immunodeficiency virus
[16,17], anti-bacterial [18] and nematocidal activities
[19]. Various in-vitro and in-vivo studies increasingly estab-
lish the antioxidant properties of CMN [20-22]. It is well
documented that CMN scavenges superoxide anions [23],
peroxynitrite radicals [24,25], and quenches singlet oxy-
gen [26]. CMN has also been shown to inhibit hydrogen-
peroxide-induced cell damage [20].

Thus the present study was designed to examine the pos-
sible beneficial effect of CMN in preventing the acute
renal failure and related oxidative stress caused by chronic
administration of CsA in rats.

Results
Effect of CMN on renal function
CsA treatment for 21 days significantly increased the
serum creatinine and blood urea nitrogen (BUN) as com-
pared with the control group. Chronic CMN treatment
significantly and dose-dependently prevented this rise in
BUN and serum creatinine (Table-1). Moreover, the creat-
inine and urea clearance, which was markedly reduced by
CsA-administration, was significantly and dose-depend-
ently improved by CMN treatment (Table-1). However,
CMN (15 mg/kg) per se had no effect on serum creatinine,
BUN, creatinine and urea clearance.

Effect of CMN on CsA-induced nitrosative stress
Serum and tissue nitrite levels were significantly elevated
by CsA-administration. Curcumin treatment significantly
and dose dependently improved this increase in nitrite
levels both in serum and tissue (Table-2). However, CMN
(15 mg/kg) per se had no effect on serum nitrite levels.

Effect of CMN on CsA-induced lipid peroxidation
Renal TBARS levels were markedly increased by CsA
administration as compared to control group. Treatment
with curcumin produced a significant and dose-depend-
ent reduction in TBARS in CsA-treated rats, however cur-
cumin per se did not alter TBARS (Fig. 1).

Table 1: Effect of CMN on cyclosporine-induced nephrotoxicity

Variables Control CsA (20) CMN(15) CsA (20)+ CMN(5) CsA (20)+ CMN(10) CsA (20)+ CMN(15)

Serum creatinine (mg/dl) 0.95 ± 0.01 3.12 ± 0.17a 0.87 ± 0.01b 2.00 ± 0.11a,b 1.5 ± 0.06a,b 1.00 ± 0.01a,b

Creatinine clearance (ml/min) 0.76 ± 0.06 0.078 ± 0.05a 0.87 ± 0.05b 0.44 ± 0.03a,b 0.65 ± 0.04a,b 0.80 ± 0.05b

BUN (mg/dl) 24.55 ± 0.77 87.44 ± 4.37a 26.87 ± 0.64b 73.65 ± 1.32a,b 53.21 ± 0.9a,b 35.89 ± 0.64 a,b

Urea clearance (ml/min) 0.58 ± 0.04 0.19 ± 0.05a 0.61 ± 0.03b 0.49 ± 0.02a,b 0.53 ± 0.03a,b 0.59 ± 0.03b

Values are expressed mean ± mean. a = Statistical significant at P < 0.05 as compared to control, b = Statistical significant at P < 0.05 as compared to 
Cyclosporine (CsA)

Table 2: Effect of CMN on cyclosporine-induced Nitrite levels

Variables Control CsA (20) CMN(15) CsA (20)+ 
CMN(5)

CsA (20)+ 
CMN(10)

CsA (20)+ 
CMN(15)

Serum Nitrite(µmol/ml) 62 ± 3.72 91.9 ± 50.6a 60 ± 3.15b 77 ± 4.55a,b 69 ± 8.75b 61 ± 3.05b

Tissue nitrite(µmol/mg) 103.518 ± 2.73 190.656 ± 7.97a 101.814 ± 2.27b 174.704 ± 4.01a,b 144.79 ± 3.01a,b 116.912 ± 2.27a,b

Values are expressed mean ± mean. a = Statistical significant at P < 0.05 as compared to control, b = Statistical significant at P < 0.05 as compared 
to Cyclosporine (CsA)
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Effect of CMN on CsA-induced changes in the antioxidant 
profile
Treatment with CsA significantly decreased the reduced
glutathione (GSH) levels (Fig. 2) and activities of superox-
ide dismutase (SOD) (Fig. 3) and catalase (CAT) (Fig. 4).
This reduction was significantly and dose-dependetly
improved by the treatment with curcumin. However cur-
cumin per se did not alter the endogenous antioxidant
profile.

Effect of CMN on CsA-induced changes on renal 
morphology
The histopathological changes were graded and summa-
rized in (Table 3). The sections of the control group
showed normal glomeruli, afferent arterioles, and tubule
cells. By contrast, the kidneys of rats treated with CsA
showed marked histological changes in the cortex and
outer medulla. The renal sections showed marked tubu-
lointerstital fibrosis, severe epical blebbing and hyaline
casts and glomerular basement thickening. Treatment
with CMN preserved the normal morphology of the kid-
ney and shows normal glomeruli, no cast formation and
slight oedema of the tubular cells.

Discussion
The exact mechanism of CsA-induced hypertension and
nephrotoxicity remain obscure but several studies suggest
that a defect in intracellular calcium handling [27], mag-
nesium deficiency [28], oxidative stress [29,30], and nitric
oxide (NO) system [31] are involved. Acute renal failure
due to CsA is widely attributed to the generation of reac-
tive oxygen species (ROS) by CsA.

It has been reported that binding of pimonidazole, a
hypoxia marker in the kidneys, was increased nearly three-
fold by CsA, indicating marked tissue hypoxia [32]. More-
over, free radicals in the urine were increased dramatically
after CsA treatment. [7]. It is also known that CsA
increases renal nerve activity resulting in vasoconstricton
in the kidney [33]. In addition, CsA causes vasoconstric-
tion directly in isolated renal arterioles [34,35]. It has
been demonstrated that CsA blocks mitochondrial Cal-
cium (Ca+2) release, inducing a drastic enhancement in
intracellular free Ca+2, which could account for the vaso-
constrictive effect of CsA [36,37]. These alterations could
theoretically lead to a classical hypoxia-reoxygenation
injury involving oxygen free radicals. In addition, ROS
could be derived directly from CsA or during its metabo-
lism by the CYP450 system [6]. It has been demonstrated
that cyclosporine increased level of superoxide (O2

-) in

Effect of curcumin (CMN) on Cyclosporine-induced lipid peroxidation in rat kidneyFigure 1
Effect of curcumin (CMN) on Cyclosporine-induced lipid peroxidation in rat kidney. Values are expressed mean ± mean. a = 
Statistical significant at P < 0.05 as compared to control, b = Statistical significant at P < 0.05 as compared to Cyclosporine 
(CsA).
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Effect of curcumin (CMN) on Cyclosporine-induced Reduced Glutathione in rat kidneyFigure 2
Effect of curcumin (CMN) on Cyclosporine-induced Reduced Glutathione in rat kidney. Values are expressed mean ± mean. a 
= Statistical significant at P < 0.05 as compared to control, b = Statistical significant at P < 0.05 as compared to Cyclosporine 
(CsA).

Effect of curcumin (CMN) on Cyclosporine-induced SOD levels in rat kidneyFigure 3
Effect of curcumin (CMN) on Cyclosporine-induced SOD levels in rat kidney. Values are expressed mean ± mean. a = Statisti-
cal significant at P < 0.05 as compared to control, b = Statistical significant at P < 0.05 as compared to Cyclosporine (CsA).
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endothelial and mesangial cells [9]. Studies show that
CsA-induced local production of hydroxyl radical, a
highly active and detrimental radical, plays an important
role in CsA nephrotoxicity [38].

Couple of studies suggested that CsA induces apoptosis
characterized by internucleosomal DNA cleavage due to
endonuclease activation, chromatin condensation, and
apoptotic bodies in hematopoietic cells [39,40]. Because
oxidants are capable of inducing apoptosis in various
types of cells [41], including renal tubular epithelial cells
[42]. It is conceivable that reactive oxygen metabolites
may play a role in apoptotic mechanism of CsA-induced
nephrotoxicity.

The present study revealed that chronic administration of
CsA for 21 days caused a marked impairment of renal
function alongwith significant oxidative stress in the kid-
neys. Curcumin significantly and dose-dependently

improved creatinine and urea clearance, and decreased
the elevated levels of serum creatinine and BUN. Earlier
studies have also shown that CMN pretreatment decreases
ischemia-reperfusion induced rise in serum creatinine lev-
els in kidney [43]. Chronic administration of CsA also
produced oxidative stress and increased the lipid peroxi-
dation in kidneys as is seen by the renal TBARS levels. This
effect of CsA was again ameliorated by CMN treatment
and is in line with various previous reports, which show
that CMN decreases lipid peroxidation possibly by its
antioxidant mechanism [44]. Oxidative stress can pro-
mote the formation of a variety of vasoactive mediators
that can affect renal function directly by causing renal
vasoconstriction or decreasing the glomerular capillary
ultrafiltration coefficient; and thus reducing glomerular
filtration rate [45]. Thus the attenuation of lipid peroxida-
tion in CsA-treated rats by CMN provides a convincing
evidence for the involvement of ROS in CsA-induced lipid
peroxidation. Rukkumani et al. [46] reported protective

Effect of curcumin (CMN) on Cyclosporine-induced catalase levels in rat kidneyFigure 4
Effect of curcumin (CMN) on Cyclosporine-induced catalase levels in rat kidney. Values are expressed mean ± mean. a = Statis-
tical significant at P < 0.05 as compared to control, b = Statistical significant at P < 0.05 as compared to Cyclosporine (CsA).

Table 3: Effect of curcumin (15 mg/kg) treatment on morphological changes as assessed by histopathological examination of kidney in 
Cyclosporine treated rats

Group Tubular brush 
border loss

Interstitial oedema Tubular dilatation Necrosis of 
epithelium

Hyaline casts

Control - - - - -
CsA +++ +++ +++ +++ +++
CMN+ CsA +/- +/- +/- +/- +/-
CMN - - - - -
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effect of CMN on circulating lipids in plasma and lipid
peroxidation products in alcohol and polyunsaturated
fatty acid-induced toxicity. In-vitro findings support the
hypothesis that CMN inhibits free radical induced apop-
tosis in cell lines [47]. Sreejayan et al claimed that the
CMN inhibit iron-catalyzed lipid peroxidation in rat brain
tissue homogenates by chelation of iron[48].

More and more studies now established the ability of
CMN to mainly eliminate the hydroxyl radical [49],
superoxide radical [50], singlet oxygen[51], nitrogen
dioxide[52] and NO[53]. It has also been demonstrated
that CMN inhibits the generation of the superoxide
radical[54]. In our study, CsA administration caused
marked deterioration of endogenous antioxidant profile
as evidenced by decrease in SOD and CAT activities, an
effect which was effectively reversed by CMN treatment.
Vajragupta et al., [23] have reported that CMN manganese
complex and acetylcurcumin manganese complex, low
molecular weight synthetic compounds, showed much
greater SOD activity and an inhibitory effect on lipid per-
oxidation. Priyadarsini et al. [55] have shown, by DPPH
scavenging in vitro, that origin of the antioxidant activity
of CMN is mainly from the phenolic OH group, although
a small fraction may be due to the >CH2 site.

Further GSH, a major nonprotein thiol in living organ-
isms plays a crucial role in coordinating the body's anti-
oxidant defense processes. Results in the present study
indicate that CsA administration drastically lowered the
levels of GSH in the kidney. Improvement of renal GSH
levels in CMN treated rats in comparison to CsA adminis-
tered rats further demonstrates the anti-antioxidative
effect of CMN. CMN has been shown to increase the levels
of glutathione reductase in ischemic brains of rats as well
as alveolar and human leukemia cell [20,56,57]. Chronic
treatment of CMN also improved the levels of two key
antioxidant enzymes SOD and catalase in CsA adminis-
tered rats.

Peroxynitrite anions have been generated by the reaction
of nitric oxide with superoxide anion. These peroxynitrite
anions oxidize biomolecules, which finally leads to lipid
peroxidation and tubular cell damage [58]. Large
amounts of nitric oxide can lead to the depletion of
cellular ATP which can inactivate enzymes that contain
iron-sulfur clusters, such enzymes involved in mitochon-
drial electron transport [59]. Nitrosylation of sulfhydryl
groups or tyrosine residues in proteins may impair the
functional properties of these proteins. Nitric oxide dam-
ages DNA, and this in turn, stimulates the DNA repair
enzyme poly-ADP-ribose synthetase [60]. Studies done by
Amore and colleagues demonstrate that CsA induces
apoptosis in various renal cell lines, and this effect is
mediated by the induction of iNOS [61]. In line with stud-

ies where CMN is reported to inhibit iNOS gene expres-
sion in isolated BALB/c mouse peritoneal macrophages
and also in the livers of lipopolysaccharide injected mice
[62], our study shows that CsA-induced nitrosative stress
was significantly and dose dependently attenuated by
CMN. Very recently, Sumanont [24] have studied the
effect of CMN and its analogues on peroxynitrite anions
scavenging activity in vitro using sodium nitroprusside
(SNP) generating nitric oxide system. All compounds
effectively reduced the generation of NO radicals in a dose
dependent manner. They exhibited strong NO radical
scavenging activity with low IC(50) values. It is also
known that ROS mediates peroxidation of lipid structures
of the tissue, resulting in subcellular damage, as observed
in histopathological examination. In our study, the kid-
ney of CsA treated rats has shown characteristic morpho-
logical findings such as interstial fibrosis and arteriolar
hyalinosis. The vasoconstriction induced by CsA produces
an ischemic local environment, which leads to a number
of cellular changes such as deterioration in membrane
integrity the marked histological changes are prominent
in the outer cortex and medullary region of the kidney.
Because limited oxygen availabity these structures are par-
ticularly vulnerable to ischemia. These changes were not
observed in the group treated CMN (15 mg/kg) suggesting
the protective effect of CMN in attenuating CsA-induced
morphological changes.

Conclusion
In conclusion this study demonstrates that CMN through
its marked antioxidant activity coupled with favorable
haemodynamic effects salvages CsA nephrotoxicity.

Methods
Animals
Wistar albino rats of either sex (150–200 g) were housed
in 3 per cage, with food and water ad libitum for several
days before the beginning of the experiment. The animals
were kept on straw bedding in animal quarters with a nat-
ural light: dark cycle. The animals had free access to stand-
ard rodent food pellets and water. Animals were
acclimatized to the laboratory conditions one day before
the start of experiment and daily at least for one hour
before the experiment. All the experiments were con-
ducted between 09.00 and 17.00 hrs. The experimental
protocols were approved by the Panjab University Animal
Ethical Committee.

Drugs
Curcumin (Sigma Chemicals USA) was suspended in
0.5% Carboxy methyl cellulose (CMC) and administered
orally. CsA was a gift from Panacea Biotech India.
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Study design
Rats were divided into six groups each consisting of 5 to 6
animal. Group I received vehicle of CsA i.e. olive oil, sub-
cutaneously (s.c.) and 0.5% Carboxy methyl cellulose
(CMC, vehicle for CMN) orally for 21 days. Group II
received CsA (20 mg/kg/day, s.c.) dissolved in olive oil for
21 days. This group served as positive control. Three dif-
ferent doses of CMN were tested in Group III, IV, V in
which animals received both CsA (20 mg/kg/day s.c) and
CMN 5,10,15 mgkg-1 respectively for 21 days. A VI group
received only CMN 15 mgkg-1 for 21 days so as to see its
per se effect. CsA dose was selected from previous studies
done in our laboratory. On 21st day of CsA treatment, ani-

mals were immediately kept in individual metabolic cages
after drug administration for collection of urine. The ani-
mals were sacrificed after 24 hr and all the estimations
were done as described later.

Assessment of renal functions
Before sacrifice, rats were kept individually in metabolic
cages for 24 h to collect urine for estimation of renal func-
tion. A midline abdominal incision was performed and
both the kidneys were isolated, the left kidney was deep
frozen till further enzymatic analysis, whereas, the right
kidney was stored in 10% formalin for the histological
studies. Plasma samples were assayed for blood urea

(A) Hematoxylin and Eosin-stained sections of Normal rat kidneysFigure 5
(A) Hematoxylin and Eosin-stained sections of Normal rat kidneys. (B) Kidney section of CsA treated rats showing tubular 
brush-border loss, interstitial oedema, Necrosis of epithelium and Hyaline Casts. (C) Kidney Section of CMN (15 mg/kg p.o) + 
CsA treated rats showing prevention of CsA induced alterations. (D) Kidney section of CMN (15 mg/kg p.o.) treated rats 
showing almost normal morphology.
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nitrogen (BUN), urea clearance, serum creatinine & creat-
inine clearance by using standard diagnostic kits (Span
Diagnostics, Gujarat, India).

Assessment of oxidative stress
Post mitochondrial supernatant preparation (PMS)
Kidneys were, perfused with ice cold saline (0.9% sodium
chloride) and homogenized in chilled potassium chloride
(1.17%) using a homogenizer. The homogenates were
centrifuged at 800 g for 5 minutes at 4°C to separate the
nuclear debris. The supernatant so obtained was centri-
fuged at 10,500 g for 20 minutes at 4°C to get the post
mitochondrial supernatant which was used to assay cata-
lase and superoxide dismutase (SOD) activity.

Estimation of lipid peroxidation
The malondialdehyde (MDA) content, a measure of lipid
peroxidation, was assayed in the form of thiobarbituric
acid reacting substances (TBARS) by the method of
Okhawa et al. [63]. Briefly, the reaction mixture consisted
of 0.2 ml of 8.1% sodium lauryl sulphate, 1.5 ml of 20%
acetic acid solution adjusted to pH 3.5 with sodium
hydroxide and 1.5 ml of 0.8% aqueous solution of thio-
barbituric acid was added to 0.2 ml of 10%(w/v) of PMS.
The mixture was brought up to 4.0 ml with distilled water
and heated at 95°C for 60 minutes. After cooling with tap
water, 1.0 ml distilled water and 5.0 ml of the mixture of
n-butanol & pyridine (15:1 v/v) was added and centri-
fuged. The organic layer was taken out and its absorbance
was measured at 532 nm. TBARS were quantified using an
extinction coefficient of 1.56 × 105 M-1/cm-1 and expressed
as nmol of TBARS per mg protein. Tissue protein was esti-
mated using Biuret method of protein assay and the renal
MDA content expressed as nanomoles of malondialde-
hyde per milligram of protein.

Estimation of reduced glutathione
Reduced glutathione (GSH) in the kidneys was assayed by
the method of Jollow et al [64]. Briefly, 1.0 ml of PMS
(10%) was precipitated with 1.0 ml of sulphosalicylic acid
(4%). The samples were kept at 4°C for at least 1 hour and
then subjected to centrifugation at 1200 g for 15 minutes
at 4°C. The assay mixture contained 0.1 ml filtered aliq-
uot and 2.7 ml phosphate buffer (0.1 M, pH 7.4) in a total
volume of 3.0 ml. The yellow colour developed was read
immediately at 412 nm on a spectrophotometer.

Estimation of superoxide desmutase(SOD)
SOD activity was assayed by the method of Kono et al[65]
The assay system consisted of EDTA 0.1 mM, sodium car-
bonate 50 mM and 96 mM of nitro blue tetrazolium
(NBT). In the cuvette, 2 ml of above mixture, 0.05 ml
hydroxylamine and 0.05 ml of PMS were taken and the
auto-oxidation of hydroxylamine was observed by meas-
uring the absorbance at 560 nm.

Estimation of catalase
Catalase activity was assayed by the method of Claiborne
et al [66]. Briefly, the assay mixture consisted of 1.95 ml
phosphate buffer (0.05 M, pH 7.0), 1.0 ml hydrogen per-
oxide (0.019 M) and 0.05 ml PMS (10%) in a final vol-
ume of 3.0 ml. Changes in absorbance were recorded at
240 nm. Catalase activity was calculated in terms of k
minutes-1.

Assessment of serum/tissue nitrite concentration
Serum and tissue nitrite was estimated using Greiss rea-
gent and served as an indicator of NO production. 500 µl
of Greiss reagent (1:1 solution of 1% sulphanilamide in
5% phosphoric acid and 0.1% napthaylamine diamine
dihydrochloric acid in water) was added to suitably
diluted 100 µl of plasma and absorbance was measured at
546 nm [67]. Nitrite concentration was calculated using a
standard curve for sodium nitrite. Nitrite levels were
expressed as µmol/ml in serum and as µmol/mg protein
in homogenate.

Histopathological examination
For microscopic evaluation kidney were fixed in 10% neu-
tral phosphatebuffered formalin solution. Following
dehydration in ascending series of ethanol (70, 80, 96,
100%), tissue samples were cleared in xylene and embed-
ded in paraffin. Tissue sections of 5 µm were stained with
hematoxylin-eosin (H-E). A minimum of 10 fields for
each kidney slide were examined and assigned for severity
of changes by an observer blinded to the treatments of the
animals and assigned for severity of changes using Scores
of none (-), mild (+), Moderate (++) and Severe (+++)

Statistical analysis
Results were expressed as mean± SEM. The intergroup var-
iation was measured by one way analysis of variance
(ANOVA) followed by Fischer's LSD test. Statistical signif-
icance was considered at p < 0.05. The statistical analysis
was done using the Jandel Sigma Stat Statistical Software
version 2.0.
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