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ABSTRACT The use of haplotypes may improve the accuracy of genomic prediction over single SNPs
because haplotypes can better capture linkage disequilibrium and genomic similarity in different lines and
may capture local high-order allelic interactions. Additionally, prediction accuracy could be improved by
portraying population structure in the calibration set. A set of 383 advanced lines and cultivars that represent
the diversity of the University of Minnesota wheat breeding program was phenotyped for yield, test weight,
and protein content and genotyped using the Illumina 90K SNP Assay. Population structure was confirmed
using single SNPs. Haplotype blocks of 5, 10, 15, and 20 adjacent markers were constructed for all
chromosomes. A multi-allelic haplotype prediction algorithm was implemented and compared with single
SNPs using both k-fold cross validation and stratified sampling optimization. After confirming population
structure, the stratified sampling improved the predictive ability compared with k-fold cross validation for
yield and protein content, but reduced the predictive ability for test weight. In all cases, haplotype
predictions outperformed single SNPs. Haplotypes of 15 adjacent markers showed the best improvement
in accuracy for all traits; however, this was more pronounced in yield and protein content. The combined
use of haplotypes of 15 adjacent markers and training population optimization significantly improved the
predictive ability for yield and protein content by 14.3 (four percentage points) and 16.8% (seven
percentage points), respectively, compared with using single SNPs and k-fold cross validation. These
results emphasize the effectiveness of using haplotypes in genomic selection to increase genetic gain in
self-fertilized crops.
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Genomic selection is an important breeding approach for improving
quantitative traits. It was advocated as a marker-assisted selection
approach that uses high density SNP genotypes for estimating
genomic breeding values (Meuwissen et al. 2001). Genomic selection
relies on linkage disequilibrium (LD) between SNP markers and
quantitative trait loci (QTL), where the LD among markers is used as

a verification for the association between markers and QTL. Several
genomic prediction models were proposed including RR-BLUP,
Bayes A, Bayes B, Bayes Cp, Bayes LASSO, and Reproducing Kernel
Hilbert Space RKHS (Meuwissen et al. 2001; de Los Campos et al.
2009; Kizilkaya et al. 2010; Lorenz et al. 2011). These prediction
methods vary in the assumed genetic effects or/and variance asso-
ciated with markers. Factors affecting the accuracy of genomic pre-
diction include trait architecture, marker density and LD, training
population size, and population structure (Daetwyler et al. 2010;
Asoro et al. 2011; Heffner et al. 2011; Lorenz et al. 2011; Lorenz et al.
2012; Sallam et al. 2015; Zhang et al. 2016).

Since the development of genomic selection, it has been applied in
both animal (Garrick 2011; Rexroad et al. 2019) and plant breeding
programs (Lian et al., 2014; Sallam et al., 2015; Crossa et al., 2017)
resulting in reshaping the breeding approaches by omitting the step of
phenotyping the whole population. Rather, a smaller set of a calibration
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population is phenotyped and genotyped to train a prediction model
for estimating breeding values of the selection candidates. The
composition of the calibration population is of paramount impor-
tance because it determines the efficiency of selecting the best
performing individuals. Several studies investigated methods to
construct a calibration population for improving the accuracy of
genomic prediction including stratified sampling, CDmean optimi-
zation, prediction error variance (PEV), and Gmean (Rincent et al.
2012; Akdemir et al. 2015; Isidro et al. 2015; Lorenz and Smith 2015).
These methods varied in their improvement of prediction accuracy
for traits with different genetic architectures (Isidro et al. 2015;
Tiede and Smith 2018). One of the important factors determining
prediction accuracy is population structure, which can result in
variability in allele frequencies and the degree of the genetic relation-
ship between subpopulations/clusters, leading to changes in the
accuracy of prediction. The effect of population structure on the
accuracy of genomic prediction was observed in both animals (Hayes
et al. 2009b; Saatchi et al. 2011) and plants (Asoro et al. 2011;
Technow et al. 2013), resulting in a general recommendation of
constructing a mixed calibration population that includes individuals
from all clusters for improving the accuracy of prediction. To cope
with structured populations that are developed from parents with
different breeding histories, the stratified sampling approach was
proposed by sampling a representative sample from each cluster and
this approach showed improvement in the prediction accuracy for
several quantitative traits (Isidro et al. 2015). Unlike PEV and
CDmean optimization, the stratified sampling approach is not de-
pendent on trait heritability; thereby, it is expected to perform more
consistently across different traits with variable genetic architecture
(Rincent et al. 2012).

Current methods of genomic selection mostly use single SNP
markers to predict the genetic merits of individuals. However,
haplotypes may have several advantages over single markers for
genomic selection. Phased marker haplotypes can better estimate
identity-by-descent and haplotype effects (Meuwissen and Goddard
2000; Hess et al. 2017). Additionally, haplotypes increase the LD
between the group of phased markers and QTL, explaining greater
levels of QTL variance (Hayes et al. 2007).

The goal of using genomic selection in plant breeding is to
improve the rate of genetic gain under conditions of reduced re-
sources available for evaluating the calibration population. We tested
the effect of population structure and using haplotypes on the
accuracy of genomic prediction in a wheat population that represents
the genetic diversity of the University of Minnesota spring wheat
breeding program. The goals of this study were to (1) investigate the
effect of population structure on prediction accuracy for yield, test
weight, and protein content in a hard red spring wheat population, (2)
compare stratified sampling optimization with k-fold cross validation
for the prediction of the three traits, and (3) compare the prediction
accuracy of single markers to four different multi-allelic haplotype
blocks with different sizes.

MATERIALS AND METHODS

Phenotypic data
The Minnesota wheat genomic selection (MN-WGS) panel is com-
posed of 383 breeding lines that represent the genetic diversity of the
University of Minnesota spring wheat breeding program and includes
93 parents and 290 derived lines from 177 unique crosses represented
in their pedigrees (Conley et al. 2015). Parents included lines from
the spring wheat breeding programs of the University of Minnesota,

North Dakota State University, South Dakota State University,
AgriPro,WestBred, andCIMMYT. TheMN-WGS panel was evaluated
together for agronomic traits in two trials in 2013 at St. Paul and
Crookston,MN using standard agronomic practices. Plot sizes were 2.6
square meters in St. Paul and 3.4 square meters in Crookston. No
fungicides were applied in either location. Lines were planted in a Type
II modified augmented field design with 32 blocks. Linkert (Anderson
et al. 2018) was used as the primary check with LCS Albany (PI
658002), Briggs (Devkota et al. 2007), Prosper (Mergoum et al. 2013),
and Vantage (PI 653518) as secondary checks. Linkert was repeated
once in all of the 32 blocks. The population was phenotyped for grain
yield, test weight, and protein content. Yield was determined after
harvesting plots with aWintersteiger small plot combine then weighing
the grain to express data as kg/ha. The test weight was measured as the
weight of seeds that completely fill a quarter pint (118.3 Milliliter) and
the resulting data were expressed as kg/hL. Near infrared reflectance
spectroscopy (NIR) was used to determine protein content in the
harvested grains (Inframatic 9500, Perten Instruments, Sweden).

Phenotypic data analysis
Correction for spatial field variability for yield, test weight, and
protein content was done using a moving grid adjustment
(Technow 2015; R-package mvngGrAd, R development core team
2017). After setting the field in rows and columns, a moving mean
was calculated using a surrounding grid of a particular size. This
moving mean was used subsequently as a covariate to calculate the
adjusted phenotypes. A moving average window of eight plots was
used to determine the phenotypic performance of the line in the
center. For all traits, the entire set of lines were used to correct for
variance in trial means using the MIXED procedure in SAS 9.4
(Sallam et al. 2015; SAS Institute 2013). In all experiments, genetic
and residual variances were calculated using the MIXED procedure in
SAS. Broad-sense heritability was estimated using the equation
H ¼ s2

g=ðs2
g þ s2

e=nÞ, where s2
g is genetic variance, s

2
e is the variance

of random residuals, and n is the number of trials.

Genotyping and linkage disequilibrium
Leaf tissues were harvested from the 383 breeding lines at the three leaf
stage. DNA extraction was performed using the BioSprint 96 DNA
Plant Kit according to the manufacturer’s instructions (Qiagen 2016).
The panel was genotyped using the 90K Illumina Infinium iSelect
Assay. Clustering was performed using Illumina’s Genome Studio
Polyploid Clustering Module v1.0 using the procedure described by
Wang et al. (2014a), followed by manual curation to correct inaccu-
rately clustered loci. Markers were filtered forMAF, 0.05 andmissing
data . 0.10 resulting in 16,697 SNP markers. From this marker set
14,086 SNP markers had map positions based on a consensus wheat
map developed from six independent double haploid mapping pop-
ulations (Wang et al. 2014a). Missing marker data were imputed using
LD-kNNi, which imputes missing marker genotypes based on the
k-nearest neighbor imputation method (Money et al. 2015).

To characterize the level of LD in the MN-WGS panel, the
adjacent marker LD was estimated as r2 for the 21 wheat chromo-
somes in TASSEL (Bradbury et al. 2007). The genomic additive
relationship matrix was estimated among all lines in rrBLUP package
of R using all markers (Endelman and Jannink 2012). The genomic
additive relationship matrix was estimated as:

A ¼ ZZ’

2
P

pið12 piÞ
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where: Z =M – P,M being the individuals by SNP loci marker matrix
and P the frequencies of alleles expressed as 2(pi – 0.5) with pi
representing the allele frequency of marker i (VanRaden 2008).

Constructing haplotype blocks
The high density SNP marker genotypes were used to construct
haplotype blocks after ordering markers based on the consensus map
positions for all 21 chromosomes (Wang et al. 2014a). We generated
four different haplotype blocks, each with a fixed number of 5 adjacent
markers (Haploblock-5), 10 (Haploblock-10), 15 (Haploblock-15),
and 20 (Haploblock-20) for each chromosome. Haplotype alleles
for each haplotype block were numbered using a custom script in R
(R Development Core Team 2017).

Assessment of population structure and training
population optimization
A cluster analysis was performed by generating a pairwise distance
matrix estimated as 1 - IBS (identity-by-state) probability in TASSEL
using SNP marker data for all lines in the MN-WGS panel. Using the
distance matrix, K-means clustering was performed using the Harti-
gan-Wong algorithm implemented in R (R Development Core Team
2017). Based on prior knowledge of pedigree information, three
clusters were assumed in K-means clustering. Principal component
analysis (PCA) was performed in R using SNP marker data for all
lines in the MN-WGS panel to visually identify clusters assigned by
the K-means clustering (R Development Core Team 2017). Using the
genomic additive relationship matrix, the average genetic relation-
ships were calculated for lines within a cluster (Aij withing) and lines
between clusters (Aij between). To investigate the effect of population
structure on genomic prediction in the MN-WGS panel, using single
SNP markers only, the three clusters identified by K-means clustering
were used in evaluating the predictive ability by combining two
clusters for predicting the performance of the third cluster and
repeating this step iteratively for all clusters. The predictive ability
was calculated as the correlation between phenotypic values of
individuals in the validation population and the estimated genomic
predictions of those individuals (Legarra et al. 2008).

To evaluate genomic prediction accuracy, k-fold cross validation
was implemented so each individual appeared once in the validation
population. We used both single SNP markers and haplotype blocks
for the assessment of the predictive ability. The population was
randomly shuffled followed by using k-fold cross validation by di-
viding the MN-WGS panel into four groups. One of those groups
were excluded to estimate marker/haplotype effects using the three
remaining groups to define 75% (288 individuals) of the population as
a random calibration population. The k-fold cross validation was
repeated four times iteratively for each of the four randomly assigned
groups. These previous k-fold cross validation steps were replicated
four times. In addition to k-fold cross validation, a training pop-
ulation optimization procedure using stratified sampling was evalu-
ated. For the stratified sampling procedure, clusters identified by
K-means clustering were used as a criterion for selecting the cali-
bration population. A stratified sampling genomic prediction pro-
cedure was performed by constructing a calibration population
through randomly sampling 75% of lines from each of the three clusters.
Therefore, the sample size from each cluster was proportional to the size
of the cluster, and a total of 75% (288) of lines in the MN-WGS panel
were used as a calibration set to predict the remaining 25% (94). The
stratified sampling prediction approach was replicated sixteen times
using both single SNP markers and the four haplotype block sizes. Each
predictive ability value was transformed using Fisher Z. The test statistics

were calculated as T ¼ r
ffiffiffiffiffiffiffiffiffiffiffi
n2 2

p
=

ffiffiffiffiffiffiffiffiffiffiffiffi
12 r2

p
, where r is the predictive

ability and n is the number of tests (Bobko 2001). The test statistic
follows a tN - 2 distribution (Bobko 2001). A paired t-test was used for the
assessment of statistical significance between single markers and each
haplotype block size for the same constructed calibration populations.

Genomic prediction models
For genomic best linear unbiased prediction (GBLUP) using single
markers, the mixed model with SNP additive effects (or average
effects of gene substitution) based on the partition of genotypic values
(Da et al. 2014) was used:

y ¼ 1mþWaaþ e ¼ 1mþ aþ e

where m = population mean, 1 = n · 1 column vector of 1’s, n =
number of lines, a = m · 1 column vector of marker additive
effects, m = number of SNPs, Wa = n ·m model matrix of a with
elements of 2p2, p2 2 p1, and 22p1   for a marker genotype, pk =
frequency of allele k of a SNP (k = 1,2), and a ¼ Waa = GBLUP of
additive values of the n lines. Assumptions for the first and second
moments are: EðyÞ ¼ 1m, VarðaÞ ¼ Ims2

a, and VarðeÞ ¼ R ¼ INs2
e ,

where s2
a= variance of SNP additive effects, s2

e= residual variance,
Im = m ·m identity matrix, and IN= N ·N identity matrix. The
GBLUP of additive values, and genomic restricted maximum likeli-
hood (GREML) estimates were calculated using the GVCBLUP
computer package (Wang et al. 2014b; https://animalgene.umn.edu).

For haplotype analysis, a multi-allelic haplotype model that treats
each haplotype block as a ‘locus’ and each haplotype within the
haplotype block as an allele (Da 2015) was used. The multi-allelic
haplotype prediction was modeled as:

y ¼ 1mþWahah þ e ¼ 1mþ aþ e

where m = population mean, 1 = n · 1 column vector of 1’s,
n = number of lines, ah = na · 1 column vector of haplotype additive
effects, na = number haplotype additive effects (or average effects
of gene substitution),Wah = n · na model matrix of ah with elements
of 2pk, 2ð12 2pkÞ, and 22ð12 pk   Þfor a haplotype genotype,
pk = frequency of a haplotype in a haplotype block, and
a ¼ Wahah = GBLUP of additive values of the n lines. Assumptions
for the first and second moments are: EðyÞ ¼ 1m, VarðahÞ ¼ Inas2

ah,
and VarðeÞ ¼ R ¼ INs2

e , where s
2
ah= variance of haplotype additive

effects, s2
e= residual variance, Ina = na · na identity matrix, and

IN= N·N identity matrix. The GBLUP of additive values were
calculated using the GVCHAP computer package (Prakapenka et al.
2020; https://animalgene.umn.edu).

Data availability
Genotypic and raw phenotypic data for this study are available at
figshare portal. The link to the genotypic data (https://figshare.com/
articles/Conley_MNWGSpanel_cM_hmp_txt/10031867). The link
for the raw phenotypic data (https://figshare.com/articles/Pheno_
MN-WGS/10032326). Supplementary tables are available at figshare
(https://figshare.com/articles/Supplemental_Tables_for_MN-WGS_
panel/10031891). Table S1 includes the average adjacent marker LD
estimated as (r2) for the 21wheat chromosomes in theMN-WGS panel.
Table S2 includes number of haplotype blocks for each chromosome,
distance covered by haplotype blocks, maximum number, and average
number of haplotype alleles in fixed length haplotypes of 5, 10, 15,
and 20 adjacent markers. Table S3 includes the predictive ability for
yield, test weight, and protein content using single markers, haplotype
blocks of 5 adjacent markers (Haploblock-5), haplotype blocks of
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10 adjacent markers (Haploblock-10), haplotype blocks of 15 adjacent
markers (Haploblock-15), and haplotype blocks of 20 adjacent
markers (Haploblock-20).

RESULTS

Phenotypic and genotypic data analysis
The MN-WGS panel was evaluated in two balanced trials in Min-
nesota for grain yield, test weight, and grain protein content. Cor-
rection for spatial field variability and trial effects was performed to
improve estimates of phenotypic values of individuals. Significant
differences were observed among lines for yield, test weight, and
protein content. Estimated genetic variance, residual variance, and
the broad-sense heritability for each trait are shown in Table 1.
Heritability estimates were 0.28 for yield, 0.67 for test weight, and 0.68
for protein content (Table 1). After quality control filtering, 14,086
markers with map positions were used in the study. Marker density
varied among chromosomes and ranged from 73 for chromosome 4D
to 1,488 for chromosome 2B (Table S1). Extensive levels of LD,
estimated as r2, were observed for all chromosomes that varied
between 0.45 for chromosome 7A to 0.69 for chromosome 3B (Table
S1). The average adjacent marker LD across all chromosomes was
0.57. K-means clustering identified three different clusters and the
number of lines for each cluster were 175 for cluster 1, 89 for cluster 2,
and 118 for cluster 3 (Table 2). For the PCA, the majority of
individuals in the MN-WGS panel were located in their respective
clusters identified by K-means clustering (Figure 1). The first prin-
cipal component (PC1) explained 10.0% of the variability whereas the
second principal component (PC2) explained 8.3% of the variability
in the MN-WGS panel (Figure 1). The genomic additive relationship
matrix agreed with the results of the K-means clustering in identi-
fying three clusters, each including genetically related individuals
(Figure 2). Table 2 displays the average additive genetic relationship
between individuals in different (Aij between) clusters and individuals
within (Aij within) clusters. Cluster 1 had the highest Aij between and
lowest Aij within compared to the other two clusters (Table 2). On the
other hand, cluster 2 had the lowest Aij between and highest Aij within

(Table 2). The average yield for the three clusters were 5556, 5617,
and 5583 kg/ha for cluster 1, cluster 2, and cluster 3; respectively. No
significant difference was observed for yield across the three clusters.
The average test weight for the three clusters were 79.1, 77.8, and
78.7 kg/hL for cluster 1, cluster 2, and cluster 3; respectively. No
significant difference was observed for test weight across the three
clusters. The average protein content for the three clusters were 14.4,
14.0, and 14.4% for cluster 1, cluster 2, and cluster 3; respectively. No
significant difference was observed for protein content across the
three clusters.

Haplotype block construction
Haplotype blocks of 5, 10, 15, and 20 adjacent markers were generated
for all chromosomes, with variable number of haplotype alleles
identified for each haplotype locus. We will refer to haplotype blocks
of 5, 10, 15, and 20 as Haploblock-5, Haploblock-10, Haploblock-15,
Haploblock-20; respectively. With the increase of haplotype lengths
(Haploblock-5, Haploblock-10, Haploblock-15, to Haploblock-20),
lower number of haplotype blocks were generated across the genome
with higher numbers of haplotype alleles per haplotype blocks
(Table S2). For Haploblock-5, a total of 2,810 haplotype blocks were
identified across all chromosomes with up to 29 haplotype alleles
per haplotype block (Table S2). On average, across the 21 wheat
chromosomes, each Haploblock-5 covered 2.2 cM (Table S2).

For Haploblock-10, 1,400 haplotype blocks were identified across
all chromosomes with up to 105 haplotype alleles per haplotype
block (Table S2). On average across the 21 wheat chromosomes,
each Haploblock-10 covered 4.7 cM (Table S2). For Haploblock-15,
930 haplotype blocks were identified across all chromosomes with up
to 151 haplotype alleles per haplotype block (Table S2). On average
across the 21 wheat chromosomes, each Haploblock-15 covered 7.8
cM (Table S2). For Haploblock-20, 691 haplotype blocks were
identified across all chromosomes with up to 259 haplotype alleles
per haplotype block (Table S2). On average across the 21 wheat
chromosomes, each Haploblock-20 covered 9.6 cM (Table S2). The
average number of haplotype alleles across all chromosomes were 3, 4,
6, and 10 for Haploblock-5, Haploblock-10, Haploblock-15, and
Haploblock-20; respectively (Table S2). The four different haplotype
block sizes were used in genomic prediction using both k-fold cross
validation and stratified sampling optimization.

Training population scenarios and comparing between
single and haplotype prediction
Generally, the predictive ability was lower for yield compared to test
weight and protein content in both k-fold cross validation and
stratified sampling. To investigate the effect of population structure
on the predictive ability, using single SNP markers, the identified
clusters were used as training populations by combining two clusters
for predicting the third cluster for yield, test weight, and protein
content. The size of the formed training populations varied depend-
ing on the clusters size (Table 2). The predictive abilities when
including a cluster in the training populations are presented in Table
2. When including cluster 1 in the training population in two cases
(cluster 1 + cluster 2 and cluster 1 + cluster 3), the predictive abilities
were higher across all traits (Table 2). The average predictive abilities
for cluster 2 were similar to cluster 3 across all traits and both were
lower than cluster 1 (Table 2).

After confirming the effect of population structure on the pre-
dictive ability, a training population optimization method was used to
design a calibration population by sampling a representative sample
from each cluster. In general, the stratified sampling resulted in an
increase in the predictive ability compared with k-fold cross validation
for yield and protein content; while decreasing the predictive ability for
test weight using all marker prediction scenarios (Figure 3; Table S3).
Four different haplotype block sizes (Haploblock-5, Haploblock-10,
Haploblock-15, and Haploblock-20) were used to assess the effec-
tiveness of haplotypes compared with single markers in genomic
prediction. All four haplotype blocks improved the predictive ability
in both k-fold cross validation and stratified sampling in yield and
protein content compared with single markers (Figure 3; Table S3).
For k-fold cross validation in yield, Haploblock-5, Haploblock-10,
Haploblock-15, and Haploblock-20 resulted in average increases of
6.3, 2.9, 5.3, and 2.2% in the predictive ability over single markers
(Figure 3; Table S3). With the use of stratified sampling, Haploblock-5,
Haploblock-10, Haploblock-15, and Haploblock-20 resulted in signif-
icant average increases of 6.8, 5.5, 9.4, and 5.2% in the predictive ability
over single markers (Figure 3; Table S3). For k-fold cross validation in
protein content, Haploblock-5, Haploblock-10, Haploblock-15, and
Haploblock-20 resulted in significant average increases of 3.4, 4.6, 6.7
and 6.9% in the predictive ability over single markers (Figure 3; Table
S3). With the use of stratified sampling, Haploblock-5, Haploblock-10,
Haploblock-15, and Haploblock-20 resulted in significant average
increases of 2.7, 4.3, 6.0, and 5.8% in the predictive ability for protein
content over single markers (Figure 3; Table S3). For test weight, the
increase of predictive ability of haplotypes compared with single
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marker prediction was significant only when using Haploblock-15
and Haploblock-20 with stratified sampling optimization (Figure 3;
Table S3).

DISCUSSION
Most genomic selection investigations rely on using single markers
for predicting breeding values of individuals. In our breeding exper-
iment, multi-allelic haplotype prediction performed better than single
markers for all three traits investigated. For both single markers and
haplotype predictions, the predictive ability for yield was lower than
protein content and test weight due to a lower heritability estimate for
yield compared with other two traits. Traits with low heritability
estimates tend to be highly quantitative, controlled by many loci with
smaller effects, and have much environmental noise; which can result
in lower prediction accuracies (Bernardo and Yu 2007; Daetwyler
et al. 2010; Sallam et al. 2015). Daetwyler et al. (2010) demonstrated
that increasing heritability will improve the accuracy of the prediction
for both GBLUP and Bayes B. In Norwegian dairy cattle, a strong
relationship was observed between prediction accuracy and trait
heritability (Luan et al. 2009). Similar results were observed in wheat
and barley as high heritability traits such as heading date, height, and
test weight had higher prediction accuracies compared with low
heritability traits such as yield (Heffner et al. 2011; Sallam et al.
2015). With low heritability traits, a larger number of phenotypic
records are needed to better estimate marker effects for improving
prediction accuracy (Hayes et al. 2009a; Luan et al. 2009).

K-means clustering identified three clusters with variable sizes.
The cluster analysis revealed the pedigree structure in MN-WGS
panel. The three clusters had similar performances for the three traits.
The five most frequent parents each appeared in pedigrees at least
45 times (data not shown). One of those parents was not part of the
MN-WGS panel. For example, Sabin (Anderson et al. 2012), assigned
in cluster 2, is a parent to 91 individuals, 87 of which are included in
cluster 2. RB07 (Anderson et al. 2009), assigned in cluster 3, is a
parent to 74 individuals, 71 of which are included in cluster 3.
MN02072-7, assigned in cluster 1, is a parent to 66 individuals,
56 of which are included in cluster 1. MN01333-A-2 is a parent to
53 individuals, 41 of which are included in cluster 1. Finally, Glenn
(Mergoum et al. 2006), assigned in cluster 1, is a parent to 45 indi-
viduals, 32 of which are included in cluster 1. These results indicate
that clustering in the population is determined by pedigree stratifi-
cation. Cluster 2 had the highest Aij within and by searching through

pedigree information, we found that all lines in this cluster are half-
sibs, sharing Sabin as a common parent. The two training populations
that included cluster 2 (cluster 1 + cluster 2 and cluster 2 + cluster 3)
had an average predictive ability that is lower than cluster 1, whose
included three parents: MN02072-7, Blade (PVP no. 200800075),
Faller (Mergoum et al. 2008), and Glenn (Mergoum et al. 2006) and
high frequency of their progenies. Blade, Faller, and Glenn are wheat
cultivars and used as parents in the MN-WGS panel but with more
progeny for those parents in cluster 1 (48 progeny lines). Several
direct progenies of these three parents were also included in cluster
2 (16) and cluster 3 (20), which may explain the highest Aij between for
cluster 1. The high genetic relationship of cluster 1 with the other two
clusters resulted in a higher prediction accuracy of single marker
prediction when including cluster 1 in the training population. These
results may not be applicable to other breeding situations with
different levels of population structure due to admixture or pedigree
stratification (Toosi et al. 2010; Asoro et al. 2011). Our findings are in
agreement with a genomic selection study in angus beef cattle as one
of the five clusters identified using K-means clustering showed lower
genetic relationship to other clusters, resulting in the smallest pre-
diction accuracy across all traits when including this cluster in the
training population (Saatchi et al. 2011). It has been proven that
increasing the genetic relationship between the training and valida-
tion populations will improve the accuracy of genomic prediction
(Habier et al. 2007; Lorenz et al. 2012; Lorenz and Smith 2015).

The size of the training population is another factor that affects the
accuracy of genomic prediction. Training populations including
cluster 1 had a larger size compared with the other two clusters
and that may contribute to the higher prediction accuracy of cluster 1.
Despite the fact that training populations including cluster 3 were
larger than cluster 2, both resulted in similar prediction accuracies
across all traits. In breeding populations, the change of prediction
accuracy due to the increase of training population size is dependent
on the genetic relationship (Albrecht et al. 2014) and breeding history
(Sallam et al. 2015); therefore, careful selection of the training
population is needed for a successful implementation of genomic
selection (Lorenz et al. 2012; Lorenz and Smith 2015).

When implementing genomic selection in a breeding program, it
is important to consider the best genotypes to be included in the
calibration population. Additionally, implementing an efficient
marker prediction approach is required to maximize the accuracy
of genomic prediction. An effective genomic selection strategy in
plant breeding programs is able to design a smaller training pop-
ulation for the purpose of generating genotypic and phenotypic
data, which can improve resource allocation (Lorenz 2013;
Endelman et al. 2014). Several methods were proposed to optimize
calibration population design including CDmean (Rincent et al. 2012),
PEV (Akdemir et al. 2015), stratified sampling (Isidro et al. 2015), and
Gmean (Lorenz and Smith 2015). The stratified sampling approach
outperformed CDmean optimization in structured populations across
several traits with different genetic architectures (Isidro et al. 2015).

n■ Table 1 Estimated genetic variance (s2
g), residual variance (s2

e),
and broad-sense heritability (H) for yield, test weight, and protein
content in the Minnesota wheat genomic selection panel

Trait s2
g s2

e H

Yield (kg/ha) 33737 168275 0.29
Test weight (kg/hL) 1.20 1.19 0.67
Protein (%) 0.28 0.27 0.68

n■ Table 2 Genetic relationship between (Aij between) and within (Aij within) clusters and average predictive ability, when using the cluster in
two training populations to predict another cluster, for yield, test weight, and protein based on single markers

Predictive ability

Clusters Number of individuals Aij between Aij within Yield Test weight Protein Ave. across traits

Cluster 1 176 20.12 6 0.001 0.13 6 0.002 0.32 0.38 0.28 0.33
Cluster 2 89 20.16 6 0.001 0.51 6 0.005 0.29 0.34 0.19 0.27
Cluster 3 118 20.14 6 0.001 0.28 6 0.003 0.28 0.31 0.23 0.27
Average for each trait 0.30 0.34 0.23
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Compared with k-fold cross validation, stratified sampling increased
the predictive ability in yield by 4.4, 4.9, 7.0, 8.5 and 7.4% for
single markers, Haploblock-5, Haploblock-10, Haploblock-15, and
Haploblock-20; respectively. For protein content, the stratified sam-
pling increased the predictive ability by 10.2, 9.5, 9.8, 9.4, and 9.0%
for single markers, Haploblock-5, Haploblock-10, Haploblock-15,
and Haploblock-20; respectively. Stratified sampling reduced the

predictive ability for test weight across all the marker/haplotype
genotyping scenarios. The reason for the reduction in the test weight
predictive ability when implementing stratified sampling is unknown.
Similar results were observed in barley when stratified sampling
resulted in a reduction of prediction accuracy in yield across selection
cycles while increasing the prediction accuracy for Fusarium toxin
accumulation (Deoxynivalenol) (Tiede and Smith 2018). There is no
absolute training population optimization method that could be
applied to all traits with variable genetic architecture (Isidro et al.
2015; Tiede and Smith 2018). This may be partly due to the
correlation between the traits and population structure, which can
affect the accuracy of prediction (Sallam et al. 2015). However, other
optimization methods performed similarly or more consistently in
traits with different genetic architecture and in populations with
limited population stratification (Isidro et al. 2015; Tiede and
Smith 2018).

The current study accentuates the improvement of prediction
accuracy based on haplotype blocks vs. single marker genomic pre-
diction in a self-fertilized crop species. The four different haplotype
sizes significantly improved the accuracy of prediction compared
with single marker prediction for yield, test weight, and protein
content. It is expected for haplotypes to improve the prediction
accuracy over single marker prediction due to the increased LD
between haplotypes and causal genetic variants, the effectiveness of
capturing genetic relationship using haplotype information, and the
ability of haplotype blocks to capture short-range epistatic interac-
tions of nearby genetic variants (Clark 2004; Hayes et al. 2007; Hess
et al. 2017; Jiang et al. 2018). Haplotypes may better capture the
genomic similarity between lines because LD patterns in each block
are considered. A relationship was observed between the length of the
haplotype and the accuracy of prediction in animal studies using both
simulated (Calus et al. 2008; Villumsen et al. 2009) and empirical data
(Hayes et al. 2007; Hess et al. 2017). The increase of haplotype length
is expected to capture LD between markers in blocks with QTL;

Figure 1 Population stratification of the Minnesota wheat genomic
selection (MN-WGS) panel of 383 wheat lines inferred from K-means
clustering in which three clusters were identified and visualized on
principal component analysis. Cluster 1 is shown in blue, cluster 2 in red,
and cluster 3 in green.

Figure 2 Heatmap for the additive genetic relation-
ship matrix displaying genetic relatedness among
lines in the MN-WGS panel with the corresponding
clusters identified using K-means clustering.
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thereby increasing the accuracy of prediction. However, this may also
increase the number of haplotype allelic classes, whichmay reduce the
accuracy of prediction due to smaller sample sizes representing these
classes (Villumsen et al. 2009; Da 2015; Hess et al. 2017). In our study,
the longer haplotype blocks in Haploblock-20 resulted in a large
increase for the number of haplotype allelic classes, on average,
compared with other haplotype sizes, leading to no improvement
in accuracy over Haploblock-15. Villumsen et al. (2009) found that
the ideal haplotype size could be determined based on the LD level
and marker density in a population. In the current study, extensive
levels of LD were observed in the four haplotype block sizes with
average LD of 0.568, 0.569, 0.572, and 0.570 for Haploblock-5,
Haploblock-10, Haploblock-15, and Haploblock-20; respectively.
The high levels of LD are a consequence of the selfing nature of
wheat that results in extension of LD over long distance. In a
simulation study in animals, an adjacent marker LD of 0.20 was
sufficient for the use genomic prediction (Calus et al. 2008). LD is an
important component for driving the accuracy of genomic prediction
as the prediction accuracy increases at a similar pattern to the increase
of LD (Solberg et al. 2008). It is clearly evident that the prediction
accuracy is reduced at lower LD levels (Solberg et al. 2008; Calus et al.
2008). To assess the accuracy of genomic prediction in a rice diversity
panel using single markers, LD levels between 0.49 and 0.64 resulted
in higher accuracies with reductions in the accuracy of prediction at
lower LD levels for three different traits (Ben Hassen et al. 2018).
Thus, monitoring LD level while constructing haplotype blocks is a
safe approach to ensure improvement of genomic predictions. This is
because partial linkage between QTL and a group of markers may
reduce QTL variance explained by haplotypes, thereby lowering the
prediction accuracy (Villumsen et al. 2009).

Utility of haplotype prediction in plant breeding
We evaluated the implementation of a multi-allelic haplotype geno-
mic prediction model in wheat to assess the changes of the predictive
ability compared with single markers. Several methods were proposed
for constructing haplotype blocks including fixed-length haplotypes

and variable-length haplotypes that are based on haplotype identity-
by-descent (IBD) and LD-based haplotypes (Calus et al. 2008;
Cuyabano et al. 2014; Hess et al. 2017). In current study, four fixed
numbers (5, 10, 15, and 20) of adjacent markers were used to
construct four different haplotype block sizes that resulted in im-
provement over single marker prediction for traits with different
genetic architectures. With the implementation of haplotype pre-
diction in conjunction with a training population optimization
approach such as stratified sampling, the prediction accuracy im-
proved substantially. Using Haploblock-15 and implementing strat-
ified sampling for training population optimization, the predictive
ability was improved significantly by 14.3 (four percentage points)
and 16.8% (seven percentage points) for yield and protein content,
respectively, compared with single markers and random k-fold cross
validation. Improvement of prediction accuracy can change the
ranking of top performing individuals in the selection candidate
population, thereby increasing genetic gain.
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